Modeling Hardware Error Propagation
in Programs for Low-Cost
Dependability

Guanpeng(Justin) Li

Qining Lu, Bo Fang,

Karthik Pattabiraman
Siva Hari, Michael Sullivan, Timothy Tsai
NVIDIA.

IBM Chen-Yong Cher, Meeta Gupta, Jude Rivers, Pradip Bose
Research

My Research

* Building fault-tolerant and secure software systems

* Three areas

e Software error resilience
[DSN’12][DSN’13][DSN’14][CASES’14][DSN’15][SC’16][DSN’16][SC’17][DSN’17][DSN’18A][DSN’18B]

* Web applications’ reliability
[ICSE’14A][ICSE’14B][ICSE’15][ICSE’16][ASE’14][ASE’15][ASE’17][ICSE’18]

* loT devices security [FSE'17][ACSAC’16][EDCC’15]

 This talk: Software error resilience techniques

Motivation: Soft Errors

N substrate

”»
Jdd

5 S, 5 S,

Motivation: Soft Errors

* Soft errors becoming more common in processors

SoC SER FIT rate per node

1000

100

Error Rate

200 150 100 50 0

Feature Size
Memory SER

Logic SER

[Chandra et. al., DATE’14]

Soft Errors: Traditional Solutions

e Guard-banding * Duplication
Guard-banding wastes power as Hardware duplication (i.e., DMR)
gap between average and worst- can result in 2X slowdown and/or
case widens due to variations energy consumption

Guard-band

Average Worst-case

An alternative approach

User interacts with the application

User

-V

Application
Software
Operating System
Allow errors across the
\ 4
A hardware-software
Architecture boundary, but make
Hardware sure user does not
] .y perceive it

Layers of Computer System

Why does this approach work ?

App n Level

n Level

Protection Overhead

Soft Error

Impactful Errors

Severity —>

Error Propagation in Programs

t T T ‘ User
,,,,, Incorrect Output: Silent Data Corruptior
I’,
Il
i r
"‘ Crash H
\\ ,I
N, 4

Catency

7’
~, ’
~.
SN
~

~~
~
~
-~
~_—
-

R4
R
PR
-
-
-
-
-
———‘
-

Fault Success
Occurs ! Inactivated

Time —>

Consequences of Error Propagation

 Well-known incidents

* Northeastern power outage of 2003

* AWS outage of 2008 - single bit flip propagation

* Sudden acceleration in Toyota cars causes fatal accidents

* Paid $1.2B for avoiding prosecution [2013]

Outline

* Motivation and Goals
* Empirical Studies of Error Propagation [DSN’15] [ISSRE’15][SC’16]
* Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

 Future Work and Conclusions

CrashFinder: Fail-Stop Assumption

Fault Occurrance
|
: Activation
|
| |
| |
Y Y
\ R
\dRdE. -
\ Time

|
|
Crash

CrashFinder: But, in reality ...

Send messages

File 1/0
Fault Occurrance Take
: Checkpoints
I Activation
|
| |
| |
{ Y
A ﬁ‘ - ; - N
<V> ‘___%_* m
A Time

CrashFinder: Challenges

Entire Program

CrashFinder: Our Approach

\ !/ Entire Progra
~ 7 Long-latency crashes
N fall into a few
= dominant patterns

N\ Static
e) N\ Analysis
N\

N

Dynamic I
Analysisv

4

Static Analysis (Compile-ti

Code Static
patterns analysis to

leading to identify the

long-latency
crashes

patterns

Dynamic Analysis (Runtime)

Selective sampling
to filter out false-

positives

LLVM Fault Injector (LLFI)

e Benefits at LLVM IR [DSN’14]
* Inject into specific instructions, variables and code constructs

* Easy to study propagation of errors and map result back to source code

* Also extended to GPUs [SC’16]

