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Abstract—In the near future, Internet-of-Things (IoT) systems
will be comprised of autonomous, highly interactive and moving
objects that require frequent handshakes to exchange information
in time intervals of seconds. Examples of such systems are
drones and self-driving cars. In these scenarios, data integrity,
confidentiality, and privacy protection are of critical importance.
Further, updates need to be processed quickly and with low
overheads due to the systems’ resource-constrained nature.

This paper proposes Dynamic Policy-based Access Control
(DynPolAC) as a model for protecting information in such
systems. We construct a new access control policy language that
satisfies the properties of highly dynamic IoT environments. Our
access control engine is comprised of a rule parser and a checker
to process policies and update them at run-time with minimum
service disruption. DynPolAC achieves more than 7x performance
improvements when compared to previously proposed methods
for authorization on resource-constrained IoT platforms, and
achieves more than 3x faster response times overall.

I. INTRODUCTION

Information security is an important requirement of the
Internet of Things (IoT) systems where autonomous objects
(nodes) are vulnerable to malicious attacks such as sniffing,
snooping and impersonation [1]. Some future IoT systems
will be increasingly dynamic, with mobility exacerbating the
security challenges. For example, Unmanned Aircraft Systems
(UAS) and Self Driving Cars (SDC) may move around and
broadcast their sensitive information such as regional sensory
data and mission planning to unattended zones and untrusted
third parties [1]. Information leakage in mobile IoT are usually
due to data sharing with unauthorized nodes or unintended
parties from a network supposed to be closed or secure [2].
It is thus critical to develop models for data confidentiality,
information disclosure (i.e., what should an entity be allowed
to share), and authorization (i.e., what should an entity be
allowed to access) for such emerging IoT systems.

One approach for ensuring the information security in IoT
objects is to adopt access control techniques traditionally
known as Role-Based-Access-Control (RBAC) and Attribute-
Based-Access-Control (ABAC) [3], [4]. These techniques,
while suitable for static environments, are not designed to
work well in dynamic IoT systems. An alternate solution has
been the use of the standard policy files in eXtensible Access
Control Markup Language (XACML) [5], [6]. Unfortunately,
XACML-based models are complicated and impose heavy
performance overheads, which make them generally unsuitable
for dynamic IoT environments [7], [8]. Furthermore, for highly

interactive networks, a real-time responsive data permission
control for communication between entities is required to
mediate the data access [3].

In this paper, we introduce a data protection framework
called “Dynamic Policy-based Access Control” (DynPolAC).
The main idea behind DynPolAC is to satisfy the important IoT
constraints C1-C4 described below, thus making it uniquely
suited for dynamic IoT systems.

• C1. High levels of Dynamism. Devices in emerging
mobile IoT systems must interact either in one-on-one
or one-to-many mode to gain information on the order of
seconds [9], [10]. To cope with the natural behavior of
such high-speed systems, agile data protection strategies
are needed.

• C2. Service Time. Most IoT objects are timing- or
mission-critical [2], and required to process communi-
cation requests with minimum service disruption. Thus,
to serve the periodic requests adequately, a security
enforcement mechanism must process authorization at
low-latency with quick run-time update advancements.

• C3. Resource Limitations. Many IoT nodes, in addition
to the power-consumption limits and the weight restric-
tions, are devices with limited memory and processing
resources [11]. A viable security mechanism must be
readily implementable in resource-constrained nodes.

• C4. Protocol Expressiveness. Many IoT systems are com-
prised of nodes collecting sensitive information spanning
sensory data, action planning, control information, ser-
voing, system monitoring, users’ private and social data,
passwords, connection properties, etc. A robust informa-
tion security platform must maintain control of access
to data with regard to a suite of different parameters,
including access credentials (identity, whether human or
machine), as well as temporal and other environmental
conditions. We refer to this as expressiveness.

The key innovation of this paper is the proposal of a new
policy construction that meets the characteristic properties C1-
C4. We show that by careful syntax selection in DynPolAC,
high performance results at system-level can be achieved,
particularly between mobile IoT nodes (such as UAS or SDC).
To the best of our knowledge, we are the first to propose
an access control framework for dynamic IoT systems that
respects the constraints of these systems. More specifically,



we make the following contributions:
• Novelty: We introduce DynPolAC as a new policy-based

access control for IoT systems through which smaller size
policy files can be created (Section IV). DynPolAC is a
light-weight access control for data sharing particularly
in dynamic and interactive mobile IoT nodes.

• Comparison: To compare with previous policy-based
models dominated by XACML, we constructed Dyn-
PolAC in the XML language (Section IV-D). We posit
that the expressiveness of our model is similar to that of
the previous models. DynPolAC formulates comparator-
based, permission-based, time- and attribute-based se-
mantics, thereby allowing a wide variety of access control
policies for many data types.

• Simulation: We demonstrate results by discrete event
simulation that our model is a viable solution for dy-
namic IoT systems (Section VI). We find that (1) with
DynPolAC, the information security check can be per-
formed in the order of milliseconds rather than seconds,
(2) DynPolAC achieves up to 3.4x faster response times
than previous policy-based model (Section VI-B), and
incurs a memory overhead of only 7.5% (Section VI-C).

