TensorFl: A Configurable Fault
Injector for TensorFlow
Applications

Guanpeng (Justin) Li, UBC
Karthik Pattabiraman, UBC
Nathan DeBardeleben, LANL

THE UNIVERSITY

OF BRITISH COLUMBIA ° LOSAIamOS

NATIONAL LABORATORY

Motivation

 Machine learning taking computing by storm
— Many frameworks developed for ML algorithms

— Lots of open data sets and standard architectures

ML applications used in safety-critical systems

w '
' -
abs -l .
A

. .—.1 4 - .“: A . 1

1_-"9-"{,'.’ =
RRLLLANANNNOR

Error Consequences
Example: Self Driving Cars

E R - B ~

Object Identified: B ERN
Transporting Truck o Object Identified:

g Bird

Single bit-flip fault = Misclassification of image (by DNNs)

Source: Guanpeng Li et al., “Understanding Error Propagation in Deep learning
Neural Networks (DNN) Accelerators and Applications”, SC 2017.

Our Focus: TensorFlow (TF)
* Open-source ML framework from Google
— Extensive support for many ML algorithms
— Optimized for execution on CPUs, GPUs, etc.
~

N
— Many other frameworks target TF r

— Significant user-base (> 1500 Github repos)

What is TF ?

* TensorFlow (TF) - e _
framework for executing =5 E3 E2 =5
dataflow graphs S

— ML algorithms expressed o @
as dataflow graphs oo 2
— Can be executed on
different platforms
— Nodes can implement
different algorithms ==

Goals

* Build a fault injector for injecting both hardware
and software faults into the TF graph
— High-level representation of the faults
— Fault modeled as operator output perturbation

* Design goals
— Portability — no dependence on TF internals
— Minimal impact on execution speed of TF
— Ease of use, compatibility with other frameworks

Challenges

* TF is basically a Python wrapper on C++ code

— C++ code is highly system and platform specific
— Wrapped under many layers — hard to understand

* Python interface offers limited control
— Cannot modify operators “in place” in the graph
— Cannot modify graph inputs and outputs at runtime

— No easy way to intercept a graph once it starts
executing (a lot of the “magic” happens in C++ code)

Approach: TensorFl

* Fault injector for TensorFlow applications

* Operates in 2 phases:

— Instrumentation phase: Modifies TF graph to
insert fault injection nodes into it

— Execution phase: Calls the fault injection graph at
runtime to emulate TF operators and inject faults

Instrumentation Execution
Phase Phase

TensorFl: Instrumentation Phase

* Idea: Makes a copy of the TF graph and inserts
nodes for performing the fault injection

faulty

Placeholder Node x

TensorFl: Execution Phase

* |dea: Emulate the operation of the original TF
operators in the fault injection nodes

— Inject faults into the output of operators

orig. faulty

Placeholder Node x

Inject fault
into ADD

10

TensorFl: Post-Processing

* Inject faults one at a time during each run
— Log files to record the specifics of each injection

* Gather statistics about the following:
— Injections: Total number of injections
— Incorrect: How many resulted in wrong values
— Difference: Diff between correct and wrong value

* Need to specify application specific checks
for determining difference with Fl outcome

TensorFl: Usage Model

Add the fault injection code here to instrument the graph

fi = ti.TensorFI(sess, name = "Perceptron"”, loglLevel = 58, disableInjections = True)

correctResult = sess.run(accuracy, feed dict={X: mnist.test.images,
Y: mnist.test.labels})

print(“Testing Accuracy:", correctResult)

diffFunc = lambda x: math.fabs(x - correctResult)

Make the log files in TensorBoard
logs_path = "./logs"
logWriter = tf.summary.FileWriter(logs_path, sess.graph)

Initialize the number of threads

numThreads = 5

Now start performing fault injections, and collect statistics
myStats = []
for i in range(numThreads):

myStats.append(ti.FIStat("Perceptron"))

Instrument code

Calculate difference

Launch injections in parallel

Launch the fault injections in parallel

fi.pLaunch(numberOfInjections = 188, numberOfProcesses = numThreads, computeDiff = diffFunc, collectStatsList = myStats)

Collate the statistics and print them
print(ti.collateStats(myStats).getStats())

12
Calculate statistics

TensorFl: Config File

This is a sample YAML file for fault injection configuration

*

The fields here should correspond to the Fields in fiConfig.py

£

Deterministic fault seed for the injections
Seed: 10600

£

I

Type of fault to be injected for Scalars and Tensors

*

Allowed values are {None, Rand, Zero}

ScalarFaultType: Rand
TensorFaultType: Rand

Add the list of Operations and their probabilities here
Each entry must be in a separate line ad start with a '-'
each line must represent an OP and it's probability value
See fiConfig.py for a full list of allowed OP values