Clang C/C++/0bjC
Frontend

LLVM
X86 Backend

Fortran -

Iivm-gee Frontend

Haskell

GHC Frontend

LLVMIR

Frontend

IR

LLVM
PowerPC Backend

LLVM
ARM Backend

-» PowerPC

-» ARM

Backend

CrashFinder: Initial Fault Injection Study

Most long-latency crashes
are caused due to a few

* Majority < 100 instructions dominant code patterns

* Crash latency

* Long latency crashes (LLCs)

Corruption m Pointer Corruption LLC

LLC

d Up tO 3.6% among total CraSheS 20% ¥ Loop Corruption LLC

State Corruption LLC

Loop

* Latencies range from a few Corupton

LLC m Others

56%

thousand to million instructions

Code Patterns

CrashFinder: Static and Dynamic Analysis

Static Analysis: Dynamic Analysis:

I'«.' INS1gne

2 sta INsigne . .

| ~‘ * Heuristic

4|un ed

2 e Similar control-flow path leads
+ g ¥ to similar error propagation

0] o

'1; . e Selective sampling for fault

|4 [unsigned int void . . .

1 injections

16 insigned int v;

1| . : .

8 nextH; * Filter out false-positives

9|

1

1| [From sjeng program|

CrashFinder: Results (Precision)

CrashFinder
100%

N
N

CrashFinder has no false positives after applying heuristics

N

LA
SIS

' w}»llll

|| I

CRASHFINDER STATIC WCRASHFINDER

CrashFinder: Results (Recall)

CrashI;;dSe;/r Static CrashFinder
= 90.1%
* Able to identify most of the LLCs

* Only 2% loss in recall between CrashFinder and CrashFinderStatic

N

N

LTI
TUUNOOUUDL
I
(1LY
[uuuuooom
LY
LI
1111,
TUUNOOuuL

Og
O

= CRASHFINDER STATIC NCRASHFINDER

CrashFinder: Fault Injection Spa @

Time: ~0.5 min
Space : ~¥13 OoM

CrashFinder
Time: ~4 days
= = Snace : ~9 OoM

T

CrashFinder is 9 orders of magnitude faster than exhaustive
fault injections !

N NN NN N -

—

5 CRASHFINDER STATIC N CRASHFINDER

Outline

* Motivation and Goals
* Empirical Studies of Error Propagation [DSN’15][ISSRE’15][SC’16]
* Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

 Future Work and Conclusions

SDCTune: Silent Data Corruption (SDCs

44829 aqp2y
44830 44828
44831 44829
44832 44830
44833 44831

44834 44832 *

44835 44833
44836 44834
44837 44835
44838 44836
44839 44837
44840 44838
44841 44839
44842 44840
44843 44841
44844 44842
44845 44843
44846 44844
44847 44845
44848 |

SDC Output

Correct output

Fault occurs

Results lost:

AAEAq TATA7
44845 44843
44846 44844
44847 44845
% 44848 44846
44849 44847
44850 44848
44851 44849
44852 44850
44853 44851
44854 44852
44855 44853
44856 44854
44857 44855
44858 44856
44859 44857
44860 44858
44861 44859
44862 44860
44863 44861

230
539
542
511

540
525
525
526
S24
525
504
510
457
458
459
460
523
526
525
519

Error activated

Error Masked

Program

Finished

Benign

ilent Data Corruption (SDCs): Fault Injection

a

Fault injection approaches take way too long to be practical !

Program

l Overall SDC rate of program

Evaluation <

Acceptable ? Protection

Y SDC rates of individual instructions

Resilient Program

Silent Data Corruption (SDCs):Challenges

* Propagation of SDC is much more complicated

* Billions of instructions and branches in common dynamic execution

* Need a comprehensive model

e Our first attempt: SDCTune [CASES’14][TECS]

* Machine learning algorithm to learn classification and regression tree model

Extract » Fault » Machine
Features Injection Learning

SDCTune: Example Model

L////7\\

All stored values

Addr NoCmp Addr Cmp Cmp NoAddr NoCmp NoAddr
£~ N ZZS N
Not used in Masking operations }-:- /}sCmp
ResCmp NoAddr NoAddr
Global ResCmp Non-Global Accumulative Non-Accumulative
NoAddr ResCmp NoAddr UnresCmp NoAddr || UnresCmp NoAddr

