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My Research

* Building fault-tolerant and secure software systems

* Three areas

e Software error resilience
[DSN’12][DSN’13][DSN’14][CASES’14][DSN’15][SC’16][DSN’16][SC’17][DSN’17][DSN’18A][DSN’18B]

* Web applications’ reliability
[ICSE’14A][ICSE’14B][ICSE’15][ICSE’16][ASE’14][ASE’15][ASE’17][ICSE’18]

* loT devices security [FSE'17][ACSAC’16][EDCC’15]

 This talk: Software error resilience techniques



Motivation: Soft Errors
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Motivation: Soft Errors

* Soft errors becoming more common in processors
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[Chandra et. al., DATE’14]



Soft Errors: Traditional Solutions

e Guard-banding * Duplication
Guard-banding wastes power as Hardware duplication (i.e., DMR)
gap between average and worst- can result in 2X slowdown and/or
case widens due to variations energy consumption

Guard-band

Average Worst-case




An alternative approach

User interacts with the application
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Why does this approach work ?
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Severity —>

Error Propagation in Programs
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Consequences of Error Propagation

 Well-known incidents

* Northeastern power outage of 2003

* AWS outage of 2008 - single bit flip propagation

* Sudden acceleration in Toyota cars causes fatal accidents

* Paid $1.2B for avoiding prosecution [2013]




Outline

* Motivation and Goals
* Empirical Studies of Error Propagation [DSN’15] [ISSRE’15][SC’16]
* Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

 Future Work and Conclusions



CrashFinder: Fail-Stop Assumption
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CrashFinder: But, in reality ...
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CrashFinder: Challenges

Entire Program




CrashFinder: Our Approach
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LLVM Fault Injector (LLFI)

e Benefits at LLVM IR [DSN’14]
* Inject into specific instructions, variables and code constructs

* Easy to study propagation of errors and map result back to source code

* Also extended to GPUs [SC’16]
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CrashFinder: Initial Fault Injection Study

Most long-latency crashes
are caused due to a few

* Majority < 100 instructions dominant code patterns

* Crash latency

* Long latency crashes (LLCs)
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CrashFinder: Static and Dynamic Analysis

Static Analysis: Dynamic Analysis:
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CrashFinder: Results (Precision)

CrashFinder
100%

N
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CrashFinder has no false positives after applying heuristics
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CrashFinder: Results (Recall)

CrashI;;dSe;/r Static CrashFinder
= 90.1%
* Able to identify most of the LLCs

* Only 2% loss in recall between CrashFinder and CrashFinderStatic
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CrashFinder: Fault Injection Spa @

Time: ~0.5 min
Space : ~¥13 OoM

CrashFinder
Time: ~4 days
= = Snace : ~9 OoM

T

CrashFinder is 9 orders of magnitude faster than exhaustive
fault injections !
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Outline

* Motivation and Goals
* Empirical Studies of Error Propagation [DSN’15][ISSRE’15][SC’16]
* Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

 Future Work and Conclusions



SDCTune: Silent Data Corruption (SDCs
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ilent Data Corruption (SDCs): Fault Injection

a

Fault injection approaches take way too long to be practical !

Program

l Overall SDC rate of program
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Silent Data Corruption (SDCs):Challenges

* Propagation of SDC is much more complicated

* Billions of instructions and branches in common dynamic execution

* Need a comprehensive model

e Our first attempt: SDCTune [CASES’14][TECS]

* Machine learning algorithm to learn classification and regression tree model

Extract » Fault » Machine
Features Injection Learning




SDCTune: Example Model

L////7\\

All stored values

Addr NoCmp Addr Cmp Cmp NoAddr NoCmp NoAddr
£~ N ZZS N
Not used in Masking operations }-:- /}sCmp ......
ResCmp NoAddr NoAddr
Global ResCmp Non-Global Accumulative Non-Accumulative
NoAddr ResCmp NoAddr UnresCmp NoAddr || UnresCmp NoAddr

Linear Regression for SDC-proneness




SDCTune: Evaluation Method

Training phase

Evaluation
Phase




SDCTune: Model Validation

] Training programs Testing programs

Rank correlation* 0.9714 0.8286
P-value** 0.00694 0.0125
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SDCTune: SDC Coverage

Training programs Testing programs
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SDCTune: Full Duplication and Hot-Path
Duplication Overheads

Testing programs

Training programs
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Normalized Detection Efficiency 10% overhead 20% overhead | 30% overhead

Training programs 2.38 2.09 1.54
Testing programs 2.87 2.34 1.84



SDCTune: Drawbacks

* Need representative set of benchmarks for training
* Fault injection needs to be performed for every application class
* Little to no explanatory power for analysis

e Cannot be used during early-stage design choice modeling



Trident: Analytical Model

* Error propagations can be decomposed into modules, which can

be abstracted into equations without any fault injections

e Program source code (LLVM IR) e Overall SDC probability

e Program input of the program
e SDC probabilities of

e Instructions considered as _ :
every instructions

program output




Trident: Approach S

S3=ADDS2,4

CMP $4, 53, 4

* Three-level modeling
BR $4, BB5, BB10

* Register-communication

BB5
e Control-flow
$5 = MUL $6, 16

* Memory dependency

BB11
STORE ..., 0x08

BB102

... = LOAD 0x08



Trident: Approach

fxr = 100% * 100% * 25% * 100% = 25%

BB4
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Trident: Approach S

S3=ADDS2,4
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BB4

Trident: Approach £

S3=ADDS2,4

CMP $4, 53, 4
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Trident: Implementation

* Built as compiler module

* Integrated with LLVM/Clang

e Validated with 11 benchmarks

* Online tuning for resilience

e Extend to GPU programs

Program Source Code

Trident
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SDC Probability

Trident: Results

Error Bar: +/-0.07% ~ +/-1.76% at 95% Confidence Interval
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e Mean Absolute Error: 4.75%

* Much better than simpler models
* T-test to compare with fault injection
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Trident: Performance Speedup
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vIrident: Input-Dependent Error Propagation

* A program is executed with multiple inputs in production
* SDC probabilities highly depend on inputs
* Need to understand how inputs affect error propagation
* Need to bound SDC probabilities across multiple inputs
* Two kinds of volatilities decide overall SDC probability :

IJovcraH = ﬂ'r.‘-fv‘D(:'/A'rtcn:u.l (1)
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/ AN
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Future Work: Formal Reasoning

* Need to verify programs in presence of faults

* Consider both hardware and software faults
* Model-checking to find corner cases [DSN’08][TC]
* Integration with software development process

Software Errors -
Design and environmental errors

Hardware Errors — Permanent and
Transient errors
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Future Work: Genetic Programming

* Evolve applications using Genetic Programming (GP)
* Preliminary study on finding “resilience friendly” compiler optimizations
e Can improve both resilience and performance simultaneously [EDCC’16]
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Future Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes = Similar outputs
- Convergence properties in presence of faults

Preliminary study of DNN applications - Found catastrophic cases [SC 2017]
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Conclusion

* Error Propagation is the reason for most catastrophic failures in systems

* Need systematic approaches to identify and mitigate error propagation

* Empirical approach

* Apply heuristics and ML to identify error propagation

* Analytical model
* Decomposition and abstraction

* Almost as accurate as fault injections for fraction of cost
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