Failure Prediction in the Internet of Things due to Memory
Exhaustion

Mohammad Rafiuzzaman, Julien Gascon-Samson, Karthik Pattabiraman, Sathish Gopalakrishnan
Electrical and Computer Engineering, The University of British Columbia (UBC)
{rafiuzzaman,julien.gascon-samson,karthikp,sathish}@ece.ubc.ca

ABSTRACT

We present a technique to predict failures resulting from memory
exhaustion in devices built for the modern Internet of Things (IoT).
These devices can run general-purpose applications on the net-
work edge for local data processing to reduce latency, bandwidth
and infrastructure costs, and to address data safety and privacy
concerns. Applications are, however, not optimized for all devices
and could result in sudden and unexpected memory exhaustion
failures because of limited available memory on those IoT devices.
Proactive prediction of such failures, with sufficient lead time, al-
lows for adaptation of the application or its safe termination. Our
memory failure prediction technique for applications running on
IoT devices uses k-Nearest-Neighbor (kNN) based machine learning
models. We have evaluated our technique using two third-party
applications and a real-world IoT simulation application on two
different IoT platforms and on an Amazon EC2 t2.micro instance
for both single and multitenancy use cases. Our results indicate that
our technique significantly outperforms simpler threshold-based
techniques: in our test applications, with 180 seconds of lead time,
failures were accurately predicted with 88% recall at 74% precision
for a single application failure and 76% recall at 71% precision for
multitenancy failure.

CCS CONCEPTS

« Computer systems organization — Embedded systems;

KEYWORDS
IoT, failure prediction, memory exhaustion.

ACM Reference Format:

Mohammad Rafiuzzaman, Julien Gascon-Samson, Karthik Pattabiraman,
Sathish Gopalakrishnan. 2019. Failure Prediction in the Internet of Things
due to Memory Exhaustion. In The 34th ACM/SIGAPP Symposium on Applied
Computing (SAC ’19), April 8-12, 2019, Limassol, Cyprus. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3297280.3297311

1 INTRODUCTION

This work is motivated by the need for tasks to execute on a variety
of devices that comprise the modern Internet of Things (IoT) (e.g.,
Raspberry Pi, BeagleBone, mangOH, Banana Pi), and where many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC 19, April 8-12, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04...$15.00
https://doi.org/10.1145/3297280.3297311

A. Orig. Color Image

B. Grayscale Image C. Histogram Equalized
| | ¢ & —;

D. Binarized
T

T Mix

o

1. Affects of Image Quality Reduction

1000

Image Size, Detected Comers#
o
8

= Orig.Image_Size(KB) ® Corners_Detected
1/2_lmage_Size(KB) ® Corners_Detected
= 1/4_Image_Size(KB) = Corners_Detected

Figure 1: An automatic License Plate Detection (LPD) appli-
cation. Subplots (A) to (G) shows the image filtering and pro-
cessing steps to identify the region corresponding to a li-
cense plate (H). Subplot (I) shows a decrease in the number
of detected corners in (F) if we downsize the image.

of the devices are moderately resource-constrained and adding
resource virtualization would hinder their performance.

Context. The Internet of Things comprises a massive collection
of interconnected devices that produce and consume data [19]. In
typical cloud-based models, IoT devices send the data that they
produce to the cloud, where processing takes place. As the amount
of data produced by IoT devices is ever increasing, a purely cloud-
centric model will not scale in the future [36]. Moreover, latency-
sensitive IoT applications such as augmented reality [22] will benefit
from running computations closer to the edge [7]; i.e., on or close
to the devices that produce and consume the data. As modern IoT
devices are becoming more powerful and affordable, they can run
general-purpose Operating Systems (OS) such as embedded Linux
[1], thereby opening the door to designing and executing complex
processing applications written in high-level, abstract languages
on these devices. The problem we address in this paper arises from
running compute tasks on heterogeneous devices, with limited prior
characterization of how a task may behave on a specific platform.

Motivation. Given the hardware and software heterogeneity of
the IoT landscape, running high-level applications at edge nodes
is challenging. IoT devices can exhibit more stringent and variable
resource constraints compared to cloud environments which are
more homogeneous. This can lead to sudden resource exhaustion
where memory becomes a primary resource bottleneck [30]. Based
on our own observations, memory exhaustion in IoT leads to (a) un-
desirable application response time, (b) sudden application failure,

SAC 19, April 8-12, 2019, Limassol, Cyprus

A. Safe exec. on a computer B. Crash exec. on a Pi 3B C. Safe exec. on a Pi 3B
= 3000 ~ 800 800
8 Ne————— g 8 L O VY RO IR
g g @ i
z z A Il & -
g 1000 g 2 L M“'%LH\ J|| & 200
3 & 0 - =
= 50 1000 1500 2000 2500 |f = 250 500 750 1000 1250 1500 2000 4000 6000 8000
Time (Second) Time (Second) Time (Second)
= BuffCaches = AvailableMem = BuffCaches = AvailableMem = BuffCaches = AvailableMem
D. Crash exec. on a Pi OW E. Multitanancy crash exec. on a Pi 38 F. crash exec. on a computer
5 150 5 0 5 400
s o MWNW H (oY S 00—
2 2 = 2 ~
5 s T My WS ey || 522 —
§ o vl E o ————————— || § — =
= 500 1000 1500 2000 2500 3000 3500 || = A R R | 100 200 300 400 500)
Time (Second) Time (Second) Time (Second)
- BuffCaches = AvailableMem = BuffCaches = AvailableMem ~ BuffCaches = AvailableMem

Figure 2: Memory graph of systems (Table 1) running a
License Plate Detection task under various circumstances.
Here, BuffCaches indicates the reserved system memory
and AvailableMem indicates the available system memory

and even (c) sudden OS failure leading to an unresponsive system.
We collectively refer to these as failures.

As a motivational use case, we study an initial component of
an automatic license plate recognition application developed with
standard libraries [32] (more details in Section 2.1.1). We ran the
resource-intensive License Plate Detection (LPD) task, which identi-
fies the positions of license plates on cars, as shown in Figure 1. The
task was executed on two different IoT platforms (i.e., Raspberry Pi
3B and 0W), and on a typical desktop machine that is representative
of a node in a data center (Table 1). On the desktop computer, we
were able to run the task safely with its default configuration (Fig-
ure 2(A)). However, when we ran the same task at the edge (i.e., on
our IoT devices), we observe different behaviours. With the default
configuration, the task exhibited an eventual system crash due to
memory outage on the Pi 3B (Figure 2(B)). However, downsizing
the frames to half of their original sizes resulted in a safe execution
on that same device (Figure 2(C)), but not on the lower-powered Pi
OW (Figure 2(D)). By downsizing the frames even further, the task
could eventually run safely on a Pi OW, at the expense of a decrease
in accuracy (i.e., reduced image corner detections as in Figure 1(I)).