Linear Regression for SDC-proneness

SDCTune: Evaluation Method

Training phase

Evaluation
Phase

SDCTune: Model Validation

] Training programs Testing programs

Rank correlation* 0.9714 0.8286
P-value** 0.00694 0.0125
> 8
o
o -
E 6 ¢ Training programs
O c
O o
2 =4 w Testing
c E programs
2B
o 92
‘e ——Linear regression
= 0 for training
2 T T T T T T 1 programs

0 1 2 3 4 5 6 7
Rank of overall SDC rates by fault injection experiment

SDCTune: SDC Coverage

Training programs Testing programs

1
100% '
90% 1 < i = Overhead
c?:n 80% - 2 I bounds
o, 1
(= 9 1
S 5% : % 206
(&))
= 380//: X - ®30%
n
10% %
0% B Hot-path
]
o S %x’\, &\o“"’ ’b\é & &Qg’« 1 6'\>Q & S° OIS @o}
Training programs: < Testing programs:
Overhead Coverage Overhead Coverage
10% 44.8% 10% 39%
20% 78.6% 20% 63.7%

30% 86.8% 30% 74.9%

SDCTune: Full Duplication and Hot-Path
Duplication Overheads

Testing programs

Training programs

100%
90%
80%
70%

M Full
duplication

60%
50%
40%
30%
20%
10%

0%

B Hot-path
duplication

Performance overhead

Normalized Detection Efficiency 10% overhead 20% overhead | 30% overhead

Training programs 2.38 2.09 1.54
Testing programs 2.87 2.34 1.84

SDCTune: Drawbacks

* Need representative set of benchmarks for training
* Fault injection needs to be performed for every application class
* Little to no explanatory power for analysis

e Cannot be used during early-stage design choice modeling

Trident: Analytical Model

* Error propagations can be decomposed into modules, which can

be abstracted into equations without any fault injections

e Program source code (LLVM IR) e Overall SDC probability

e Program input of the program
e SDC probabilities of

e Instructions considered as _ :
every instructions

program output

Trident: Approach S

S3=ADDS2,4

CMP $4, 53, 4

* Three-level modeling
BR $4, BB5, BB10

* Register-communication

BB5
e Control-flow
$5 = MUL $6, 16

* Memory dependency

BB11
STORE ..., 0x08

BB102

... = LOAD 0x08

Trident: Approach

fxr = 100% * 100% * 25% * 100% = 25%

BB4

$Z = LOAD 0x04

Propagation $3 = ADD $2, 4
probability
within BB4 ? [JUAAEEAEERL

BR $4, BB5, BB10

BBS

S5=MULS6, 16 |

BB11
STORE ..., 0x08

BB102

... = LOAD 0x08

Trident: Approach S

S3=ADDS2,4

_ CMP $4, 53, 4
fC P, e / P, d Corrupted
/ o BR $4, BB5, BB10
STORE exec. prob. BR dom. prob.
F1*T2 F1

BBS

$5=MULS6,16 [N
*For non-loop-terminating branches

Corruption
probability STORE ..., 0x08

of STORE ?

BB102

... = LOAD 0x08

BB4

Trident: Approach £

S3=ADDS2,4

CMP $4, 53, 4

fm (qn) =f£R *fc BR $4, BBS5, BB10
?n+1 =fm(gn) BB5

$5 =MUL $6, 16

Dependent
LOAD & STORE

\ BB102
....=LOAL 0x08

Trident: Implementation

* Built as compiler module

* Integrated with LLVM/Clang

e Validated with 11 benchmarks

* Online tuning for resilience

e Extend to GPU programs

Program Source Code

Trident

l Overall SDC rate of program

Evaluation <

Acceptable ?