• Performance analysis: We quantitatively measure and
compare the processing time of DynPolAC on three IoT
platforms, namely, Beagle Bone Black (BBB), Raspberry
Pi 3 (Pi3), and Raspberry Pi Zero (Pi0) (Section VI-A).
We show that DynPolAC achieves higher speed-ups on
slower platforms. For example, BBB is our slowest plat-
form, where, on average, we observed speedups of 7.28x.
In the faster platforms, Pi0 and Pi3, the speedups achieved
are 6.4x and 5.6x respectively, thus demonstrating Dyn-
PolAC’s suitability for resource-constrained nodes.

II. BACKGROUND

The rapid emergence of the IoT is bringing an unprece-
dented expansion to global communications between objects.
There now exists relatively well-established stationary IoT
networks such as smart grids, smart buildings, and smart
factories with at least 50 billion IoT devices predicted to be in
use by 2020 [12]. However, the next generation of IoT systems
will be characterized by mobile wireless autonomous vehicles.
Two of the prominent examples of autonomous unmanned
vehicles include drones (as part of UAS) and self-driving
cars (SDCs). The Federal Aviation Administration (FAA) is
forecasting the number of UAS will grow from 2.7 million
in 2016 to 7 million by 2020 [13]. Similarly, it is estimated
that there will be 10 million SDCs on the roads by 2020
with forecasts that one in four cars will be autonomous by
2030 [14].

The growing trends show that there is an emerging need for
adaptable, real-time, low-latency communication frameworks
with matching considerations for data privacy protection and
information security. Towards this effort, two models have
been proposed to govern such dynamic IoT networks.

The first model is an emerging plan to have trusted hubs
manage the mobile IoT nodes. Hubs are central for data

collection and traffic management. In this model, objects
communicate with the hub to get their information. One
example is the UAS Traffic Management (UTM) system
intended to mediate the safety of miniaturized flying objects by
providing services such as dynamic geofencing, contingency
and congestion management, terrain avoidance, route and re-
route planning, etc. (example in Section IV-C1) [15]. We will
study this scheme in Section V-B. Similarly, as part of the
intelligent transportation systems, Road Side Units (RSUs)
provide cars with safety information, as well as the traffic
and tolling management [16] (example in Section IV-C2).

The second model, which does not exist today to the best
of our knowledge, is a more distributed and decentralized
network with no hub holding the greater decision-making data
and mechanisms. The autonomous objects build trust, and
communicate with each other directly.

Our focus of study in this paper is the first model since
it is an emerging technology yet with little prior work in its
regime [1]. To provide further context, for example, in the case
of drones, if we assume that 1% of the land surface area is
occupied by drones typically near population centers such as
cities, with 7-million flying by 2020, there could be between
one and ten drones interacting with an UTM system in the
WiFi range every second (Section V-B).

III. RELATED WORK

We view earlier approaches to information security by ac-
cess control for IoT networks as falling under two categories.
The first category is one where traditional access control
models have been adapted to the IoT environment. Mainstream
models in this category include Role Based Access Control
(RBAC), Capability Based Access Control (CBAC), and Trust
Based Access Control (TBAC).

• RBAC is a standard mechanism based on the user
roles [17]. It has been widely used, in particular, in
operating systems [4]. RBAC assigns distinct roles to
users and gives permission to access resources. Role
assignment can be defined in an Access Control List
and can be modified and re-applied with minimal service
disruption. However, live-streaming IoT networks, require
context control for assignments other than roles, such as
time, location, state of the environment, etc. [3]. Hence,
RBAC possesses limited expressiveness in that certain
attributes of the network and its objects cannot be readily
described.

• CBAC is a model that can include context assignments
and generate certificates accordingly for accessing re-
sources. Certificates are either Attribute-based (ABAC)
properties or Capability-based (Cap-BAC) [18]. One
challenge with CBAC, however, is that certificates need
to be re-generated at every instance of the appearance or
disappearance of an object. Thus, for IoT networks where
mobile objects have frequent arrivals and exits, certificate
generation can produce a bottleneck due to the significant
processing time and service disruption that every single
event incurs.
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• TBAC is a newer access control paradigm. It is focused
on the objects gaining trust with each other through
information sharing. This is accomplished either by a
certification authority [19], or by algorithmic methods
using trust calculations between devices [20]. When a
specified level of trust is established between two devices,
there is no further need to certify the mutual relationship
even if the devices cease their interaction prior to re-
engaging again at a subsequent time. However, if the
environment is a highly dynamic one, this approach
tends to be computationally very intensive [4] and may
be difficult or impossible to implement on resource-
constrained devices.

The second category are policy-based access control
schemes. In this category, protection of data relies on ex-
pressive predicates that comprise the policy files. To express
policies, a structural XML-based syntax called XACML has
been devised. XACML is the leading language for policy-
based access control [21] , and is widely used for static envi-
ronments such as large databases [22] and home automation
services [23]. However, XACML processing and maintenance
is complex, making it unfit for resource-constrained IoT de-
vices [3], especially if policy sets are relatively large [8]. Two
approaches have been proposed to mitigate the overheads of
XACML processing.