The situation becomes more complex in the presence of multite-
nancy [2]. Hardware advances in modern IoT devices allow them to
execute multiple applications simultaneously to get the advantages
of multitasking. However, when we placed the LPD task on a de-
vice which is already executing another processing task (e.g., video
surveillance task, described in Section 2.1.2), both applications even-
tually crashed (Figure 2(E)), despite being optimized individually.
For most of these crashes (both for single and multitenancy), our
IoT devices ran out of physical memory and started to consume the
remaining pages from their reserved memory, which led to com-
plete system failures as the devices were not able anymore to run
their OS critical functions stored in their reserved memories [14].
Note that while our desktop computer test bed was much more
powerful (Figure 2(A)), we were able to reach a similar crash out-
come by inducing artificial processing delays, which led to buffers
filling up and consuming large amounts of memory (Figure 2(F)).
In that case, however, the OS preemptively killed the task when its
virtual memory limit became exceeded, which is not the case for
IoT devices due to their limited available memory (Figure 2 (B,D)).

This motivational example (Figure 2) shows that the limited
physical memory of IoT devices increases the likelihood of failures

M. Rafiuzzaman, J. Gascon-Samson, K. Pattabiraman and S. Gopalakrishnan

due to memory exhaustion, which is difficult to detect and differen-
tiate from normal operation and becomes more complicated in the
presence of multitenancy [2]. Unlike general purpose computers
that have early warning signs (Figure 2(F)) of possible memory
exhaustion [6, 9, 10, 28], resource-constrained IoT devices do not
reveal such explicit warning signs (Figure 2(B,D,E)), making the
memory exhaustion prediction problem challenging.

Table 1: Configurations of devices used in the experiments

Memory |Swap Space|Processor
Piow 512MB |100MB quad-core 1.2 Ghz ARM7
Pi 3B 1GB 100MB single-core 1 Ghz ARM6
EC2t2 1GB N/A single-core virtual CPU
Computer |4GB 2GB quad-core 2.4 GHz intel

Memory exhaustion failures can have disastrous consequences,
especially for mission-critical applications or for devices being
deployed in remote, human inaccessible locations [35]. Proactive
actions like periodic checkpointing, task rescheduling, migrating
or self-adaptation techniques, can be used to avoid failures. Such
avoidance techniques require enough lead time and resources to
initiate and complete before the failure actually occurs [15, 34].
Moreover, arbitrary and redundant deployment of such actions
(without a significant risk of failure) will result in additional over-
head on already resource-limited IoT devices. While there has been
some prior work in predicting failures due to memory exhaustion
in the cloud or in traditional cluster systems [5, 6, 10, 18], they are
either device-specific [10], which is impractical given the hetero-
geneity of the IoT landscape (e.g., a solution that works for Pi 3B
will not work for Pi OW, as shown in Figure 2 (B-D)), or they only
focus on application-level failures (in which the OS does not fail)
[5]. In this paper, we tackle the challenge of predicting application
and OS memory exhaustion failures for edge applications running
on modern IoT devices so that enough lead time is received for
mitigation techniques to be applied (e.g., migrating to the cloud).

Contributions. To the best of our knowledge, we are the first to
develop a technique to predict failures due to memory exhaustion in
resource-constrained IoT. We make the following contributions:

(1) Define a systematic approach to identify appropriate system
resource parameters indicating the likelihood of memory
exhaustion failures in IoT devices (Section 2).

(2) Develop a novel technique called MARK (Monitor and Analyze
Resource Keys) to extract, analyze and process such param-
eters (Section 3).

(3) Introduce simple k-Nearest-Neighbors (k-NN) [29] based
classification models to predict memory exhaustion failures
in cross-platform heterogeneous modern IoT devices that
can predict failures with acceptable recall (Section 4).

(4) Evaluate our models under varying load conditions on two
IoT devices and on an Amazon EC2 t2.micro instance, with
three real-world case studies for both single and multite-
nancy [2] use cases. For the single use case, considering the
video-surveillance application [15], we find that our predic-
tion model can predict failures with a 180 seconds of advance
warning time having a 88% recall (i.e., the ability to identify

Failure Prediction in the Internet of Things due to Memory Exhaustion

A. - Process_RSS - Available Mem B,'\ 800000
- BuffCaches = Free_Swap g 600000
500 —_— — |
5 a0 Safe Crash E 400000 Safe Crash
5 aw o
b i m! 2
o 20 m § 200000
E 100 —— | 3
g 0 LI I B 3 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
Time Time

Figure 3: Memory and response time graph of our SensorSim
application running on a Pi OW under memory congestions.

all relevant crash failures) at a 74% precision (i.e., the ability
to return only relevant crash failures). For the multitenancy
use case (two concurrent applications), the model can predict
failures with 76% recall at a 71% precision (Section 4).

Implications. To avoid the consequences of imminent failures,
different mitigation or self-adaptation techniques require different
amount of time to perform. For instance, Gascon-Samson et. al’s
ThingsMigrate [15] takes only about 5 seconds to migrate one of
our benchmark applications (Surveillance — Section 2.1.2) from a Pi
OW to a Pi 3B while preserving all of its states. In such cases, 180
seconds lead time provided by our prediction technique is more
than enough to perform the mitigation technique in the form of
migration. However, other mitigation or adaptation techniques
might require more lead time, and so we have demonstrated our
technique’s performance on different forewarning times ranging
from 5 to 900 seconds (Section 4).

2 INITIAL STUDY

We used three benchmark applications for our model tests and
conducted preliminary experiments on one of them to identify
resource parameters that can be used to predict memory exhaustion.
We first describe the benchmarks used, and then the experiments.

2.1 Benchmarks

To evaluate our models, we used three benchmark applications that
are written in high-level programming languages (JavaScript and
Python). They are:

2.1.1 Automatic License Plate Detection (LPD) (Python-skimage).
This is an image pre-processing application that identifies license
plate positions on cars locally from the smart traffic posts (i.e.,
network edge) by using video cameras attached to them (Figure 1).
The different processing steps in Figure 1 are both CPU and memory
intensive. The pre-processed images generated as output can then
be used to automatically recognize license plates of suspicious
vehicles, by using different character segmentation and recognition
techniques, which can also be run at the network edge — these are
not considered in this paper.

2.1.2 Video Surveillance (node.js). This is a third-party application
derived from Gascon-Samson et. al. [15] (hitherto called Surveil-
lance), which can be used to analyze and process camera videos at
the network edge. This application has two components, (1) the
video-streamer, which streams video frames through a pub/sub
(i.e., publish-subscribe) broker, and (2) the motion-detector, which

SAC 19, April 8-12, 2019, Limassol, Cyprus

FreeSwap

AvailableMem 19%

4%

CPU_sy
17%
CPU
26%

CPU_cur
4%

BuffCaches
39%

RSS
12%

Figure 4: Spearman’s Rank-Order Correlation between the
benchmark application’s response time and system resource
parameters during memory exhaustion in IoT devices.

receives the frames and runs a motion-detection algorithm. Both
of these components consume memory to stream and process re-
spective video frames.

While both of these applications (i.e., LPD and Surveillance) are
realistic, they do not offer us a fine-grained control over their mem-
ory and computational overheads, which is essential for studying
the corner cases of our prediction technique. Therefore, we develo-
ped a custom application for sensor data processing in which we
can tune the memory overhead at will.

