
Modeling Hardware Error Propagation
in Programs for Low-Cost

Dependability
Guanpeng(Justin) Li
Qining Lu, Bo Fang,

Karthik Pattabiraman

Siva Hari, Michael Sullivan, Timothy Tsai

Chen-Yong Cher, Meeta Gupta, Jude Rivers, Pradip Bose

My Research

• Building fault-tolerant and secure software systems

• Three areas
• Software error resilience

[DSN’12][DSN’13][DSN’14][CASES’14][DSN’15][SC’16][DSN’16][SC’17][DSN’17][DSN’18A][DSN’18B]
• Web applications’ reliability

[ICSE’14A][ICSE’14B][ICSE’15][ICSE’16][ASE’14][ASE’15][ASE’17][ICSE’18]
• IoT devices security [FSE’17][ACSAC’16][EDCC’15]

• This talk: Software error resilience techniques

Motivation: Soft Errors

= 0001 = 0101

Motivation: Soft Errors
• Soft errors becoming more common in processors

11 DATE 2014 DATE 2014

SoC soft error trends
Bitcell SER FIT rate per node

0

100

200

300

400

500

600

700

200 150 100 50 0

SCU Avg/node MCU Avg/node

SoC SER FIT rate per node

1

10

100

1000

200 150 100 50 0

Memory SER Logic SER

Even though per memory bitcell SER sensitivity is decreasing, overall FIT per SoC is increasing

Source: iRoC

[Chandra et. al., DATE’14]

Feature Size

Er
ro

r R
at

e

Soft Errors: Traditional Solutions

• Guard-banding • Duplication

Average Worst-case

Guard-banding wastes power as
gap between average and worst-
case widens due to variations

Guard-band

Hardware duplication (i.e., DMR)
can result in 2X slowdown and/or
energy consumption

An alternative approach

Architecture

Operating System

Application

Devices/Circuits

User interacts with the application

Software

Hardware

User

Allow errors across the
hardware-software
boundary, but make
sure user does not

perceive it

Layers of Computer System

Soft Error

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Why does this approach work ?

Impactful Errors

Pr
ot

ec
tio

n
O

ve
rh

ea
d

Soft Error

Error Propagation in Programs

Success

Program Crash !

Incorrect Output: Silent Data Corruption (SDC)

Fault
Occurs !

Error
Activated!

Crash
Latency

Inactivated
Error

Benign Error

Time

Se
ve

rit
y

User

Consequences of Error Propagation

• Well-known incidents
• Northeastern power outage of 2003

• AWS outage of 2008 - single bit flip propagation

• Sudden acceleration in Toyota cars causes fatal accidents
• Paid $1.2B for avoiding prosecution [2013]

Outline
• Motivation and Goals

• Empirical Studies of Error Propagation [DSN’15] [ISSRE’15][SC’16]

• Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

• Future Work and Conclusions

CrashFinder: Fail-Stop Assumption

Crash

CrashFinder: But, in reality ...

Send messages

File I/O
Take
Checkpoints

Crash

CrashFinder: Challenges
Entire Program

Long-Latency Crashes

Search in huge
space!

CrashFinder: Our Approach

Code
patterns

leading to
long-latency

crashes

Static
analysis to

identify the
patterns

Selective sampling
to filter out false-

positives

Entire Program

Static
Analysis

Dynamic
Analysis

Static Analysis (Compile-time)

Dynamic Analysis (Runtime)

Long-latency crashes
fall into a few

dominant patterns

LLVM Fault Injector (LLFI)

• Benefits at LLVM IR [DSN’14]
• Inject into specific instructions, variables and code constructs

• Easy to study propagation of errors and map result back to source code

• Also extended to GPUs [SC’16]

Frontend BackendIR

CrashFinder: Initial Fault Injection Study

• Crash latency

• Majority < 100 instructions

• Long latency crashes (LLCs)

• Up to 3.6% among total crashes

• Latencies range from a few

thousand to million instructions

Most long-latency crashes
are caused due to a few
dominant code patterns

Code Patterns

CrashFinder: Static and Dynamic Analysis

• Heuristic

• Similar control-flow path leads

to similar error propagation

• Selective sampling for fault

injections

• Filter out false-positives

Static Analysis: Dynamic Analysis:

CrashFinder
100%

CrashFinder Static
25.42%

CrashFinder: Results (Precision)

CrashFinder has no false positives after applying heuristics

CrashFinder: Results (Recall)

CrashFinder
90.1%

CrashFinder Static
92.5%

• Able to identify most of the LLCs
• Only 2% loss in recall between CrashFinder and CrashFinderStatic

CrashFinder: Fault Injection Space CrashFinder Static
Time: ~0.5 min

Space : ~13 OoM

CrashFinder
Time: ~4 days

Space : ~9 OoM

CrashFinder is 9 orders of magnitude faster than exhaustive
fault injections !