1) A first approach toward speeding up the processing of
XACML is through the use of servers to process policies
and generate authenticated tokens. Tokens are then sent to
the nodes giving permission to share corresponding infor-
mation [6], [24], [25]. A drawback is that such solutions
tend to be vulnerable when tokens are hijacked and used
as attacks to yield denial-of-service. So, policy-based
access control models that need back-end servers could
impose high security risks with large service disruptions.

2) A second approach is to reduce XACML complexity by
simplifying the language. Seitz et al. [7] provided a subset
of XACML policy list defined in a compact JavaScript
Object Notation (JSON), which reduced the number of
assertions by one order of magnitude. However, the
authors did not articulate the precise tradeoffs of the
modified policy language, nor did they evaluate their
solution in the context of a dynamic IoT environment.
Additionally, with the use of JSON templates, it is not
clear how much syntax readability is sacrificed to gain
agility.

Table I presents a qualitative evaluation matrix that com-
pares the fitness of the existing access control approaches for
their application to dynamic IoT environments.

In summary, to the best of our knowledge, no prior access
control technique is able to satisfy the requirements of highly
dynamic IoT systems. We propose a new language for access
control that overcomes the shortcomings of prior existing
approaches without sacrificing their richness or expressiveness.

TABLE I: Fitness for high-speed dynamic IoT networks. A
Checkmark (X) denotes property satifiability while a Xmark
(7) denotes a shortcoming.

Access Control (C1) Can cope with (C2) Minimum service (C3) Suitable for (C4) Expressive
Category highly dynamic disruption needed resource-constrained attributes

service environments devices

Role-based (RBAC) 7 X X 7
Capability-based (CBAC) 7 7 7 X

Trust-based (TBAC) 7 X 7 X

Policy-based models X 7 7 X
based on XACML language

Our method X X X X
DynPolAC

IV. DYNPOLAC

We devise a new policy-based language, i.e., DynPolAC, to
govern the security operation of distributed data in dynamic
IoT networks. In particular, we come up with a new language
model that satisfies the four main characteristics of IoT sys-
tems as described in Section I.

A. Meeting the constraints

In the following we describe how our language satisfies the
constraints C1 to C4.

1) C1: High levels of Dynamism. In mobile IoT environ-
ments there is a need to reconfigure the network set-
tings including access control frequently. Our language
construction must be capable of rearranging the rules in
a modular form to modify access rules at any granular
hierarchy. At the top layer, there must be a policy
set (PS), which is a collection of policy blocks with
the option to add or drop them (Table II). Policies
themselves must be reconfigurable. There needs to be a
Rule List (RL) to add a collection of rules or remove
them arbitrarily. Rule Lists are a combination of rules
that can be augmented to form a new set or partially
reduced to remove unattended rules. The hierarchy shall
make DynPolAC dynamic and in a portable form, which
helps to commission new regulations at run-time without
impacting current enforcements.

2) C2: Service Time. Our language structure, while capable
of reinforcing policies in real-time, is required to keep the
system running by minimizing the update time. To meet
this goal, we carefully selected only six primitives that
are capable of describing the main IoT system properties,
namely, environmental variables, time, and configuration
settings. In Section VI-A we will show that it is indeed
our deliberate anthology that helps maximize the service
availability with optimized processing time.

3) C3: Resource-constrained Property. Policy-based access
control models are usually unsuitable for resource-
constrained devices due to the language grammar size
and the processing overheads. For example, page 25 of
the XACML standard document gives a simple instance
of a single rule that contains 39 lines with nested opening
and closing element tags [26]. For our target environment
where there could be thousands of rules applied to a
single node, the complexity and lines of a policy rule
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would matter and adversely affects the memory load
and the processing performance (for results see Sec-
tion VI-A). Rather than making complex constructions
which usually requires nested data structures [26], we use
fixed size rule blocks in plain language to describe the
permission control of data. In Section IV-B, by using only
six primitives, we show DynPolAC takes significantly less
space to fit in resource-constrained devices’ memory and
less time to process in slower platforms (for results see
Section VI).

4) C4: Expressiveness. Many mobile IoT nodes collect
spatio-temporal, geographical sensory data as well as
the configuration and system maintenance information.
They also collect sensitive data such as the mission
planning, user names, addresses, origins and destina-
tions. Therefore, their communication control requires
two prime decision types; either check a range to give
access for analog data, or, use a permit-deny binary-
like access control. In the following section we show
that DynPolAC constructs Rule Type (RT) primitives to
cover for the necessary expressions in the IoT networks.
Additionally, live-stream data in such systems are time-
dependent attributes, for which we include Time (T) in
our policy construction. Besides, we include the Attribute
Types (AT) to filter queries based on their variable type.