2.1.3 Sensor Data Processing (node.js). Our sensor data processing
application (hitherto called SensorSim) is a simulation of a sensor
data processing server, which upon receiving data from its sensors,
stores them into the device memory to do some fixed CPU and mem-
ory intensive computations. SensorSim was run as a foreground
process concurrently with our memory stressor as a background
process in the system. The job of the memory stressor is to gradu-
ally consume system memory so that we can observe the behaviour
of our SensorSim application under varying and stringent memory
conditions. We can tune the workload and monitor internal metrics
(such as execution time and resource usage) of SensorSim under
various workloads to discover corner cases of a system.

2.2 Experiments on memory exhaustion

To study memory exhaustion, we experimentally vary the memory
consumption of the SensorSim application running on a Raspberry
Pi OW (Figure 3) - this is the more memory constrained of the two
IoT platforms and hence we use it to explore memory exhaustion
failures. However, similar results were obtained on the Raspberry
Pi 3B platform as well. As can be seen, when memory is exhausted,
the response time of the application shows an unusual super-linear
increase. The principal reason for this increase is swap-based thrash-
ing, and the kswapd system process [14] (which itself uses up to
85-90% of the CPU on both Pi 3B and 0W) that is in charge of finding
free pages when memory appears scarce.

To discover the resource parameters causing this response time
increase, we calculated the Spearman’s Rank-Order Correlation [29]
between relevant resource metrics and application execution time
during memory exhaustion for both Pi 3B and OW. We use the Spear-
man’s coefficient rather than the Pearson correlation coefficient

SAC 19, April 8-12, 2019, Limassol, Cyprus

because the relationship between the metrics and the execution
time may be non-linear!.

We observe (Figure 4) that the BuffCache (i.e., reserved sys-
tem memory), free swap space and the CPU_sy (i.e., system CPU
usage) parameters have the strongest correlation to the applica-
tion response time during memory exhaustion on our resource-
constrained Raspberry Pi IoT devices. On the other hand, the pa-
rameters used in cloud systems, such as available system memory
([6, 9, 28]) or the RSS memory ([10]), have minimal correlation
with the execution time, and, consequently, are not strong memory
exhaustion failure indicators for IoT devices.

We use two of the three parameters which have the highest cor-
relation with memory exhaustion failures, namely (1) BuffCache,
which represents the reserved system memory, and (2) CPU_sy,
which represents the system process CPU usage. Free swap space,
although it has a strong correlation with the execution time in-
crease, is not a good indicator of failures as it provides very little
lead time before the failure. Therefore, we do not use this parameter.

3 PROPOSED APPROACH

We develop a technique to predict memory exhaustion failures that
can be used on resource-constrained IoT devices. The information
generated by our technique can be used by both (1) system main-
tainers, who want to maintain systems safely by taking proactive
actions adaptively, with advance failure warnings, and (2) system
developers, who want to keep track of which tasks are more likely
to generate failures (so that they can be optimized later).

Our prediction models (4.2.4) take as input the current system
state, corresponding to the parameters described in Section 2, as
well as a given history window of the past system resource usage.
The goal is to predict, given these parameters, the likelihood of
future system states (i.e., safe or fail). As per our observations, due
to the repetitive nature of typical IoT applications, the historical
behavior of the system state can be used to predict future states. To
that end, we built a technique MARK, that automatically extracts,
analyzes, and processes relevant system resource parameters.

3.1 MARK overview

Building a model for predicting resource usage in complex resource-
constrained heterogeneous IoT systems running high-level OSes
(e.g., Linux) with dynamic resource allocation is challenging [9].
In addition, the fact that we run rich, high-level applications that
may exhibit different behaviors on different device profiles (i.e.,
Raspberry Pi 3B vs Pi 0W), further complicates the analysis and
construction of an accurate model. Moreover, due to the frequent
and sometimes drastic changes in available resources on IoT devices,
the model needs to be dynamic and reactive.

Given these considerations, we developed MARK (Monitor and
Analyze Resource Keys), a technique which extracts and analyses
the resource usage of IoT systems running complex programs in
resource-constrained environments (Figure 5). Overall, the main
contribution of MARK is to extract, isolate and combine a wide
range of system resource parameters, to provide a more fine-grained
system resource usage data for prediction purposes.

1Unlike Pearson’s coefficient, Spearman’s rank correlation coefficient does not assume
linearity of the metrics.

M. Rafiuzzaman, J. Gascon-Samson, K. Pattabiraman and S. Gopalakrishnan

MARK additional blocks

Gradient

calculation k-NN based

prediction model
Process standardization
Data
smoothing

1
1
1
1
I Enriching Data
1
1
1
1
1

MARK data

Future
A. | Prediction

Data collection from
heterogeneous IoT devices

Figure 5: MARK workflow

3.2 Framework architecture

System statistics collected by MARK are used to train and test our
prediction models (4.2.4). To do so, we take into consideration the
following questions:

(1) Given that mitigation techniques might be used upon an
imminent failure being detected, how much advance warning
time, or Look Ahead Window (LAW), is needed?

(2) How long does MARK need to observe the system for the
prediction model to predict an accurate enough future state?

(3) What phase of the system will be suitable for the prediction
model to predict possible future system states?

(4) What is the computational overhead incurred by our pre-
diction model and is that overhead suitable for the system
running the model?

The prediction model (Figure 5(C)) predicts possible future states
of a system from a suitable location (adjusted according to the
computational overhead), and based on the information received
from MARK. In general, MARK feeds system statistics with respect
to time (Figure 5(A)) to the prediction model since the start of the
system, or the launch of a particular application. The base model
then predicts future system states; i.e., safe or failed (Figure 5(D)),
based on demand. Upon receiving the prediction results of the
future system state, if a potential failure is forecasted, a decision
is made on whether to initiate recovery or take mitigation actions,
(recovery and mitigation techniques are outside this paper’s scope).

3.3 Prediction model strategy

As input features to our memory failure prediction model, we con-
sider a set of system resource parameters (from Section 2) at dif-
ferent timestamps that can be denoted as R; ¢, i.e., the value of
R; = {r1,r2,13,. ..} measured at time ¢. For simplicity, we assume
the set of time points to be T = {#1, t2, f3, ... } with a 1 second time
interval. However, this interval can be changed based on system
needs as T is a tunable parameter to be adjusted for MARK. But
before sending our data to our prediction model, we preprocess
them with an Enriching Process (Figure 5(B)).

3.3.1 Enriching process. The main purpose of the Enriching Pro-
cess is to add additional and derived variables to the raw system
observations. It performs the following three functions:

Failure Prediction in the Internet of Things due to Memory Exhaustion

Gradient calculation. A challenge in IoT systems is that their
values of r € R vary more over time compared to commodity
computers as seen in Figure 2. The limited hardware resources of
these IoT devices leads to an increase of this variation. Therefore,
a simple approximation of R by averaging r € R over t € T is not
sufficient to make an accurate prediction. Hence, it is important to
measure the changes of R over T in both directions to capture its
variation - we have used gradient Grad(R) to do so.

