
DynPolAC: Dynamic Policy-based 
Access Control for IoT Systems
Mehdi Karimibiuki, Ekta Aggarwal, Karthik Pattabiraman and Andre Ivanov

December 6, 2018

The 23rd IEEE Pacific Rim International Symposium on Dependable Computing

Taipei, Taiwan 

1



Motiation: IoT Space

2

200 billion IoT
devices

• The number of IoT systems are growing
• About 26 devices per person



Motivation: mobile IoT by 2020

3

10 million connected vehicles

1 in 4 cars are autonomous by 2030

7 million unmanned aircraft systems (UAS)



Autonomous IoT: Drones

4

UTM

(2) with linear growth of IoT nodes, 
communication between them grow 
quadratically !(!#$)&

(1) Moving objects have higher 
levels of interaction than stationary 
networks

…



Problem: Malicious Attacks

5

UTM

…

Eve

eavesdropping

spy and snoop

Our Goal: Develop an 
authorization scheme for 

highly interactive IoT systems



Challenges

6

Dynamic IoT nodes are constrained systems
ØWeight limitation
ØPower consumption

Communication in congested networks could 
build up quadratically à so does authorization

High interaction means fast 
authorization required



Previous Work

7

Response Rate

Ex
pr

es
siv

en
es

s XACML Policy-based

Classical Models
RBAC, CBAC, TBAC

[Sandhu, Rigazzi, Mahalle]

[Kim, Fysarakis, Seitz, Turkmen]

Used in cloud or big data context 
Speed does not matter; not doing 
the parsing often.

Ad-hoc models mainly 
depends on the platform; 
not standalone



Our Goal

8

Response Time

Ex
pr

es
siv

en
es

s XACML Policy-based

Our Goal
Classical Models

RBAC, CBAC, TBAC

DynPolAC

No authorization scheme exists 
that can support data access in 
both fast and expressive way. 

[Sandhu, Rigazzi, Mahalle]

[Kim, Fysarakis, Seitz, Turkmen]

Expressive for IoT envrionments

4 x faster



Outline

•Motivation
•Approach
•evaluation

9



DynPolAC: Key Insight

10

We describe rules in high level language

Ø Reduce syntax size

Ø Save the parsing time

Use only the necessary expressions 

required in IoT space

remove unnecessary nested 

elements and make simple syntax

Ⱶ Will show even in small embedded 

platforms DynPolAC is fast and meets 

the overall speedup in the system 

performance.



DynPolAC: No-fly Zone

1. Access type: Permit
2. Data type: coordinates
3. Drone name: Friendly
4. Time: ALL
5. User: UTM
6. Group: Airport 

11

Ø Spatial, temporal, and role-based expressions can be built with 6-element policy blocks

Ø Radar sees an unknown asset

Ø UTM starts communicating 
with the drone to re-route

We can construct rules with 6 primitives only



DynPolAC: Comparison

12Reference: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

1. <policy>
2. <rule>access</rule>
3. <attributes>
4. <type>email</type>
5. <vendor>MediCorp</vendor>
6. <time>ANY</time>
7. <user>ANY</user>
8. <group>med.example.com</group>
9. </attributes>
10. </policy>

10 vs. 39removed unnecessary nested 
elements, still 6 primitives, 

made simple syntax

DynPolAC

Let’s see how rules look in previous model?

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf


Outline

•Motivation
•Approach
•evaluation

13



Research Questions

• RQ1. At micro-level, what is the processing time improvement?
• RQ2. At system-level, what is the response time?

ØCheck stability condition
o Can it meet requests in interactive environments?

ØSensitivity analysis
o what is the bottleneck in extreme scenarios?

• RQ3. What is the memory overhead?

14



Experimental Setup

15

Instrument DynPolAC in 
3 different embedded 

platforms

Raspberry Pi Zero (Pi0)

Raspberry Pi Three (Pi3)

Platform

Sp
ee

d 
(M

H
z) 1200

1000

720
Beagle Bone Black (BBB)

Goal: show the homogeneity of our results in different platforms



Experimental Setup

16

Objects Population

Policy 
check

IoT Node 
DatabasePolicy 

check

Node 
Database

System Study: Emulate an interactive IoT environment

Response Time

Discrete event simulator



RQ1. Processing Time

17

Rules by DynPolAC syntax are parsed 
and processed in milliseconds

Less than half seconds



RQ1. Comparison

18

üOn Average 4x process improvements
üup to 7.27x speedup

Speedup is higher in slower 
platforms

DynPolAC is a suitable 
scheme for low-capacity 
devices



RQ2. System Stability Condition

19

Parameter Unit value
Arrival rate (λ) 1/s 1 - 8

Size of query Bytes 200 – 5K

Size of policy No. of rules 1 - 2000

Goal: measure system performance 
by calculating the response time

The end-to-end time of a drone to initiate the request until 
the reply is received. 



RQ2. System Stability Condition

20

Parameter Unit value
Mean Arrival rate (λ) 1/s 4

Size of query Bytes 200 – 5K

Size of policy No. of rules 1 - 2000

simulation response time (ms) Response rate (µ)
No-policy 178 5.6

DynPolAC 245 4.1

XACML 840 1.2

DynPolAC satisfies the stability 
condition being right above the 

threshold of 4.



RQ2. Stability Condition

21

simulation response time (ms) Response rate (µ)
No-policy 178 5.6
DynPolAC 245 4.1
XACML 840 1.2

XACML-based policy systems 
experience instability, so it cannot 

keep up requests!!

DynPolAC improves the overall 
response time by 70%.



RQ2. Sensitivity Study 

22

0
200
400
600
800

1000
1200
1400
1600
1800

100 200 300 400 500 600 700 800 900 1000
Ti

m
e 

(m
s)

Number of Rules 

DynPolAC

XACML-based
Extreme case

Arrival Rate: 8/s

Data size: 2kB

Sweep the number of rules



RQ3. Memory Overhead

23

DynPolAC
incurs only 7.5% memory overhead 
compared to the rest of our system¥

Can be deployed to memory constrained nodes

¥ Karimibiuki, Mehdi, and André Ivanov. "MiniCloud: a mini storage and query service for local 
heterogeneous IoT devices." Proceedings of the 8th International Conference on the Internet of 
Things. ACM, 2018.



Summary
• Looked at a scenario of dynamic IoT system

• DynPolAC is the solution to securely authenticate dynamic objects

• Insight: DynPolAC has a crisp language selection
• high-level language to express very low-level parameters.
• expresses similar rules compared to previous work.
• Suitable for constrained IoT nodes with only 7.5% overhead.
• Up to 7.28x speedup achieved, 4x on average.

• DynPolAC guarantees system stability.

24

Mehdi Karimi; Email: mkarimib@ece.ubc.ca
Download DynPolAC: https://github.com/DependableSystemsLab/DynPolAC

mailto:mkarimib@ece.ubc.ca
https://github.com/DependableSystemsLab/DynPolAC