B. Formulation
We choose a set of six primitives that are sufficient to

express communication control between mobile IoT devices
such as UAS and SDC. Depending on the platform require-
ments, the policy set can be described in any plain or markup
languages such as TXT, INI, JSON, XML, or even Efficient
XML Interchange (EXI). In the following, we present our
language construction followed by some examples of its use.
We also compare it with other approaches. The heuristic
choices that we made in our language are to satisfy {C1-C4}
that are the characteristics of the IoT networks postulated in
Section IV-A.

We have a hierarchical construction order in our language
as outlined in Table II. The top unit is called a Policy Set (PS),
which is the union of Policies (P). For example, there could
be global policies that form a PS for interaction between the
nodes universally, or, there could be a set of local policies that
form the regional PS.

TABLE II: Hierarchical construction order of the DynPolAC
Language.

Hierarchy Construction

Policy Set (PS) PSGlobal | PSLocal | P1 ∪ P2 ∪ ... ∪ Pn

Policy (P) P1, P2, ..., Pn | Pnode | Putm | [RL]
Rule List (RL) R | [R] | RL ◦ [R]
Rule (R) (RT, AT, V, T, U, G)
Rule Type (RT) Accessor | Comparator

Policies (P) can be multiple object files or all can be
aggregated into one file. For example, there can be policy files

that set rules for a variety of drones in the network, one for
each; or, there can be a monolithic file that sets access rules to
a centric UTM gateway. Policies (P) in turn are comprised of
Rule List (RL), which is the aggregation of Rules (R). There
could be a RL that concatenates new Rules (R) as denoted by
operator ‘◦’ in Table II row 3.

Rules (R) are the basic component of our DynPolAC lan-
guage. Rules (R) are independent atomic decision units with
a fixed set of elements as follows.

• Rule Type (RT): Indicates the beginning of a new rule
and defines its type. We have two types of rules; first, the
“comparator” rule, where the visibility of analog data
is given by a min/max range; second, the “accessor”
rule, which gives a binary-like permit or deny access, for
example, to sensitive data such as password, passenger
information, and SSLKey.

• Attribute Type (AT): Represents the type of data being
monitored. Examples are temperature, heading, password,
altitude, latitude, and longitude.

In addition, Rules (R) keep track of the origin of data by an ID
or a vendor name. Data must also be tracked in time and by
the users and groups wanting to access the data. As a result,
in DynPolAC we add fields to represent Vendor (V), Time (T),
User (U), and Group (G) as follows:

• Vendor (V): A primitive that restricts access based on the
origin of information. For example, if the vendor name
is Uber, it means to monitor data in Uber devices only.

• Time (T): A temporal element added to confine informa-
tion access based on a particular date and time range. For
example, we can specify to give access to data between
Monday and Tuesday from 11 AM to 3 PM. If the
keyword ‘ALL’ is used, it implies giving access to data
at all times.

• User (U): A wild card primitive providing a comma
spliced RBAC attribute to give access to particular users.
A user can be an application running in a node asking
to have access to data, or, it can be a particular node
name asking for access. If used ‘ALL’ as a wild card, the
implication is to give access to all users.

• Group (G): A wild card primitive providing a comma
spliced RBAC attribute to give access to particular group
of users. For example, a group ‘hospital’ can be assigned
to let all hospitals have access to patients’ smart wear-
ables [27], [28].

For the sake of comparison with previous policy-based
access control models and without the loss of generality, in
this paper, we construct DynPolAC in XML languge1. To better
illustrate DynPolAC construction we provide two examples as
follow.

C. Examples

1Additionally, XML is interoperable — regardless of the underlying tech-
nology, there is no maintenance overhead for migration between different IoT
platforms.
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1) Drones near no-flying zones: Consider future UTMs that
would develop dynamic surveillance and geo-fencing systems
to inhibit drones from entering no-flying zones. There would
be control hubs around airports, military bases, government
buildings, power plants, etc., to enforce the no-flying zone by
commanding autonomous flying objects to re-route. However,
the UTMs would need to have the permission to check the
drone information and to issue a command to change their
direction. Otherwise, the access would be either unnecessary,
or diagnosed as an adversarial communication which will need
to be blocked.

1 <policyFile>
2 <policy>
3 <rule min=‘‘33.941362’’

max=‘‘33.941777’’>comparator</rule>
4 <attributes>
5 <type>Latitude</type>
6 <vendor>Rakuten</vendor>
7 <time>ALL</time>
8 <user>Zone1</user>
9 <group>Airport</group>

10 </attributes>
11 </policy>
12 <policy>
13 <rule min=‘‘−118.413695’’

max=‘‘−118.414226’’>comparator</rule>
14 <attributes>
15 <type>Longitude</type>
16 <vendor>Rakuten</vendor>
17 <time>ALL</time>
18 <user>Zone1</user>
19 <group>Airport</group>
20 </attributes>
21 </policy>
22 <policy>
23 <rule>accessor</rule>
24 <attributes>
25 <type>Heading</type>
26 <vendor>Rakuten</vendor>
27 <time>ALL</time>
28 <user>ALL</user>
29 <group>ALL</group>
30 </attributes>
31 </policy>
32 </policyFile>

Listing 1: PRakuten in an UTM of the no-flying region.