Data standardization. Resource parameters such as BuffCache
(which are calculated in megabytes), can overwhelm the influence
of other parameters measured on a smaller or different scale, such
as CPU_sy, which is calculated in percentage. We have used data
standardization techniques so that we can import data produced
in different units and from different devices into a common format
for the memory-failure prediction model.

Data smoothing. Due to the limited available resources, noise
in the resource usage on IoT devices is very common. To mask the
effect of sudden variations, we used the Hamming window [27]
method to smooth out noisy features. Depending on the degree of
the noise, the size or length of the smoothing window was adjusted.

3.3.2 k-NN based prediction model. We use the enriched feature
set to train our prediction model using the k-NN algorithm [21]. We
opted for k-NN due to its simplicity, robustness to noisy training
data and effectiveness for large training samples. The limited mem-
ory space in IoT devices generates significant noise in MARK data,
which k-NN can handle robustly. Moreover, users can train k-NN
based learning models for new applications quickly in comparison
with other algorithms (e.g., Support Vector Machine [37]).

The first step includes hyper-parameter tuning using 10-fold
cross-validation where we select the value for k (number of neigh-
bors near a given point), which corresponds to the lowest model
training error rate. Then, we train our model with training data
collected from numerous execution traces of different workloads
from different IoT devices. As this is a supervised learning problem,
we have manually classified the training data with target values to
represent binary system state using domain knowledge.

Our goal is to learn a function f : R — S, so that given a set
of resource measurements R, f(R) can predict the corresponding
system state S = {safe, fail}. However, this model would yield a
prediction of the current system state, as can be expected from a
typical k-NN based model. Given that our goal is to predict the
future system state, we have trained our prediction model with
future target values instead.

The formal representation of our model is given in equation 1. In
this equation, A represents a set of k points in the training data that
are closest to the current system resource measurement r. I(arg.)
is an indicator function which evaluates to 1 when its argument
is true and 0 otherwise. Y is the target value and s € S represents
possible system states. In this equation, for a system resource R
measured at time ¢, its corresponding target label Y is set to be at
a future timestamp t + LAW. This helps us to train and test our
model to perform future system state classifications.

1
P(YirLAW = StrLAaw) = P Z I(Yi prLaw = serraw) (1)
icA,

SAC 19, April 8-12, 2019, Limassol, Cyprus

4 EXPERIMENTAL RESULTS

We first present the metrics for evaluating MARK, followed by the
experimental setup. We then present results of the evaluation, and
compare it with other approaches. Finally, we present an optimiza-
tion of MARK for even more resource-constrained IoT devices.

4.1 Model evaluation metrics

By considering the crash states as "positive class", MARK classifies
the future states of a system as either safe (i.e., no imminent mem-
ory exhaustion failure), or crash (i.e., potential upcoming failure
in the system). To evaluate the prediction models of MARK and
demonstrate its performance, we have considered three classifica-
tion metrics: (1) recall (2) precision and (3) F1-Score (i.e., a combined
metric that indicates a balance between the recall and precision
metrics through computation of their harmonic mean [26]). High
recall means our model can predict more failures (opposite for low
recall); high precision means our model can predict failures with
minimal false positives (opposite for low precision); and high F1-
Score means in the prediction, both the precision and recall are high
(whereas for the low Fi1-Score, either the precision or recall or both
of them are low). All the results presented in this paper are for the
precision, recall and F-1 Scores related to the crash state only, as
our goal is to demonstrate the capability of MARK in identifying
possible future failures. In case of a safe program execution, both
the precision and recall values of crash states would be almost zero.

Prior work has used accuracy to evaluate their models [5], [6],
[28]. However, for an imbalanced classification problem such as ours
where one category (i.e., safe states) represent the overwhelming
majority of the data points, accuracy is not an adequate metric for
assessing model performance. In this work, we give higher priority
to recall than precision so that our model can detect as many crash
states (i.e., failures) as possible regardless of some false alarms. This
is reflected in our initial experimental results — recall values were
usually higher than precision values. However, our model can also
predict possible future states with high F1-Score (i.e., high precision
and recall) through an optimization discussed in Section 4.6.

4.2 Experimental setup

4.2.1 Test application 1 - Surveillance. To initially evaluate pre-
diction models of MARK over a third-party IoT application, we
used the Surveillance application [15] described in Section 2. More
specifically, we used the motion-detector component of that ap-
plication, and ran it on a Raspberry Pi OW device. As explained
previously, the motion-detector receives video frames (i.e., from
the video-streamer component — not evaluated in this experi-
ment), stores them in memory and performs motion-detection on
them. In this example, we vary the video resolution, which has an
effect on the memory usage of the motion-detector. We initially
start the experiment with video frames having 420x220 resolution,
which runs safely on the Pi 0. Then, as we increase the resolution
(i.e., to 440x340), memory exhaustion eventually occurs and the
application crashes.

4.2.2 Test application 2 - LPD. Besides the Surveillance application,
we have tested models of MARK with the LPD application [32] on
a Pi 3B. The application consumes memory to store its unprocessed

SAC 19, April 8-12, 2019, Limassol, Cyprus

M. Rafiuzzaman, J. Gascon-Samson, K. Pattabiraman and S. Gopalakrishnan

Table 2: List of Configurations for Training and Testing

Sets S1 S3
Models R_10 E 10 E 60 E_300 EE 10 EE_60
Train LAWs 10 Seconds | 10 Seconds 60 Seconds 300 Seconds | 10 Seconds 60 Seconds
Train Applications | SensorSim SensorSim + Surveillance SensorSim + Surveillance + LPD
Test Applications Motion- Motion-Detector + | Motion-Detector ~ + | Motion- LPD

Detector SensorSim + LPD LPD + Multitenancy Detector
Test Platform Pi oW PiOW +Pi3B + EC2 Pi oW Pi 3B
Performance com- | E_10 Threshold Tech., | E_300 E 60 E 10 E_60
pared with Compute Overhead

frames, which grows as the processing delay increases. For our
experiment, we executed this application on a Pi 3B with its default
(unoptimized) configuration, which is computationally more expen-
sive than what the device could handle. Consequently, it eventually
crashed on the Pi 3B — we attempted to predict the crash as shown
in Section 4.3.3. As the LPD application is more resource intensive
than the Surveillance application, it exhausted the memory faster.

4.2.3 Test application 3 — SensorSim. As described in section 2.1.3,
our SensorSim application gathers and processes data from simu-
lated sensors. As the number of sensors increases, SensorSim can
end up consuming all the available limited memory of an IoT device,
resulting in a memory exhaustion. We simulated this scenario on
an Amazon EC2 t2.micro instance (Table 1), and we attempted to
predict the memory exhaustion using one of the models of MARK
as shown in Section 4.3.4.