Protection

SDC rates of individual instructions

v

Resilient Program

SDC Probability

Trident: Results

Error Bar: +/-0.07% ~ +/-1.76% at 95% Confidence Interval

40.80%

o 27.70% 28.33%
047" 26.54% 26.78% .
e l;{"?’ 7.69% 7.68% 8.16% §.95%, 19.46%
A3 -o 5.87% 3 oL
0.90% 1.01% 3.37% 0.20% 5.87 5.63
Libquantum Blackscholes Sad Bfs (Parboil) Hercules Lulesh PureMD Nw Pathfinder
FI Trident

e Mean Absolute Error: 4.75%

* Much better than simpler models
* T-test to compare with fault injection

22.19%

Hotspot

30.60%
25.33%

Bfs (Rodinia)

Trident: Performance Speedup

800
- 608.8246
* Average speedup £ 600
)
. . I
* Fault Injection: ~96 hrs < 400
(V]
* Trident: ~15 mins E 200
0 o % % r r ‘O.SQOQ
O S S S O & & &® ®
> O S LSS

More than 2 orders of magnitude faster
No. of Static Instructions in Program

-*Trident -®-Fl

vIrident: Input-Dependent Error Propagation

* A program is executed with multiple inputs in production
* SDC probabilities highly depend on inputs
* Need to understand how inputs affect error propagation
* Need to bound SDC probabilities across multiple inputs
* Two kinds of volatilities decide overall SDC probability :

IJovcraH = ﬂ'r.‘-fv‘D(:'/A'rtcn:u.l (1)

= (i: P; % N;)[Niotar = 0 ((2)
i=1 i=1
/ AN

Instruction-SDC-Volatility Instruction-Execution-Volatility

15%

10%

5%

0%

vTrident Results: Bounding SDC Rates

.‘A..A &

Libquantum Nw
8%
a
6"/0 ’ ‘
= = Y
& 4%
4 a
2%
0%
Clomp
40% 8%
30% A s 6%
a
20% ad 4%
10% aab 2%
0% 0%

CoMD

Pathfinder

WY

8aa a4, a,

30%

10%

0%

20%

Streamcluster Lulesh
4% 10%
r
3% 4
a
2% 5% e
1% a T ———
a (VY X A Al a
0% 0% O
FFT Graph
20%
[A a 15% TtTﬁ—vﬁe—'ﬁ
£ L
10%
& z & A & 5%
0%

About 80% of the measured SDC values are within

the bounds identified by vTrident

Outline

* Motivation and Goals
* Empirical Studies of Error Propagation [DSN’15] [ISSRE’15][SC’16]
* Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

 Future Work and Conclusions

Future Work: Formal Reasoning

* Need to verify programs in presence of faults

* Consider both hardware and software faults
* Model-checking to find corner cases [DSN’08][TC]
* Integration with software development process

Software Errors -
Design and environmental errors

Hardware Errors — Permanent and
Transient errors

N iVEE

Future Work: Genetic Programming

* Evolve applications using Genetic Programming (GP)
* Preliminary study on finding “resilience friendly” compiler optimizations
e Can improve both resilience and performance simultaneously [EDCC’16]

Append
Candidatel‘ a ‘ b Lc ‘ d ‘ Candidate 2
New Candidate‘ a ‘ b ‘c ‘ d
Swap

Candidatel‘ a b ‘ c ‘ d ‘ Candidate 2 ﬁ

Future Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes = Similar outputs
- Convergence properties in presence of faults

Preliminary study of DNN applications - Found catastrophic cases [SC 2017]

(6,.0,),

B,

Conclusion

* Error Propagation is the reason for most catastrophic failures in systems

* Need systematic approaches to identify and mitigate error propagation

* Empirical approach

* Apply heuristics and ML to identify error propagation

* Analytical model
* Decomposition and abstraction

* Almost as accurate as fault injections for fraction of cost

Ackn owledge ments (Website: http://blogs.ubc.ca/karthik)

IBM Microsoft
f’Alamos Research Research (,
‘% 1 I n I Iy ©
AMD. ‘warrin. CISCO. nVIZDIA.

NSEBC ~ Canada
MnJCS W ® CRSNG /’, 7