Listing 1 is an example of a policy file (PRakuten) giving
access to specific data in Rakuten2 drones. This policy is
assumed to be part of a PS that has been registered in the
trusted UTM. We also assume that a Rakuten drone before
sharing information, first, asks for its policy, PRakuten, from
the UTM. Then, based on the policy, the drone will share
information.

In Listing 1, there are three rules described. The first two are
the comparator type rules. The first rule gives the UTM server
permission to have the latitude data of Rakuten drones if the
range is between “33.941362” and “33.941777” degrees. The
second rule describes permission to have longitude information
if it is in the range between “-118.413695” and “-118.414226”
degrees. These are the coordinates of an airport. The last rule
in Listing 1 is an accessor permission that lets the UTM

2Rakuten is a Japanese company that manufactures consumer drones.

change the Rakuten drone direction by accessing its Heading
configuration parameter. All these three rules apply at all
times to all Rakuten drones. However, the first two rules are
made specifically for UTM nodes in Zone1 (User) of airport
(Group). If a geo-fencing application is running in a UTM
machine under User Zone1 and group airport, then it can
obtain access to Rakuten drones’ data.

If we wanted to construct this example in XACML, our
first two rules would be comparable to the predicates similar
to page 34 of the expressions between line numbers 1200 and
1303 of the XACML document (1303−1200 = 103×2 = 206
lines) [26]. For the user and group, we must have used
semantics as expressed on page 31 of the XACML docu-
ment [26] between lines 1043 and 1119 (1119 − 1043 =
76 × 2 = 152). Our last rule is comparable to Rule 4 of
the XACML document [26], page 39, between lines 1537 and
1626 (1626−1537 = 89). Overall, in this example we see that
with DynPolAC we can reduce over 400 (206+152+89 = 447)
lines of XACML syntax to only 32 lines (447 - 32 = 415).

2) Tolling Cars in Highways: Consider the case of toll
collection in highways. Electronic tolling requires either pre-
registration of cars to debit drivers’ account according to the
type of car and the time of day, or, if a car is not registered,
image processing of the plate is applied to identify the car
type and send the bill at higher rate to the driver. In addition
to the services overhead, in the past, there have been security
and privacy breaches on the central databases of the tolling
systems, which resulted in spoofing or hijacking the record of
specific vehicles’ debit accounts [29].

1 <policy>
2 <rule>accessor</rule>
3 <attributes>
4 <type>Debit</type>
5 <vendor>Tesla123XYZ</vendor>
6 <time min=‘‘06:30:00’’ max=‘‘18:30:00’’>
7 Mon−Tue−Wed−Thu−Fri
8 </time>
9 <user>RSU Exit34</user>

10 <group>HW−1</group>
11 </attributes>
12 </policy>

Listing 2: A policy example for Toll collection.

DynPolAC can be used in an autonomous environment
without the need for pre-authorization or surcharges. Listing 23

displays an example of a rule that can be passed to a tolling
machine at the passing time of the car. With this rule no
pre-registration is needed and an accessor block that gives
permission to access the passenger’s debit card information
will suffice (via for example the driver’s phone connected to
the car’s infotainment system). In the Listing 2, the tolling
application (user) that is running in the RSU of Exit 34 and
in group highway number 1, is given authorization to charge
driver’s debit account. When the Tesla car (vendor) with
ID 123XYZ at specific times of the week (Monday through
Friday, 6:30 AM to 18:30 PM) passes the tolling area, based on

3This data structure format is a sample for demonstration.

5



the accessor rule, the tolling machine is permitted to query and
charge the debit card that is registered with the car’s database.
Suspicious activities such as charges outside of the allotted
hours will be blocked and reported for further inspection. Also
the account will be charged if and only if the particular car
passed the check point. If we wanted to construct the same
policy in XACML, we would have had to use the request
context as an example provided on page 29, lines 920 to 994
in the XACML document (994 − 920 = 74) [26]. DynPolAC
thus reduces the language intricacy six-fold (i.e., from 84 lines
to 12).

D. Comparison of Expressiveness

To cope with the characteristics of IoT environments and
unlike nested decision sets used in the XACML standard, we
only used a two-valued Rule Type (RT), i.e., comparator and
accessor (Table II). The two type of rules that we chose are
sufficient to satisfy the requirement of access control in our
target platforms by permitting, denying or restricting access.

Moreover, DynPolAC excludes the combining algorithms4.
Combining algorithms are complex and trigger heavy con-
structions, which defeats the initial purpose of our language,
i.e., agility. Instead, our decision units (rules) are independent
of each other and there is no prioritization between the rules; a
rule can only be applied to one data property, at a given time.
Nevertheless, we assert that DynPolAC has adequate elements,
which makes it a comparable model to previous work. For
example, Kim et al. [5] and Fysarakis et al. [6], specify
characteristics such as subject, resource, action, and condition.
Our model is comparable: AT in our language is analogous
to their subject; Vendor (V) is analogous to their resource
name, RT is similar to their action; and the time (T) as
well as min/max conditionals will match with their condition
parameter. In a later work, Vaidya and Sherr [30] build
policies according to spatial properties of drones. They created
primitives such as time interval, capability, region, coordinate,
and noise limit. Time interval is similar to our primitive, Time
(T). Their attributes are specific to drones, but for us AT is
a generic element that can contain any attribute of the IoT
systems.