4.2.4 Testbed. To demonstrate the applicability of MARK and to
evaluate its performance on different use-cases, we trained three
sets of its models (Table 2). The first set S; = {R_10} was trained
with datasets containing highly randomized workloads. To high-
light the overall performance improvement of our prediction tech-
nique, the second set S, = {E_10,E_60, E_300} was trained by
enhancing the dataset of S; with some case-specific workloads.
We further enhanced this set with some other case-specific work-
loads to train the last set S3 = {EE_10, EE_60}. These models were
trained with short (10 seconds), medium (60 seconds) and long (300
seconds) Training LAWs to showcase their use-cases in different
scenarios (i.e., Testing LAWs, which represents various advance
warning or lead times).

In MARK, different Training LAWs indicate the future time for
which the model is trained to do the prediction. However, in the
evaluation, models of MARK are tested for predicting beyond that
specific point i.e., the Testing LAW. For instance, model E_60 is
trained to predict the state after 60 seconds — however, we use it
to predict the state over a variety of times ranging from 5 to 900
seconds (Testing LAW). These experiments show that our model
can predict the state of the system at any point in time (Testing
LAW); i.e., that we are not limited to the specific time used for training
(Training LAW).

4.25 S1-Training the model with random loads (R_10). In order to
assess the general usability of our prediction technique, we initially
trained one of its models using a large set of randomly generated
successful and unsuccessful execution traces (i.e., by using our

B Recall(R_10) W Recall(E_10) Precision(R_10) W Precision(E_10)

075 075
05 05
025 025
0 0

5 10 20 30 60 180 300 420 600 900 5 10 20 30 60 180 300 420 600 900

B F1-Score(R-10) ® F1-Score(E_10)

Testing LAWs (Seconds) Testing LAWs (Seconds)

Figure 6: Comparing the recall, precision and F1-Scores of
our R_10 and E_10 models predicting advance failures (in
the form of Testing LAWSs) of our Surveillance (motion-
detector) benchmark on a Pi OW.

SensorsSim application), under different workloads and across dif-
ferent models of Raspberry Pi (Table 1). The successful execution
traces were labelled as safe, while the unsuccessful traces were
labelled either safe or crash depending on their point of failure. We
refer to this model as R_10 (R for Random) and we trained it using
a short training LAW. (i.e., 10 second)

4.2.6 Sy-Training the model with case specific loads (E_10, E_60,
E_300). We later enhanced the training dataset of the R_10 model
with additional execution traces of both successful and unsuccess-
ful executions of the Surveillance application [15] (which includes
both of its video-streamer and motion-detector components),
running on a Raspberry Pi 3B under different workloads. With
this enhanced dataset, we trained another three models with three
Training LAWs (i.e., 10, 60, 300 seconds). We call these models E_10,
E_60 and E_300 respectively (Table 2), which include (some) similar
but not identical test data to avoid the risk of overfitting [23].

4.2.7 S3-Enhancing the case specific loads (EE_10, EE_6@). The
last expansion of our training dataset is done by including a few
unsuccessful execution traces of our LPD benchmark on a Pi 3B
(different than the LPD test data in 4.3.3). With short and medium
(i.e. 10 and 60 seconds) Training LAWs, two models were generated
with this training data, which we call EE_10 and EE_60 respectively.

4.3 Performance analysis

4.3.1 Model evaluation with Surveillance benchmark on a Pi 0W
- Comparing R_10 with E_10. We started evaluating our models
by testing them with an unsuccessful (i.e., failing) execution trace

Failure Prediction in the Internet of Things due to Memory Exhaustion

B Precision(E_60) W Recall(E_60) ® F1-Score(E_60) | Precision(E_300) o Recall(E_300) ® F1-Score(£_300)
1 1
075 075
05 05
0.25 025
0 0
5 1020 30 6 180 300 420 600 900 510 20 30 60 180 300 420 600 900

Testing LAWS (Seconds) Testing LAWs (Seconds)

Figure 7: Comparing the recall, precision and F1-Scores of
our E_60 and E_300 models predicting advance failures (in
the form of Testing LAWs) of our Surveillance (motion-
detector) benchmark on a Pi OW.

of the Surveillance benchmark (motion-detector component exe-
cuted on a Raspberry Pi OW). Results are shown in Figure 6. Given
a Training LAW of 10 seconds, we observe that both models predict
a crash (failure) with high recall values for up to 180 seconds of
Testing LAWs. We also observe that, in terms of recall, the E_10
model performs better than the R_10, as it has gained some famil-
iarity with the applications under concern. Nevertheless, the R_10
model predicts failures with 71% recall on average for up to 180
seconds forewarning time which demonstrate general usability of
our prediction model in cases where it is completely unfamiliar
with its test applications. That being said, for our other evaluations,
we focused on the models trained with case specific loads only as
users are expected to train the model on their specific applications.

4.3.2 Model evaluation with Surveillance benchmark on a Pi 0W -
Performance of E_6@ and E_30@ models. Figure 7 shows the perfor-
mance of our models trained with medium and long Training LAWs.
The results show that with long Training LAW (i.e., 300 seconds),
our technique can better predict future states for higher Testing
LAW (900 seconds and, 87% F1-Score) than the model with medium
(i.e., 60 seconds) Training LAW (78% F1-Score). However, with high
Training LAWs, our technique predicts future states that are closer
in time with a lower precision, despite high recalls. This is expected,
as in these cases, the model is trained to predict fail states further
in the future. Given that such failures are more likely to occur in a
more distant future, the model predicts that the system is more likely
to eventually crash (which is an assumption that trivially holds true).
Nevertheless, with a carefully fine-tuned Training LAW parameter
(i.e., 60 seconds), our technique can predict failures well enough
for both farther and closer Testing LAWSs. We stress that developers
and system maintainers can fine tune the Training LAW depending
on the reliability needs of the target system, and the time needed
to apply eventual failure mitigation actions (e.g., migration).

4.3.3 Model evaluation with LPD benchmark on a Pi 3B. For this
evaluation, we initially used our E_10, E_60 models to predict the
onset of failure as shown in Figure 8. With about 95% recall, our E_60
model can detect failures in advance. However, the precision rates
were much lower — given the nature of the system, we consider this
to be acceptable, as we prefer not missing failures, at the expense
of some false alarms being reported.

SAC 19, April 8-12, 2019, Limassol, Cyprus

© Precision(E_10) 4 Recall(E_10) * F1-Score(E_10)

© Precision(EE_10) 4 Recall(EE_10) * F1-Score(EE_10)

1
0.75
05
0.25

0

© Precision(E_60) 4 Recall(E_60) * F1-Score(E_60)
© Precision(EE_10) 4 Recall(EE_10) * F1-Score(EE_10)

5 10 20 30 60 180 300 420 600 900 5 10 20 30 60 180 300 420 600 900

Testing LAWs (Seconds) Testing LAWs (Seconds)

Figure 8: Performance of E_10, E_60 and EE_10, EE_60 mod-
els predicting failures of the LPD benchmark on a Pi 3B.

®m Precision(E_10) = Recall(E_10)

1
0.
0.
0.4
5 10 30 60

180 300 600 200
Testing LAWSs (Seconds)

F1-Score(E_10)

0

o

Figure 9: Performance of our E_10 model predicting mem-
ory failures of the SensorSim benchmark on an Amazon EC2
t2.micro instance.