Outline
• Motivation and Goals

• Empirical Studies of Error Propagation [DSN’15][ISSRE’15][SC’16]

• Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

• Future Work and Conclusions

SDCTune: Silent Data Corruption (SDCs)

Fault occurs

Error activated

Error Masked
Benign

Crash/Hang

SDC

Program

Finished

Correct outputSDC Output

 ��	���������

Silent Data Corruption (SDCs): Fault Injection

Evaluation

Acceptable ?

Program

Protection

Resilient Program

Overall SDC rate of program

SDC rates of individual instructionsY

N

Fault injection approaches take way too long to be practical !

Silent Data Corruption (SDCs):Challenges

• Propagation of SDC is much more complicated

• Billions of instructions and branches in common dynamic execution

• Need a comprehensive model

• Our first attempt: SDCTune [CASES’14][TECS]

• Machine learning algorithm to learn classification and regression tree model

Extract
Features

Fault
Injection

Machine
Learning

SDCTune: Example Model

Not used in Masking operations

Linear Regression for SDC-proneness

SDCTune: Evaluation Method

Features extracted
based on heuristic
knowledge from

training programs

SDC rate for each
instruction P(SDC|I)

from training programs

Training (CART Method) P(SDC|I) Predictor

Estimate the
SDC proneness of
different program

instructions

Find the set of
instructions for an
overhead bound

(∑P(I))

Random Fault Injection
Results from testing

programs

Actual SDC coverage for
testing programs

Features extracted from
testing programs

Training phase

Evaluation
Phase

Usage
Phase

SDCTune: Model Validation

Training programs Testing programs

Rank correlation* 0.9714 0.8286
P-value** 0.00694 0.0125

0

2

4

6

8

0 1 2 3 4 5 6 7Ra
nk

 o
f o

ve
ra

ll
SD

C
ra

te
s b

y
es

tim
at

io
n

Rank of overall SDC rates by fault injection experiment

Training programs

Tesing program

Linear regression
for training
programs

Testing
programs

SDCTune: SDC Coverage

Training programs: Testing programs:

Overhead Coverage

10% 44.8%
20% 78.6%
30% 86.8%

Overhead Coverage

10% 39%
20% 63.7%
30% 74.9%

SDCTune: Full Duplication and Hot-Path
Duplication Overheads

Full duplication overhead: 53.7% to 73.6%
Hot-path duplication overhead: 43.5 to 57.6%

Normalized Detection Efficiency 10% overhead 20% overhead 30% overhead
Training programs 2.38 2.09 1.54
Testing programs 2.87 2.34 1.84

SDCTune: Drawbacks

• Need representative set of benchmarks for training

• Fault injection needs to be performed for every application class

• Little to no explanatory power for analysis

• Cannot be used during early-stage design choice modeling

Trident: Analytical Model

• Error propagations can be decomposed into modules, which can

be abstracted into equations without any fault injections

 Trident

● Program source code (LLVM IR)

● Program input

● Instructions considered as
program output

● Overall SDC probability
of the program

● SDC probabilities of
every instructions

BB12

… …

Trident: Approach

• Three-level modeling

• Register-communication

• Control-flow

• Memory dependency

Reg.

Mem.Contl.

BB4

$2 = LOAD 0x04

$3 = ADD $2, 4

CMP $4, $3, 4

BR $4, BB5, BB10

BB5

$5 = MUL $6, 16

… …

BB10

… …

… …

BB102

... = LOAD 0x08

T1 F1

T2 F2

fR

fC fM

BB11
STORE …, 0x08

fR = 100% * 100% * 25% * 100% = 25%

BB12

… …
BB11
STORE …, 0x08

BB4

$2 = LOAD 0x04

$3 = ADD $2, 4

CMP $4, $3, 4

BR $4, BB5, BB10

BB5

$5 = MUL $6, 16

… …

BB10

… …

… …

BB102

... = LOAD 0x08

T1 F1

T2 F2

<100%>

<100%>

<25%>

<100%>

Propagation
probability

within BB4 ?