V. EXPERIMENTAL SETUP

In the previous section, we presented DynPolAC and its suit-
ability with respect to the characteristics of the emerging IoT
environments. In this section, we describe the experimental
setup, which establishes the ground for Section VI to evaluate
the performance of DynPolAC.

A. Research Questions

Our goal is to experimentally evaluate DynPolAC to answer
the following three main research questions (RQs):

• RQ1. At the micro level, how much processing over-
head savings does DynPolAC offer compared to previous
work?

4XACML policy standard provides six combining algorithms (ca) according
to the order of decision sets and their priorities [26].

Policy 
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Fig. 1: Schematic view of ‘M/M/1’ queuing service for an
UTM node. Notations described in Table III.

Emerging IoT environments are highly interactive (C1
in Section I). It is important to minimize the security
overheads to achieve the optimum availability of the
system (C2 in Section I). In DynPolAC, the overhead
lies in parsing, processing, and enforcement of the policy
objects. We will investigate how much improvement our
framework offers to the processing time in a single IoT
node.

• RQ2. At the macro scale, what significance DynPolAC
makes when studied in an IoT environment?
In this paper, our focus is on the implementation and
plausibility of DynPolAC5. We resort to the use of a
discrete event simulator that models an interactive IoT
environment, where quick response times on the order
of one second intervals are made. We evaluate the per-
formance of DynPolAC in such systems. The system
validation that we will report (in Section VI-B) is based
on simulations and certain assumptions that will follow
in Section V-B1.

• RQ3. How much memory overhead the construction of
DynPolAC creates in IoT nodes?
Most IoT nodes have strict memory limits. We measure
and report the memory overhead of DynPolAC to investi-
gate its suitability with the third characteristic explained
in Section I.

B. System Design

In Section II, we postulated that there are two kinds of
emerging IoT schemes. Here we investigate the first scheme,
i.e., central hubs known as UTM [15], [31] for drones, and
RSU [32] for cars.

Consider an environment where drones share data frequently
via a UTM system to guarantee collision-free navigation, con-
gestion and traffic management, and to accomplish a mission
as a swarm. The UTM in our construction is the only point
of contact among the drones and between the applications
running in the network. Every drone will need to first register
its policy (PDrone) with the UTM node to share information
or ask for data. We model this scenario in Figure 1. Since
such a model does not fully exist yet, we apply discrete event

5DynPolAC is available in GitHub at www.github.com/
DependableSystemsLab/DynPolAC.
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TABLE III: Notations.

Parameters Description Unit Value

λ Arrival rate 1/s 1-10
`Query Query size Bytes 200-5K
`Policy Policy size no. of rules 1-2000
η Network latency ms 50

Variables Description Unit

µ Mean response rate 1/s
Γ Mean response time ms
N Mean node delay ms
S Mean service time ms
ω Wait time in the queue ms
ρ Policy processing time ms
ϕ Query time ms

simulation to implement Figure 1, i.e., a cluster of drones that
contact the UTM server in one-second intervals want to query
some data. The UTM node replies back with the data based
on the registered PDrone policy. For example, a drone may get
access to the names of other drones in its neighborhood once
registered a policy that authorizes access to such information
in the UTM node.

1) Assumptions: We make three assumptions to simplify
our simulation setup.

(a) Our UTM is a single-processor, single-threaded system
based on the Queue Model type ‘M/M/1’ with service
discipline First-Come-First-Serve [33].

(b) For calculating the total response time (Γ), we assume the
wireless signal latency is a fixed 50 ms delay time. This
is assumed in reference to the analytical model employed
M/M/1/K queue for 802.11 wireless networks [34].

(c) We heuristically chose the range for our parameters
indicated in Table III. For the PS size (`Policy), we
assume that drones will arrive and incrementally register
their policies with the UTM. Therefore, if we assume
there are 1000 distinct drones in the area and each
register a two-rule list, on average, our accumulative PS
size (`Policy) can reach up to 2000 rules. We apply the
uniform distribution in our simulations to model the PS
ranges between 1 and 2000 rules.
For the query size (`Query), we choose a range in
accordance with the maximum transmission unit of the
Ethernet packets [35], [36]. Thus, our query sizes follow
a uniform distribution between 200 bytes and 5 KB.
For the arrival rate, λ, we choose the range 1 to 10
as discussed at the end of Section II. The arrival rate,
λ (Table III), follows the Independent and Identically
Distributed random variables based on the Poisson distri-
bution stream [33].

2) Formulation: Based on the model presented in Figure 1,
Table III shows the symbols in our system. The goal is to
measure the performance of our system by calculating the
response time (Γ) defined as: the total time it takes for a drone
to initiate a request until the reply is received. We measure
the latency at each stage in Figure 1.