Nevertheless, we investigated the reason why our model ob-
tained low precision scores in this case, and we found that lim-
itations of the kNN algorithm itself caused the performance to
degrade. As we have mentioned earlier, the LPD benchmark is much
more resource intensive than the Surveillance benchmark. Hence,
during memory exhaustion, the LPD demonstrates a sudden mem-
ory exhaustion, in contrast to the Surveillance which causes a
more gradual memory exhaustion on our IoT device. Note that even
though the memory exhaustion in Surveillance is more gradual than
LPD, it is still more sudden than in cloud or commodity comput-
ers (Table 1). In the present context, the kNN algorithm can easily
detect gradual memory exhaustion patterns with the help of its
observation points near the centroids, but fails to do so in the case
of more sudden memory exhaustions (i.e., LPD). This observation
holds true even in the case of our EE_10 and EE_60 models (Figure
8) which were trained with similar case-specific datasets, but yet
could not improve the precision scores (Sections 4.3.5 and 4.7).

4.3.4 Model evaluation with SensorSim benchmark on an Amazon
EC2 t2.micro instance. In addition to testing against the Surveil-
lance application on a Pi OW and the LPD application on a Pi 3B, we
tested our E_10 model against an unsuccessful (i.e., failed) execution
trace of our SensorSim application on a Amazon EC2 t2.micro
cloud instance (Figure 9). From Figure 9, we can observe that our
E_10 model can achieve a 93% F1-Score even for higher Testing
LAWs. The findings of this experiment are:

e Memory exhaustion failures are not only limited to OSes
like Raspbian [3] used by the Raspberry Pi, but can occur
even on an Amazon EC2.t2 micro instance.

SAC 19, April 8-12, 2019, Limassol, Cyprus

Recall Precision
! - ! Va2
A gl ol o o ~:~ Ve N
PP PGP ; . 075 .‘_‘,_.’
05 05 Fog ==

0.25 025

0 0
5§ 10 20 30 60 180 300 420 600 900 5 10 20 30 60 180 300 420 600 900

Testing LAWSs (Seconds)
Surveliance+LPD ¢ Surveliance+SensorSim
Surveliance+LPD+SensorSim

Testing LAWs (Seconds)
® Surveliance+LPD @ Surveliance+SensorSim
Surveliance+LPD+SensorSim

Figure 10: Performance of our E_60 model predicting vari-
ous multitenancy memory failures of our benchmark appli-
cations on a Pi 3B.

e Despite a flexible? CPU quota, SensorSim also crashed on
EC2 t2.micro cloud instances, due to their limited memory,
which again reinforces the impact of having limited memory.

e Our memory-failure prediction technique is not limited to
different models of Raspberry Pi, but also applies to other
memory-constrained system.

4.3.5 Model evaluation under multitenancy [2]. In prior experi-
ments, we evaluated our memory-failure technique through differ-
ent benchmark applications that were executed independently and
caused memory exhaustion failures on different devices. Most of
these memory exhaustions occurred either for non device-specific
optimized applications (e.g., Sections 2.1.1, 2.1.2), or for scenarios in
which we forced a memory exhaustion to explore different corner
cases of the system (e.g., Section 2.1.3, Figure 2(F)). As we explained,
an alternate mitigation strategy was to degrade the performance of
the edge applications (e.g., reducing the processing frame-rate or
resolution, at the cost of reduced processing accuracy as in Figure
1(I)), which allowed for a safe standalone execution of these pro-
grams (Fig. 2(C)). However, despite being individually optimized,
attempting to run them together (e.g. LPD and Surveillance applica-
tions on a Pi 3B) can lead to memory failures (Figure 2(F)).

In this experiment, we executed various combinations of our
benchmark applications in multitenancy [2], on a Raspberry Pi 3B.
We observed memory exhaustion failures that were not reported
when running these applications independently. With our E_60
model, we attempted to predict the onset of such failures (Figure
10). From our results, we can see that different combination of
applications have different prediction scores while running in mul-
titenancy. Similar to single use cases, gradual memory exhaustion
failures in multitenancy can be better detected, in comparison with
sudden exhaustion failures (as seen from the sudden drop in recall
when predicting failure with a lead time greater than 60 seconds
when executing three benchmarks on a Pi 3B in Figure 10).

4.4 Usability of a threshold-based technique

We compared the performance of our memory-failure prediction
technique with a threshold-based technique that detects failures
by applying different thresholds on available system memory (used
as memory exhaustion indicators in [9], [28], [10], [6]). We used
this model on a Raspberry Pi 0W, and compared it against our E_10
model (Figure 11), using the Surveillance benchmark. As can be

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
burstable- performance-instances.html

M. Rafiuzzaman, J. Gascon-Samson, K. Pattabiraman and S. Gopalakrishnan

B Precision ® Recall = F1-score

arFYTY

OurModel(E_10) ~ 50%MemTH 30%MemTH 20%MemTH 10%MemTH

Figure 11: Comparing the E_10 model performance with a
threshold-based technique to detect memory-failures on a
Pi ow.

seen, the threshold-based technique performs much worse in com-
parison to our model (E_10). In particular, for higher thresholds,
the recall is high but the precision of the threshold technique is
very low implying that many false-positives are incurred; for lower
thresholds, the precision is high, but the recall is almost zero, im-
plying that virtually none of the failures are detected. Further, we
stress that the threshold is different for different devices. Given
the heterogeneity of the IoT landscape, choosing an appropriate
threshold for all devices is a tedious and error-prone process, unlike
our solution which requires minimal manual intervention.

4.5 Computational and Memory Overhead

Once trained, our memory-failure prediction technique is fast enough
to be used on a Raspberry Pi 3B, which we believe is representative
of a modern IoT device, at a reasonable price point (about 35$ USD).
However, it is not necessary for it to be placed on the system itself.
Rather, with MARK, prediction can take place on another device,
as long as the system parameters are fed through the network in
a continuous fashion. However, a memory driven algorithm such
as k-NN [29] that we used consumes memory linearly with the
increase of test data, as shown in Table 3. This memory-overhead is
insignificant for a desktop computer (i.e., Table 1); however, it can
be high for resource-constrained IoT devices. We defer reduction
of the memory overhead to future work.