Reg.

Mem.Contl.

fR

fC fM

Reg.

Trident: Approach

BB12

… …
BB11
STORE …, 0x08

BB4

$2 = LOAD 0x04

$3 = ADD $2, 4

CMP $4, $3, 4

BR $4, BB5, BB10

BB5

$5 = MUL $6, 16

… …

BB10

… …

… …

BB102

... = LOAD 0x08

T1 F1

T2 F2

Corruption
probability
of STORE ?

80% 20%

30% 70%

<100%>

<100%>

<25%>

<100%>

=

*For non-loop-terminating branches

Reg.

Mem.Contl.

fR

fC fM
Contl.

fC

STORE exec. prob.
F1*T2

BR dom. prob.
F1

Corrupted

Trident: Approach

BB12

… …
BB11
STORE …, 0x08

BB4

$2 = LOAD 0x04

$3 = ADD $2, 4

CMP $4, $3, 4

BR $4, BB5, BB10

BB5

$5 = MUL $6, 16

… …

BB10

… …

… …

BB102

... = LOAD 0x08

T1 F1

T2 F2

Dependent
LOAD & STORE

80% 20%

30% 70%

<100%>

<100%>

<25%>

<100%>

Reg.

Mem.Contl.

fR

fC fM

Mem.

fM (In) = fR * fC

Pn+1 = fm(In)

Trident: Approach

Trident: Implementation

• Built as compiler module

• Integrated with LLVM/Clang

• Validated with 11 benchmarks

• Online tuning for resilience

• Extend to GPU programs

Evaluation

Acceptable ?

Program Source Code

Protection

Resilient Program

Overall SDC rate of program

SDC rates of individual instructions

Trident

Trident: Results

• Mean Absolute Error: 4.75%
• Much better than simpler models
• T-test to compare with fault injection

Error Bar: +/-0.07% ~ +/-1.76% at 95% Confidence Interval

Trident: Performance Speedup

• Average speedup

• Fault Injection: ~96 hrs

• Trident: ~15 mins

More than 2 orders of magnitude faster

vTrident: Input-Dependent Error Propagation

Instruction-SDC-Volatility Instruction-Execution-Volatility

• A program is executed with multiple inputs in production

• SDC probabilities highly depend on inputs

• Need to understand how inputs affect error propagation

• Need to bound SDC probabilities across multiple inputs

• Two kinds of volatilities decide overall SDC probability :

vTrident Results: Bounding SDC Rates

About 80% of the measured SDC values are within
the bounds identified by vTrident

Outline
• Motivation and Goals

• Empirical Studies of Error Propagation [DSN’15] [ISSRE’15][SC’16]

• Models of Error Propagation [CASES’14] [TECS] [DSN’16] [DSN’18]

• Future Work and Conclusions

Future Work: Formal Reasoning

• Need to verify programs in presence of faults
• Consider both hardware and software faults
• Model-checking to find corner cases [DSN’08][TC]
• Integration with software development process

Software Errors –
Design and environmental errors Software

Hardware Errors – Permanent and
Transient errors

Future Work: Genetic Programming
• Evolve applications using Genetic Programming (GP)
• Preliminary study on finding “resilience friendly” compiler optimizations
• Can improve both resilience and performance simultaneously [EDCC’16]

Candidate 1 a b c d Candidate 2

Append

Swap

e f a

a b c d e f a

a f a d

Candidate 1 a b c d Candidate 2 e f a

New Candidate

New Candidate

Future Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes à Similar outputs
- Convergence properties in presence of faults

Preliminary study of DNN applications - Found catastrophic cases [SC 2017]

Conclusion

• Error Propagation is the reason for most catastrophic failures in systems

• Need systematic approaches to identify and mitigate error propagation

• Empirical approach

• Apply heuristics and ML to identify error propagation

• Analytical model

• Decomposition and abstraction

• Almost as accurate as fault injections for fraction of cost

Acknowledgements (Website: http://blogs.ubc.ca/karthik)