We calculate the UTM node delay, N, by adding the queue-

ing time (ω) for each drone to the service time S.

N(λ,`policy,`Query) = ω(λ) + S(`Query,`Policy)

= ω(λ) + ρ(`Policy) + ϕ(`Query) (1)

The overall response time (Γ) is the UTM node delay
obtained from Eq. 1 plus the arrival and departure network
latencies (50ms each) as follows:

Γ(λ,fcpu,`policy,`Query,η) = η +N + η =

50ms+N + 50ms = 100ms+N (2)

The response rate (µ) is the inverse of the response time:

µ =
1

Γ
(3)

We calculate the overall response time based on the Eq. 2
using the Regeneration Method [33]. We stop the simulation
when the overall mean response time (Γ) is at steady-state of
two decimal digits of a millisecond, and achieves the 95% two-
sided confidence interval [33]. Then, we take the inverse of
Γ to be the response rate (µ). The stability condition dictates
that µ > λ, which we will explore in our system study in
Section VI-B1.

VI. EXPERIMENTAL RESULTS

We answer the proposed research questions in Section V-A
based on the experimental setup in Section V-B.

A. RQ1: Policy Processing Evaluation

To study the performance of DynPolAC, we first measure
its processing time in IoT nodes.

A feature of DynPolAC is its dynamic capability to update
the rules at run-time via a housekeeping thread. When a
new query request arrives, the DynPolAC engine is activated;
first, it parses the PS associated with the request; then, based
on the rules, the server responds back to the query request.
During this process, the housekeeping engine will check if
it needs to augment and register new rules to the currently
active PS, or, remove the obsolete rules from the PS. Figure 2
illustrates the performance cost of the service with the policy
processing time results. Since we constructed our rules in
XML, we employed an open-source parser called Expat [37]
to parse our policy files. In Figure 2, we have varied our
rules for parsing and registration between 1 and 2000. A one
rule registration in DynPolAC takes 2.39 ms, on average6,
on a BBB platform. The maximum average processing time
is for 2000 rules registration with 349.4 ms on the same
platform. From Figure 2, the linear growth in the processing
time is because of the one-on-one dependency between the
parsing process and the size of the policy files (`Policy)
located in our PS. We have also assessed the generality of
the results by measuring the processing time on 3 different
platforms, namely, Pi3, Pi0, and BBB — our results show a
homogeneous, monotonic increase.

6To achieve a steady-state average time with two significant decimal
precision points, we ran DynPolAC 1000 times for every point.
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Fig. 2: Policy processing time in DynPolAC. Results are
measured in milliseconds on three different platforms, Beagle
Bone Black (BBB), Raspberry Pi Zero (Pi0), and Raspberry
Pi 3 (Pi3).

Next, to study the performance overhead savings, we com-
pare DynPolAC with the previous work that used XACML-
based policy constructs for the IoT systems [6], [25]. We
programatically produce XACML policy files up to 2000
rules [5], [6], [25]. For consistency of our comparison, we
use the same parser (Expat [37]) used in DynPolAC for the
XACML policy files.
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Fig. 3: Ratios of the policy processing speed-up for DynPolAC
over the XACML-based access control. Results are measured
as ratios on different platforms.

Figure 3 illustrates the results on the three different plat-
forms. The results are the ratio of the processing speedup
in DynPolAC over the XACML-based model. As the number
of rules grow, the difference in the policy processing time
between DynPolAC and XACML-based policies increases. The
maximum difference in our study occurs during the 2000-
rule policy comparison, where DynPolAC achieves up to 7.28x
faster processing time. Even at smaller counts of 25, 50, and
100 rules, DynPolAC achieves a noticeable 4x processing time
improvement. The speed-up improvements are mainly because
DynPolAC uses a lighter policy language compared with pre-
vious XACML-based models (Section IV-D). Additionally, the
speedup of DynPolAC is higher on slower platforms. The ratio
is highest with BBB, followed by Pi0, and finally Pi3. This
demonstrates the suitability of our scheme for low-capacity
devices, i.e., the main target platforms for our work.

B. RQ2: DynPolAC Performance Results at System-level

In RQ1, we inspected the performance of our access control
unit, DynPolAC, and compared it with the previous models
to study the performance savings. It is important to evaluate
our solution in the context of an end-to-end system. In RQ2,
we study how much difference DynPolAC makes when used
as an access control service in a dynamic IoT environment.
Therefore, we ran two simulation tests based on the Figure 1.

1) Stability Condition: The first test is to check the stability
condition by measuring the mean response rate (µ) and com-
paring it against the arrival rate (λ). In particular, if a number
of drones arrive at our UTM node every second, does our
service node have enough time to process the requests or will
it experience instability? To answer the question, we need to
measure µ, which is in turn dependent on three parameters: λ,
`Policy, and `Query. We vary these parameters as described
in Section V-B1 and Table III. For the arrival rate, λ, we
used the Inverse Transformation Method to get the Poisson
variates with Mean 4. For the number of policy rules, `Policy,
we used the uniform distribution constructing rules between
1 and 2000. Finally, for the query size, `Query, we used the
uniform distribution constructing queries between 200 B and
5 KB.