Table 3: Computational overhead of our E_10 model predict-
ing failures on a Pi 3B with different length of Test data

Test data length|Time Overhead in|Memory Over-
in Seconds Seconds head in MB

100 4.1 92.4

1000 5.1 93

5000 8.7 94.5

10300 13.1 96.9

4.6 Optimization

The computational overheads of MARK can be mitigated with some
device specific optimization techniques. In general MARK builds
the prediction model by using test data collected since the start of
the system or launch of any particular application. Instead, MARK
can be initialized only when the system is assumed to be under
stress, as failures are likely to occur mostly (but not necessarily)

Failure Prediction in the Internet of Things due to Memory Exhaustion

B F1-Score(MARK-Opt.) ® F1-Score(MARK) B Precision(MARK-Opt.) Recall(MARK-Opt.)
1 Precision(MARK) Recall(MARK)

075
.6
05
g 025
0.2 0
5 10 30 60 300

Test LAWs (Seconds)

o o
=

5 10 30 60 300

Test LAWs (Seconds)

Figure 12: Comparing the E_10 model performance with op-
timized and non-optimized MARK on a Pi 3B.

under high load [13, 16, 25]. Our observations revealed that for
most of the time, the system remained unstressed and hence, we
could omit the collection of testing data during these times. Hence,
MARK launched during system stress periods only could reduce the
computational overhead of the model as it needs to predict using
less test data e.g., 100 observations collected during high system
stress, compared to nearly 10000 observations collected from the
beginning of the system (Table 3).

Moreover, as per our domain knowledge, the memory of IoT de-
vices gets stressed when they start consuming pages from their
swap space. This classification draws a clear line between the likeli-
hood of memory exhaustion and normal operation. Therefore, due
to the higher probability of failure, MARK initialized during system
stress provides a better outcome in terms of prediction as shown
in Figure 12. We observe that our E_10 model predicts possible
future failures more accurately (better F1-score) with MARK being
optimized (i.e., launched during system stress). More precisely, for
both cases, the recall values were found to be similar, but the preci-
sion varied — with non optimized MARK, the model tended to have
higher false alarms (i.e., lower precision and F-1 scores).

However, doing device specific optimization for MARK is chal-
lenging as it has to be initiated only when the system is in stress.
Coming up with suitable thresholds to distinguish between high-
stress and normal system states must be done on a per-device basis.
While the precision for optimized MARK is better (i.e., less false
alarms are reported) than normal MARK, recall rates are similar
(i.e., similar rates of failures are detected). Therefore, the tolerance
to false positives should be weighed against the extra complexity
in deploying device specific optimized MARK to determine which
approach should be deployed for a given context. Further, due to
the nature of memory-driven algorithms like k-NN, if we expand
the model’s training data, we would also increase the memory con-
sumption of the MARK. In future work, we will examine other
learning algorithms that could further reduce these overheads, so
that MARK can be directly run on more lower-powered IoT devices.

4.7 Discussion

From the results presented so far, we can see that our technique can
predict memory-related failures for different use cases of edge ap-
plications written in high-level languages (e.g., JavaScript, Python),
with dynamic memory allocation and garbage collection, and ex-
ecuting on different IoT devices. We have identified two leading
causes of memory exhaustion failures: (1) the lack of edge device-
specific optimization, and (2) the limited system memory of edge

SAC 19, April 8-12, 2019, Limassol, Cyprus

devices. However, given the heterogeneous nature of the IoT land-
scape, we believe that deploying device-specific optimizations for
different applications would be tedious and impractical. Also, most
device-specific optimizations do not work in the presence of multi-
tenancy (Fig. 2(F)). Moreover, increasing the memory of IoT devices
is not possible, unlike cloud-based VMs. The technique that we
are proposing can predict memory-based failures caused by both
unoptimized (device-specific) single applications, and optimized ap-
plications running in multitenancy mode. Our technique provides
enough forewarning time as to allow mitigation or self-adaptation
actions to be performed prior to the failure occurring. In the fu-
ture, we envision that our technique could be used to deploy cross-
platform IoT applications written in high-level languages, while
abstracting low-level device considerations.

Given the large and flexible memory space in the cloud or in
normal computer systems, a sudden available memory outage is
highly unlikely. On the contrary, this is not the case for IoT where
quick and sudden memory exhaustions can be observed very often.
However, a limitation of our technique is that it is unable to antici-
pate sudden memory exhaustions in highly intensive applications
(in terms of precision) - this is due to our use of the kNN algorithm
for prediction. Nevertheless, given that our prediction technique
is decoupled from the black-box learning algorithms, the kNN al-
gorithm can be replaced easily with alternate learning algorithms
that perform better - this is a potential direction for future work.

5 RELATED WORK

The idea of predicting failures due to memory exhaustion is not
new. Previous approaches have used different machine learning
and analytic approaches with successful results in cloud and cluster
contexts [6, 10, 24, 28, 31]. However, in contrast with such systems,
IoT devices exhibit more stringent and variable resource constraints.
This in turns increases the likelihood of rapid memory exhaustion
failures, which are challenging to detect, distinguish and predict.

Software aging (i.e., the tendency of a program to fail after run-
ning for a while) due to aging-related bugs [17] has been identified
as the main reason behind memory exhaustion and consequent fail-
ures [20]. Some other papers [5, 6] present solutions specific to the
web for predicting failures caused by dormant faults (Heisenbugs).
Specific to Google’s cluster, Chen et al. [10] presents a Recurrent
Neural Network (RNN)-based model to predict failures. Different
from these studies, our observations revealed that due to their mem-
ory limitations, typical IoT devices were often subject to sudden
memory exhaustion failures, and that these failures were not attrib-
utable to typical causes of failures found in larger-scale cloud and
cluster systems (i.e., software aging and memory leaks). Further, the
wide device heterogeneity of the IoT landscape renders the task of
designing and applying device-specific solutions impractical as in
the above-mentioned papers. This motivates the need for a generic
solution that can adapt to a wide range of devices, environments
and applications with minimal manual intervention.

Memory has been used as a parameter for anomaly detection in
traditional computer systems [8]. However, they used some fixed
thresholds to detect anomaly with the change of memory which
is inapplicable for resource-limited IoT devices (Section 4.4). A
Bayesian Network-based technique is proposed in Cohen et. al.[12]

SAC 19, April 8-12, 2019, Limassol, Cyprus

for analyzing system memory. Nevertheless, it incurs a complexity
of N* (N being the number of devices) [4]. Given that IoT edge-
based systems can comprise many more devices compared to cloud
environments, the technique quickly becomes unscalable. Linear
regression techniques have also been proposed in prior work to
model resource usage behaviour [11, 38] . However, Alonso et al. [5]
found that linear regression fails to predict the behaviour of systems
under anomalies (i.e., a sudden change in workloads), which renders
such techniques less applicable in the IoT space where sudden
workload changes are common. In comparison, we found that a
simple k-NN based classification technique such as ours can predict
failures caused by memory exhaustion in IoT devices, even under
anomalies. We evaluated such a technique on a class of embedded
devices to predict memory-exhaustion failures.

6 CONCLUSION AND FUTURE WORK

We proposed MARK, a memory-failure prediction technique in resource-
constrained, heterogeneous IoT devices. MARK provides a device-
independent solution for transparently monitoring change patterns
in relevant system resources so that potential failures can be pre-
dicted with enough lead time as to apply eventual mitigation actions.
We evaluated MARK on various real-world edge benchmark appli-
cations executed on two different IoT devices and on an Amazon
EC2 t2.micro cloud instance. For both single and multitenancy
use cases, MARK was able to predict failures with high recall, and
acceptable precision values. As future work, we plan to test the
applicability of MARK on a wider range of resource-constrained IoT
systems and applications, and for other kinds of failures.

