Modeling Hardware Error Propagation in Programs for Low-Cost Dependability

Guanpeng(Justin) Li

Qining Lu, Bo Fang, Karthik Pattabiraman

Siva Hari, Michael Sullivan, Timothy Tsai

Chen-Yong Cher, Meeta Gupta, Jude Rivers, Pradip Bose

My Research

• Building fault-tolerant and secure software systems

• Three areas

- Software error resilience [DSN'12][DSN'13][DSN'14][CASES'14][DSN'15][SC'16][DSN'16][SC'17][DSN'17][DSN'18A][DSN'18B]
- Web applications' reliability [ICSE'14A][ICSE'14B][ICSE'15][ICSE'16][ASE'14][ASE'15][ASE'17][ICSE'18]
- IoT devices security [FSE'17][ACSAC'16][EDCC'15]

• This talk: Software error resilience techniques

Motivation: Soft Errors

Motivation: Soft Errors

• Soft errors becoming more common in processors

[Chandra et. al., DATE'14]

Soft Errors: Traditional Solutions

Guard-banding

Guard-banding wastes power as gap between average and worstcase widens due to variations

Duplication

Hardware duplication (i.e., DMR) can result in 2X slowdown and/or energy consumption

An alternative approach

Layers of Computer System

oft Error

Why does this approach work ?

Consequences of Error Propagation

• Well-known incidents

- Northeastern power outage of 2003
- AWS outage of 2008 single bit flip propagation
- Sudden acceleration in Toyota cars causes fatal accidents
 - Paid \$1.2B for avoiding prosecution [2013]

Outline

- Motivation and Goals
- Empirical Studies of Error Propagation [DSN'15] [ISSRE'15][SC'16]
- Models of Error Propagation [CASES'14] [TECS] [DSN'16] [DSN'18]
- Future Work and Conclusions

CrashFinder: Fail-Stop Assumption

CrashFinder: But, in reality ...

LLVM Fault Injector (LLFI)

- Benefits at LLVM IR [DSN'14]
 - Inject into specific instructions, variables and code constructs
 - Easy to study propagation of errors and map result back to source code
- Also extended to GPUs [SC'16]

CrashFinder: Initial Fault Injection Study

- Crash latency
 - Majority < 100 instructions
- Long latency crashes (LLCs)
 - Up to 3.6% among total crashes
 - Latencies range from a few thousand to million instructions

Most long-latency crashes are caused due to a few dominant code patterns

CrashFinder: Static and Dynamic Analysis

Static Analysis:

static unsigned int st	ate[N+1];
static unsigned int *n	ext;
unsigned int reloadMT(void)
1	
register unsigned in	<pre>t *p0 = state;</pre>
<pre>next = state+1;</pre>	
*p0++ = *pM++ ^	1
1	
unsigned int randomMT((biov
1	
unsigned int y;	
<pre>y = *next++;</pre>	
)	
	[From sjeng program]

Dynamic Analysis:

- Heuristic
 - Similar control-flow path leads to similar error propagation
- Selective sampling for fault injections
 - Filter out false-positives

CrashFinder: Results (Precision)

CrashFinder: Results (Recall)

•

•

Outline

- Motivation and Goals
- Empirical Studies of Error Propagation [DSN'15][ISSRE'15][SC'16]
- Models of Error Propagation [CASES'14] [TECS] [DSN'16] [DSN'18]
- Future Work and Conclusions

SDCTune: Silent Data Corruption (SDCs)

Silent Data Corruption (SDCs): Fault Injection

Fault injection approaches take way too long to be practical !

Silent Data Corruption (SDCs): Challenges

- Propagation of SDC is much more complicated
 - Billions of instructions and branches in common dynamic execution
 - Need a comprehensive model
- Our first attempt: SDCTune [CASES'14][TECS]
 - Machine learning algorithm to learn classification and regression tree model

SDCTune: Example Model

Linear Regression for SDC-proneness

SDCTune: Evaluation Method

SDCTune: Model Validation

SDCTune: SDC Coverage

SDCTune: Full Duplication and Hot-Path Duplication Overheads

Normalized Detection Efficiency	10% overhead	20% overhead	30% overhead
Training programs	2.38	2.09	1.54
Testing programs	2.87	2.34	1.84

SDCTune: Drawbacks

- Need representative set of benchmarks for training
- Fault injection needs to be performed for every application class
- Little to no explanatory power for analysis
- Cannot be used during early-stage design choice modeling

Trident: Analytical Model

- Error propagations can be decomposed into modules, which can be abstracted into equations without any *fault injections*
 - Program source code (LLVM IR)
 - Program input
 - Instructions considered as program output

- Overall SDC probability of the program
- SDC probabilities of every instructions

Trident: Approach

- Three-level modeling
 - Register-communication
 - Control-flow
 - Memory dependency

Trident: Implementation

- Built as compiler module
 - Integrated with LLVM/Clang
 - Validated with 11 benchmarks

- Online tuning for resilience
 - Extend to GPU programs

Trident: Results

- Mean Absolute Error: 4.75%
- Much better than simpler models
- T-test to compare with fault injection

Trident: Performance Speedup

vTrident: Input-Dependent Error Propagation

- A program is executed with multiple inputs in production
 - SDC probabilities highly depend on inputs
 - Need to understand how inputs affect error propagation
 - Need to bound SDC probabilities across multiple inputs
- Two kinds of volatilities decide overall SDC probability :

$$P_{overall} = N_{SDC} / N_{total} \tag{1}$$

$$= (\sum_{i=1}^{n} P_i * N_i) / N_{total} = \sum_{i=1}^{n} P_i * (N_i / N_{total})$$
(2)

Instruction-SDC-Volatility

Instruction-Execution-Volatility

vTrident Results: Bounding SDC Rates

About 80% of the measured SDC values are within the bounds identified by vTrident

Outline

- Motivation and Goals
- Empirical Studies of Error Propagation [DSN'15] [ISSRE'15][SC'16]
- Models of Error Propagation [CASES'14] [TECS] [DSN'16] [DSN'18]
- Future Work and Conclusions

Future Work: Formal Reasoning

Need to verify programs in presence of faults

- Consider both hardware and software faults
- Model-checking to find corner cases [DSN'08][TC]
- Integration with software development process

Future Work: Genetic Programming

- Evolve applications using Genetic Programming (GP)
- Preliminary study on finding "resilience friendly" compiler optimizations
- Can improve both resilience and performance simultaneously [EDCC'16]

Future Work: Resilient ML

Deriving ML algorithms resilient to perturbations

- Small changes \rightarrow Similar outputs
- Convergence properties in presence of faults

Preliminary study of DNN applications - Found catastrophic cases [SC 2017]

Conclusion

- Error Propagation is the reason for most catastrophic failures in systems
 - Need systematic approaches to identify and mitigate error propagation

• Empirical approach

• Apply heuristics and ML to identify error propagation

Analytical model

- Decomposition and abstraction
- Almost as accurate as fault injections for fraction of cost

Acknowledgements (Website: http://blogs.ubc.ca/karthik)