TABLE IV: Simulation results for Γ and µ. The ratio column
tells how much overhead the policy-based simulations com-
pare against the no-policy one.

Mean arrival rate λ̄ = 4/s

Simulation Γ (ms) µ Ratio

no-policy 178 5.6 1
DynPolAC 245 4.1 1.3

XACML-based 840 1.2 4.7

Table IV demonstrates our results. At steady state, the mean
response time with a UTM node that includes DynPolAC is
245 ms, whereas, it is 840 ms when using an XACML-based
PS. DynPolAC improves the overall response time by 70%.
We also ran a test where there is no security enforcement, and
observed a mean response time of 178 ms. DynPolAC ratio
with the no-policy setting is 1.3, while this ratio is 4.7 for the
XACML-based counterpart. Additionally, DynPolAC satisfies
the system stability condition with the response rate being
right above the threshold (µ > λ ≡ 4.1 > 4), while if we use
XACML-based models, the system becomes unstable.

2) Sensitivity Analysis: The second system test is the sensi-
tivity analysis. By sensitivity analysis we seek at determining
which of the varying parameters have the most impact on the
total response time Γ. And, if DynPolAC is used, can better
performance results be achieved?

TABLE V: Boundaries for sensitivity study.

Name Min Variable Max

Arrival Rate 2/s ≤ λ ≤ 8/s
Query Size 200 B ≤ `Query ≤ 2000 B
Policy Set (PS) 100 Rules ≤ `Policy ≤ 1000 Rules
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We ran the sensitivity analysis while varying parameters λ,
`Query, and `Policy. We used the boundaries as indicated in
Table V to have two variables at their fixed extreme low and
high boundaries while sweeping the third variable between
its minimum and maximum ranges. Therefore, we have four
combinations of extreme cases for each variable span, yielding
a total of 12 scenarios. Figure 4 shows the results. For
comparison, we performed these tests for both DynPolAC
and the XACML-based counterpart. Our study reveals that
DynPolAC achieves lower response time across the entire
parametric space. In addition, the following trends can be
observed from the figures:

• Figures 4a-4d show the arrival rate sweeps. DynPolAC has
a maximum response time of 570.12 ms. However, for an
XACML-based node, the Γ value at the extreme case of
high query size and the large number of policy rules is
2.4 seconds. This can be considered as an extremely dy-
namic environment, where less than one-second decision
making resolutions are needed. From these extreme case
results of arrival rate, we conclude that XACML-based
models cannot cope with highly interactive IoT nodes.
The contrary holds for DynPolAC.

• Figures 4c-4d show a larger gap between DynPolAC and
the XACML-based model. A similar behavior is shown in
Figures 4g-4h. This means that a higher number of policy
rules aggravates the overall response time of XACML
more than it does for DynPolAC. These findings also
highlight that processing policy rules can represent a large
fraction of the total response time.

• In the last row in Figure 4, where the number of policy
rules are varied, our XACML-based results display a
sharp slope in the response time. However, with Dyn-
PolAC the response times show a relative steady-state
with minimal fluctuations. This means that policy se-
lection has the most pronounced effect in the overall
response time compared to the other parameter.

C. RQ3: Size of DynPolAC

We measured the memory overhead of our implementation
and compared it to the rest of our system [38]. DynPolAC is
created as an integral component of a custom-made query ser-
vice [38] with parsing and housekeeping modules. DynPolAC
incurs only 7.5% memory overhead, which makes it possible
to use it even in severely memory constrained nodes [11].

D. Implications

We view our design implications as twofold. First, the
hierarchy of our language as explained in Table II keeps the
policy blocks in modular form, which helps to commission
new rules at run-time without impacting the dynamic state
of the system. DynpolAC’s modularity also enables a Lego-
like access control solution for bigger IoT hubs such as RSU
and UTM, where a large cluster of heterogeneous IoT nodes
connect and register their policy regularly [30].

Second, from the performance results we conclude that Dyn-
PolAC can be used as an access control service for information

security between highly dynamic IoT nodes. The performance
benefits of DynPolAC are mainly due to its deliberate language
selection. At the micro level, DynPolAC outperforms other
approaches at larger policy sizes, particularly, in our most
constrained node under study, the BBB (Figure 3). This means
that the benefits of using DynPolAC are more evident in
resource-constrained devices. At the macro scale, DynPolAC
outperformed the other systems consistently, particularly, when
the system was under heavy loads (Figure 4).

VII. CONCLUSION

IoT environments are becoming highly interactive and re-
quire agile security techniques to fit their characteristics. We
introduced DynPolAC, a dynamic policy-based access control
that uses sufficient language to express rules in IoT systems.
We evaluated DynPolAC by measuring its performance at
micro- and macro-scales. At the micro level, DynPolAC out-
performs previous XACML-based methods by a factor of up to
7.28x. At the macro scale, our results showed that DynPolAC-
based solutions are significantly faster than previous methods
across a wide range of system parameters.
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