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), a research gift from
Intel, and the International Doctoral Fellowship from UBC.

REFERENCES

[1] 2018. Embedded Linux. http://elinux.org

[2] 2018. Gartner IT Glossary: Multitenancy. https://www.gartner.com/it-glossary/

multitenancy

[3] 2018. Raspbian. https://www.raspberrypi.org/documentation/raspbian/

] Omid Alipourfard, Honggiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics.. In NSDI, Vol. 2. 4-2.

[5] Javier Alonso, Jordi Torres, and Ricard Gavalda. 2009. Predicting web server
crashes: A case study in comparing prediction algorithms. In Autonomic and
Autonomous Systems, 2009. ICAS’09. Fifth International Conference on. IEEE.

[6] Javier Alonso Lopez, Josep LI, Ricard GavaldA3, and Jordi Torres. 2018. Predicting
web application crashes using machine learning. (04 2018).

[7] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog
computing: A platform for internet of things and analytics. In Big data and
internet of things: A roadmap for smart environments. Springer.

[8] Antonio Bovenzi, Francesco Brancati, Stefano Russo, and Andrea Bondavalli.
2015. An os-level framework for anomaly detection in complex software systems.
IEEE Transactions on Dependable and Secure Computing 12, 3 (2015), 366—372.

[9] Gabriella Carrozza, Domenico Cotroneo, Roberto Natella, Antonio Pecchia, and
Stefano Russo. 2010. Memory leak analysis of mission-critical middleware. Jour-
nal of Systems and Software 83, 9 (2010).

[10] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. 2014. Failure prediction
of jobs in compute clouds: A google cluster case study. In Software Reliability
Engineering Workshops (ISSREW), 2014 IEEE International Symposium on. IEEE.

[11] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia
Smirni. 2008. Anomaly? application change? or workload change? towards auto-
mated detection of application performance anomaly and change. In Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on. IEEE, 452-461.

M. Rafiuzzaman, J. Gascon-Samson, K. Pattabiraman and S. Gopalakrishnan

[12] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons.
2004. Correlating Instrumentation Data to System States: A Building Block for
Automated Diagnosis and Control.. In OSDI, Vol. 4. 16-16.

[13] Domenico Cotroneo, Salvatore Orlando, and Stefano Russo. 2007. Characterizing
aging phenomena of the java virtual machine. In Reliable Distributed Systems,
2007. SRDS 2007. 26th IEEE International Symposium on. IEEE.

[14] P Daniel, Cesati Marco, et al. 2007. Understanding the Linux kernel.

[15] Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin Rezaiean-Asel,
and Karthik Pattabiraman. 2018. ThingsMigrate: Platform-Independent Migration
of Stateful JavaScript IoT Applications. European Conference on Object-Oriented
Programming (ECOOP) (2018).

[16] Michael Grottke, Lei Li, Kalyanaraman Vaidyanathan, and Kishor S Trivedi. 2006.

Analysis of software aging in a web server. IEEE Transactions on reliability (2006).

Michael Grottke and Kishor S Trivedi. 2005. A classification of software faults.

Journal of Reliability Engineering Association of Japan 27, 7 (2005), 425-438.

Michael Grottke and Kishor S Trivedi. 2007. Fighting bugs: Remove, retry, repli-

cate, and rejuvenate. Computer 40, 2 (2007).

[19] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and
future directions. Future generation computer systems 29, 7 (2013), 1645-1660.

[20] Yennun Huang, Chandra Kintala, Nick Kolettis, and N Dudley Fulton. 1995.
Software rejuvenation: Analysis, module and applications. In ftcs. IEEE.

[21] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
introduction to statistical learning. Vol. 112. Springer.

[22] P Lamkin and S Charara. 2017. The best smartglasses 2017: Snap, Vuzix, ODG,

Sony & more.

David J Leinweber. 2007. Stupid data miner tricks: overfitting the S&P 500. Journal

of Investing 16, 1 (2007), 15.

Lei Li, Kalyanaraman Vaidyanathan, and Kishor S Trivedi. 2002. An approach for

estimation of software aging in a web server. In Empirical Software Engineering,

2002. Proceedings. 2002 International Symposium n. IEEE.

Rivalino Matias and JF Paulo Filho. 2006. An experimental study on software

aging and rejuvenation in web servers. In Computer Software and Applications

Conference, 2006. COMPSAC’06. 30th Annual International, Vol. 1. IEEE, 189-196.

[26] IDan Melamed, Ryan Green, and Joseph P Turian. 2003. Precision and recall of
machine translation. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology: companion volume of the Proceedings of HLT-NAACL 2003-short
papers-Volume 2. Association for Computational Linguistics, 61-63.

[27] Lawrence Rabiner, Marvin Sambur, and Carol Schmidt. 1975. Applications of
a nonlinear smoothing algorithm to speech processing. IEEE Transactions on
Acoustics, Speech, and Signal Processing 23, 6 (1975).

[28] Xiaojuan Ren, Seyong Lee, Rudolf Eigenmann, and Saurabh Bagchi. 2006. Re-
source failure prediction in fine-grained cycle sharing system. In International
Conference on High Performance Distributed Computing. 93-104.

[29] Laerd Statistics. 2013. Spearman’s rank-order correlation. Laerd Statistics (2013).

[30] Xian-He Sun and Lionel M Ni. 1993. Scalable problems and memory-bounded
speedup. J. Parallel and Distrib. Comput. 19, 1 (1993), 27-37.

[31] Kalyanaraman Vaidyanathan and Kishor S Trivedi. 1999. A measurement-based

model for estimation of resource exhaustion in operational software systems. In

issre. IEEE, 84.

Stefan Van der Walt, Johannes L Schonberger, Juan Nunez-Iglesias, Frangois

Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu.

2014. scikit-image: image processing in Python. Peer] 2 (2014), e453.

[33] Chen Wang, Hoang Tam Vo, and Peng Ni. 2015. An IoT application for fault

diagnosis and prediction. In Data Science and Data Intensive Systems (DSDIS),

2015 IEEE International Conference on. IEEE, 726-731.

Pascal Weisenburger, Manisha Luthra, Boris Koldehofe, and Guido Salvaneschi.

2017. Quality-aware runtime adaptation in complex event processing. In Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017 IEEE/ACM

12th International Symposium on. IEEE.

[35] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh.
2006. Fidelity and yield in a volcano monitoring sensor network. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 381-396.

[36] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman,

John Wawrzynek, Edward A Lee, and John Kubiatowicz. 2015. The Cloud is Not

Enough: Saving IoT from the Cloud.. In HotStorage.

Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. 2006. SVM-

KNN: Discriminative nearest neighbor classification for visual category recog-

nition. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, Vol. 2. IEEE, 2126-2136.

Qi Zhang, Ludmila Cherkasova, Ningfang Mi, and Evgenia Smirni. 2008. A

regression-based analytic model for capacity planning of multi-tier applications.

Cluster Computing 11, 3 (2008), 197-211.

=
]

oy
&

~
=

&
=)

™~
2

'S
S

[34

[37

[38

