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My Research

• Building fault-tolerant and secure software systems

• Three areas
• Software error resilience 

[DSN’12][DSN’13][DSN’14][CASES’14][DSN’15][SC’16][DSN’16][SC’17][DSN’17][DSN’18A][DSN’18B]
• Web applications’ reliability 

[ICSE’14A][ICSE’14B][ICSE’15][ICSE’16][ASE’14][ASE’15][ASE’17][ICSE’18]
• IoT devices security [FSE’17][ACSAC’16][EDCC’15]

• This talk: Software error resilience techniques



Motivation: Soft Errors
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Motivation: Soft Errors
• Soft errors becoming more common in processors
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SoC soft error trends 
Bitcell SER FIT rate per node 
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Even though per memory bitcell SER sensitivity is decreasing, overall FIT per SoC is increasing 

Source: iRoC 

[Chandra et. al., DATE’14]
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Soft Errors: Traditional Solutions

• Guard-banding • Duplication

Average Worst-case

Guard-banding wastes power as 
gap between average and worst-
case widens due to variations

Guard-band

Hardware duplication (i.e., DMR) 
can result in 2X slowdown and/or 
energy consumption



An alternative approach

Architecture

Operating System

Application

Devices/Circuits

User interacts with the application

Software

Hardware

User

Allow errors across the 
hardware-software 
boundary, but make 
sure user does not 

perceive it

Layers of Computer System

Soft Error



Device/Circuit Level

Architectural Level  

Operating System Level

Application Level

Why does this approach work ?

Impactful Errors
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Error Propagation in Programs

Success

Program Crash !

Incorrect Output: Silent Data Corruption (SDC)

Fault 
Occurs !

Error
Activated!

Crash 
Latency

Inactivated 
Error

Benign Error

Time
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Consequences of Error Propagation

• Well-known incidents
• Northeastern power outage of 2003 

• AWS outage of 2008 - single bit flip propagation

• Sudden acceleration in Toyota cars causes fatal accidents 
• Paid $1.2B for avoiding prosecution [2013]



Outline
• Motivation and Goals

• Empirical Studies of Error Propagation [DSN’15] [ISSRE’15][SC’16] 

• Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

• Future Work and Conclusions



CrashFinder: Fail-Stop Assumption

Crash



CrashFinder: But, in reality ...

Send messages

File I/O
Take 
Checkpoints

Crash



CrashFinder: Challenges
Entire Program

Long-Latency Crashes

Search in huge 
space!



CrashFinder: Our Approach

Code 
patterns 

leading to 
long-latency 

crashes

Static 
analysis to 

identify the 
patterns

Selective sampling 
to filter out false-

positives

Entire Program

Static 
Analysis

Dynamic
Analysis

Static Analysis (Compile-time)

Dynamic Analysis (Runtime)

Long-latency crashes 
fall into a few 

dominant patterns



LLVM Fault Injector (LLFI)

• Benefits at LLVM IR [DSN’14]
• Inject into specific instructions, variables and code constructs

• Easy to study propagation of errors and map result back to source code

• Also extended to GPUs [SC’16]

Frontend BackendIR



CrashFinder: Initial Fault Injection Study

• Crash latency

• Majority < 100 instructions

• Long latency crashes (LLCs)

• Up to 3.6% among total crashes 

• Latencies range from a few 

thousand to million instructions

Most long-latency crashes 
are caused due to a few 
dominant code patterns

Code Patterns



CrashFinder: Static and Dynamic Analysis

• Heuristic

• Similar control-flow path leads 

to similar error propagation

• Selective sampling for fault 

injections

• Filter out false-positives

Static Analysis: Dynamic Analysis:



CrashFinder
100%

CrashFinder Static
25.42%

CrashFinder: Results (Precision) 

CrashFinder has no false positives after applying heuristics



CrashFinder: Results (Recall) 

CrashFinder
90.1%

CrashFinder Static
92.5%

• Able to identify most of the LLCs
• Only 2% loss in recall between CrashFinder and CrashFinderStatic



CrashFinder: Fault Injection Space CrashFinder Static
Time: ~0.5 min

Space : ~13 OoM

CrashFinder
Time: ~4 days

Space : ~9 OoM

CrashFinder is 9 orders of magnitude faster than exhaustive 
fault injections !



Outline
• Motivation and Goals

• Empirical Studies of Error Propagation [DSN’15][ISSRE’15][SC’16] 

• Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

• Future Work and Conclusions



SDCTune: Silent Data Corruption (SDCs)

Fault occurs

Error activated

Error Masked
Benign

Crash/Hang

SDC

Program

Finished

Correct outputSDC Output

 ��	���������



Silent Data Corruption (SDCs): Fault Injection

Evaluation

Acceptable ? 

Program

Protection

Resilient Program

Overall SDC rate of program

SDC rates of individual instructionsY

N

Fault injection approaches take way too long to be practical !