NOTE: These should not be any tabs anywhere below

Ops:
- ALL = 1.8 # Chooses all operations
- ADD = 1.9
- DIV = .9 # This does not exist - and should be ignored (Test)
- SUB = -8.5 # This should raise an exception

How many times the set of above operations should be skipped before injection

SkipCount: 1
13

Example Output: AutoEncoder

Original image, no faults Fault injection prob. =0.1 Fault injection prob. = 0.5

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Fault injection prob. = 0.7 Fault injection prob.=1.0 Reconstructed image (no faults)

TensorFl: Open Source (MIT license)

https://github.com/DependableSystemsLab/TensorFl

L DependableSystemsLab / TensorFl © Unwatch~ 9 * Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings
TensorFl is a fault injection framework for injecting both hardware and software faults into applications written using the TensorFlow Edit

framework. You can find more information about TensorFl in the paper below. http://blogs.ubc.ca/karthik/files/201...

fault injection machine learning tensorflow Manage topics
{ 18 commits ¥ 1 branch © 0 releases 42 3 contributors s MIT

Branch: master v New pull request Create new file = Upload files Find file Clone or download ~
'-: karthikp-ubc Update README.md Latest commit 4551858 10 days ago
@ TensorFl init amonth ago
| Tests add test folder a month ago
| confFiles init a month ago
@ experimentalTest init amonth ago
[E) CONTRIBUTIONS.txt Update CONTRIBUTIONS.txt amonth ago
E HOWTORUN.md Update HOWTORUN.md amonth ago
[E) Install.sh Update Install.sh amonth ago
[E) LICENSE init amonth ago
E) Manual Rename README to Manual amonth ago
[E) README.md Update README.md 10 days ago

[E) runAllExperiments.sh Rename runAllExperimentalTest.sh to runAllExperiments.sh a month ago

Benchmarks

* 6 open source datasets
— UCI open source ML dataset repository

— Can be modeled as classification problems

3 ML algorithms
— k nearest neighbor (kNN)
— Neural network (2-layer ANN)

— Linear regression

Experimental Setup

* Fault injection configurations

— Repeat 100 FI campaigns per benchmark (One fault per run)

— Fl rates (prob. of injection): 5%, 10%, 15% and 20%

* Metric: Average accuracy drop
— Original accuracy without fault injection (OA)
— Accuracy after fault injection (FA)

— Average accuracy drop = average of (OA-FA) among all Fl runs

Adult
20%
15% -
10% A
5%
0% —
g g g glo

——KkNN —ILR NN
(a) Error Margin: +/-0.67% to +/-6.72%
MNIST

60%
40%

20% f
0%
gle

QY’SP \P@\o o;‘;’@a ,9@

—kNN —ILR NN

(d) Error Margin: +/-2.76% to +/-9.78%

Results

Credit

40%
30%
20%

100/6 /
0%

S g &b gl
SR P

—kNN —LR NN

(b) Error Margin: +/-0.00% to +/-9.17%

Survive
20%

15%
10%
5%
0%

R S SR
S &S
Q7 AT 9T QO
——kNN —ILR NN
(e) Error Margin: +/-0.16% to +/-7.08%

Marketing

40%
30%

20%
0%

g g S
& & 9 \9@

Q. p\’.

—kNN —ILR NN
(c) Error Margin: +/-0.38% to +/-9.12%

Zoo

60%
40%

20% /
0%
g & & &
MR N \9@

——kNN —LR NN

(f) Error Margin: +/-2.47% to +/-9.75%

e SDC rate increases are different as fault injection rates increase

e SDC rates are different for different models

e kNN has lower SDC rates and lower rate of increase

18

Future Work

* Investigate the error resilience of different
ML algorithms under faults
— Understand reasons for difference in resilience
— Build a mathematical model of resilience
— Choose algorithms for optimal resilience

* Understand how different hyper-parameters
affect resilience and choose for optimality

TensorFl: Summary

* Built a configurable fault injector for injecting
both h/w and s/w faults into the TF graph

— High-level representation of the faults

* Design goals
— Portability — no dependence on TF internals
— Speed of execution not affected under no faults
— Ease of use, compatibility with other frameworks

Available at: https://github.com/DependableSystemsLab/TensorFlI

Questions ? karthikp@ece.ubc.ca

https://github.com/DependableSystemsLab/TensorFI

