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Motiation: IoT Space
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200 billion IoT
devices

• The number of IoT systems are growing
• About 26 devices per person



Motivation: mobile IoT by 2020
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10 million connected vehicles

1 in 4 cars are autonomous by 2030

7 million unmanned aircraft systems (UAS)



Autonomous IoT: Drones
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UTM

(2) with linear growth of IoT nodes, 
communication between them grow 
quadratically !(!#$)&

(1) Moving objects have higher 
levels of interaction than stationary 
networks

…



Problem: Malicious Attacks
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UTM

…

Eve

eavesdropping

spy and snoop

Our Goal: Develop an 
authorization scheme for 

highly interactive IoT systems



Challenges
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Dynamic IoT nodes are constrained systems
ØWeight limitation
ØPower consumption

Communication in congested networks could 
build up quadratically à so does authorization

High interaction means fast 
authorization required



Previous Work
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Response Rate
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Classical Models
RBAC, CBAC, TBAC

[Sandhu, Rigazzi, Mahalle]

[Kim, Fysarakis, Seitz, Turkmen]

Used in cloud or big data context 
Speed does not matter; not doing 
the parsing often.

Ad-hoc models mainly 
depends on the platform; 
not standalone



Our Goal
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Response Time
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Our Goal
Classical Models

RBAC, CBAC, TBAC

DynPolAC

No authorization scheme exists 
that can support data access in 
both fast and expressive way. 

[Sandhu, Rigazzi, Mahalle]

[Kim, Fysarakis, Seitz, Turkmen]

Expressive for IoT envrionments

4 x faster



Outline

•Motivation
•Approach
•evaluation
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DynPolAC: Key Insight
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We describe rules in high level language

Ø Reduce syntax size

Ø Save the parsing time

Use only the necessary expressions 

required in IoT space

remove unnecessary nested 

elements and make simple syntax

Ⱶ Will show even in small embedded 

platforms DynPolAC is fast and meets 

the overall speedup in the system 

performance.



DynPolAC: No-fly Zone

1. Access type: Permit
2. Data type: coordinates
3. Drone name: Friendly
4. Time: ALL
5. User: UTM
6. Group: Airport 
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Ø Spatial, temporal, and role-based expressions can be built with 6-element policy blocks

Ø Radar sees an unknown asset

Ø UTM starts communicating 
with the drone to re-route

We can construct rules with 6 primitives only



DynPolAC: Comparison

12Reference: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

1. <policy>
2. <rule>access</rule>
3. <attributes>
4. <type>email</type>
5. <vendor>MediCorp</vendor>
6. <time>ANY</time>
7. <user>ANY</user>
8. <group>med.example.com</group>
9. </attributes>
10. </policy>

10 vs. 39removed unnecessary nested 
elements, still 6 primitives, 

made simple syntax

DynPolAC

Let’s see how rules look in previous model?

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf


Outline

•Motivation
•Approach
•evaluation
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Research Questions

• RQ1. At micro-level, what is the processing time improvement?
• RQ2. At system-level, what is the response time?

ØCheck stability condition
o Can it meet requests in interactive environments?

ØSensitivity analysis
o what is the bottleneck in extreme scenarios?

• RQ3. What is the memory overhead?
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Experimental Setup
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Instrument DynPolAC in 
3 different embedded 

platforms

Raspberry Pi Zero (Pi0)

Raspberry Pi Three (Pi3)

Platform

Sp
ee

d 
(M

H
z) 1200

1000

720
Beagle Bone Black (BBB)

Goal: show the homogeneity of our results in different platforms



Experimental Setup
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Objects Population

Policy 
check

IoT Node 
DatabasePolicy 

check

Node 
Database

System Study: Emulate an interactive IoT environment

Response Time

Discrete event simulator



RQ1. Processing Time
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Rules by DynPolAC syntax are parsed 
and processed in milliseconds

Less than half seconds



RQ1. Comparison
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üOn Average 4x process improvements
üup to 7.27x speedup

Speedup is higher in slower 
platforms

DynPolAC is a suitable 
scheme for low-capacity 
devices



RQ2. System Stability Condition
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Parameter Unit value
Arrival rate (λ) 1/s 1 - 8

Size of query Bytes 200 – 5K

Size of policy No. of rules 1 - 2000

Goal: measure system performance 
by calculating the response time

The end-to-end time of a drone to initiate the request until 
the reply is received. 



RQ2. System Stability Condition
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Parameter Unit value
Mean Arrival rate (λ) 1/s 4

Size of query Bytes 200 – 5K

Size of policy No. of rules 1 - 2000

simulation response time (ms) Response rate (µ)
No-policy 178 5.6

DynPolAC 245 4.1

XACML 840 1.2

DynPolAC satisfies the stability 
condition being right above the 

threshold of 4.



RQ2. Stability Condition
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simulation response time (ms) Response rate (µ)
No-policy 178 5.6
DynPolAC 245 4.1
XACML 840 1.2

XACML-based policy systems 
experience instability, so it cannot 

keep up requests!!

DynPolAC improves the overall 
response time by 70%.



RQ2. Sensitivity Study 
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DynPolAC

XACML-based
Extreme case

Arrival Rate: 8/s

Data size: 2kB

Sweep the number of rules



RQ3. Memory Overhead
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DynPolAC
incurs only 7.5% memory overhead 
compared to the rest of our system¥

Can be deployed to memory constrained nodes

¥ Karimibiuki, Mehdi, and André Ivanov. "MiniCloud: a mini storage and query service for local 
heterogeneous IoT devices." Proceedings of the 8th International Conference on the Internet of 
Things. ACM, 2018.



Summary
• Looked at a scenario of dynamic IoT system

• DynPolAC is the solution to securely authenticate dynamic objects

• Insight: DynPolAC has a crisp language selection
• high-level language to express very low-level parameters.
• expresses similar rules compared to previous work.
• Suitable for constrained IoT nodes with only 7.5% overhead.
• Up to 7.28x speedup achieved, 4x on average.

• DynPolAC guarantees system stability.
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Mehdi Karimi; Email: mkarimib@ece.ubc.ca
Download DynPolAC: https://github.com/DependableSystemsLab/DynPolAC
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