Silent Data Corruption (SDCs):Challenges

• Propagation of SDC is much more complicated

• Billions of instructions and branches in common dynamic execution 

• Need a comprehensive model

• Our first attempt: SDCTune [CASES’14][TECS]

• Machine learning algorithm to learn classification and regression tree model

Extract 
Features

Fault 
Injection

Machine 
Learning



SDCTune: Example Model

Not used in Masking operations

Linear Regression  for SDC-proneness



SDCTune: Evaluation Method

Features extracted 
based on heuristic 
knowledge from 

training programs

SDC rate for each 
instruction P(SDC|I) 

from training programs

Training (CART Method) P(SDC|I) Predictor

Estimate the
SDC proneness of 
different program

instructions

Find the set of 
instructions for an 
overhead bound 

(∑P(I))

Random Fault Injection 
Results from testing 

programs

Actual SDC coverage for 
testing programs

Features extracted from 
testing programs

Training phase

Evaluation
Phase

Usage
Phase



SDCTune: Model Validation

Training programs Testing programs

Rank correlation* 0.9714 0.8286
P-value** 0.00694 0.0125
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Rank of overall SDC rates by fault injection experiment

Training programs

Tesing program

Linear regression
for training
programs

Testing
programs



SDCTune: SDC Coverage

Training programs: Testing programs:

Overhead Coverage

10% 44.8%
20% 78.6%
30% 86.8%

Overhead Coverage

10% 39%
20% 63.7%
30% 74.9%



SDCTune: Full Duplication and Hot-Path 
Duplication Overheads

Full duplication overhead: 53.7% to 73.6%
Hot-path duplication overhead: 43.5 to 57.6%

Normalized Detection Efficiency 10% overhead 20% overhead 30% overhead
Training programs 2.38 2.09 1.54
Testing programs 2.87 2.34 1.84



SDCTune: Drawbacks

• Need representative set of benchmarks for training

• Fault injection needs to be performed for every application class

• Little to no explanatory power for analysis

• Cannot be used during early-stage design choice modeling 



Trident: Analytical Model

• Error propagations can be decomposed into modules, which can 

be abstracted into equations without any fault injections

      Trident

● Program source code (LLVM IR)

● Program input

● Instructions considered as 
program output

● Overall SDC probability 
of the program 

● SDC probabilities of 
every instructions



BB12

… …

Trident: Approach

• Three-level modeling

• Register-communication

• Control-flow

• Memory dependency

Reg.

Mem.Contl.

BB4

$2 = LOAD 0x04

$3 = ADD $2, 4

CMP $4, $3, 4

BR $4, BB5, BB10

BB5

$5 = MUL $6, 16

… …

BB10

… …

… …

BB102

... = LOAD 0x08

T1 F1

T2 F2

fR

fC fM

BB11
STORE …, 0x08



fR = 100% * 100% * 25% * 100% = 25%
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Trident: Approach
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Trident: Approach



Trident: Implementation

• Built as compiler module

• Integrated with LLVM/Clang

• Validated with 11 benchmarks

• Online tuning for resilience

• Extend to GPU programs

Evaluation

Acceptable ? 

Program Source Code

Protection

Resilient Program

Overall SDC rate of program

SDC rates of individual instructions

Trident



Trident: Results

• Mean Absolute Error: 4.75%
• Much better than simpler models
• T-test to compare with fault injection

Error Bar: +/-0.07% ~ +/-1.76% at 95% Confidence Interval 



Trident: Performance Speedup

• Average speedup

• Fault Injection: ~96 hrs

• Trident: ~15 mins

More than 2 orders of magnitude faster



vTrident: Input-Dependent Error Propagation

Instruction-SDC-Volatility Instruction-Execution-Volatility

• A program is executed with multiple inputs in production

• SDC probabilities highly depend on inputs

• Need to understand how inputs affect error propagation

• Need to bound SDC probabilities across multiple inputs

• Two kinds of volatilities decide overall SDC probability :



vTrident Results: Bounding SDC Rates

About 80% of the measured SDC values are within 
the bounds identified by vTrident
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Future Work: Formal Reasoning

• Need to verify programs in presence of faults
• Consider both hardware and software faults
• Model-checking to find corner cases [DSN’08][TC]
• Integration with software development process

Software Errors –
Design and environmental errors Software

Hardware Errors – Permanent and 
Transient errors 



Future Work: Genetic Programming
• Evolve applications using Genetic Programming (GP)
• Preliminary study on finding “resilience friendly” compiler optimizations
• Can improve both resilience and performance simultaneously [EDCC’16] 

Candidate 1 a b c d Candidate 2

Append

Swap

e f a

a b c d e f a

a f a d

Candidate 1 a b c d Candidate 2 e f a

New Candidate

New Candidate



Future Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes à Similar outputs
- Convergence properties in presence of faults

Preliminary study of DNN applications - Found catastrophic cases [SC 2017]



Conclusion

• Error Propagation is the reason for most catastrophic failures in systems

• Need systematic approaches  to identify and mitigate error propagation

• Empirical approach

• Apply heuristics and ML to identify error propagation

• Analytical model

• Decomposition and abstraction

• Almost as accurate as fault injections for fraction of cost
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