
1

Design-Level and Code-Level Security Analysis of IoT
Devices

FARID MOLAZEM TABRIZI, University of British Columbia
KARTHIK PATTABIRAMAN, University of British Columbia

The Internet of Things (IoT) is playing an important role in di�erent aspects of our lives. Smart grids, smart
cars, and medical devices all incorporate IoT devices as key components. The ubiquity and criticality of these
devices make them an attractive target for attackers. Therefore, we need techniques to analyze their security,
so that we can address their potential vulnerabilities. IoT devices, unlike remote servers, are user-facing and
therefore, attacker may interact with them more extensively, e.g., via physical access. Existing techniques for
analyzing security of IoT devices either rely on pre-de�ned set of attacks and therefore have limited e�ect, or
do not consider the speci�c capabilities the attackers have against IoT devices.

Security analysis techniques may operate at the design-level, leveraging abstraction to avoid state-space
explosion, or at the code-level for ensuring accuracy. In this paper we introduce two techniques, one at the
design-level, and the other at the code-level, to analyze security of IoT devices, and compare their e�ectiveness.
The former technique uses model checking, while the latter uses symbolic execution, to �nd attacks based
on the attacker’s capabilities. We evaluate our techniques on an open source smart meter. We �nd that our
code-level analysis technique is able to �nd 3 times more attacks, and complete the analysis in half the time,
compared to the design-level analysis technique, with no false positives.

Additional Key Words and Phrases: IoT, Security Analysis, Model Checking

ACM Reference format:
Farid Molazem Tabrizi and Karthik Pattabiraman. 2019. Design-Level and Code-Level Security Analysis of IoT
Devices. 1, 1, Article 1 (February 2019), 25 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
IoT devices are networked, embedded computing devices that carry out speci�c operations. Smart
meters in smart grids, modern car controllers, and implantable medical devices, are examples of
popular IoT devices that perform security-critical operations. The popularity and criticality of
many of these devices make them a target for attackers, as many papers have demonstrated [5–
7, 17, 25, 34, 36, 60]. However, most of these attacks were discovered in an ad-hoc or opportunistic
manner, and may hence not be comprehensive. Developing a systematic mechanism to analyze
the security of IoT devices will help developers of IoT systems 1 discover the attacks, improve the
design or implementation of the system, and �nd e�cient ways to build security mechanisms to
detect the attacks. This is the focus of this paper

Analysis of attacks against software systems may be performed via design-level techniques that
leverage models of the system, or code-level techniques that directly analyze the code. Examples
1In this paper, by IoT system, we mean the software running on a networked, special-purpose, embedded device.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. XXXX-XXXX/2019/2-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:2 Farid Molazem Tabrizi and Karthik Pa�abiraman

of design-level techniques are attack trees [40, 55], attack patterns [26, 27], and attack graphs
[18, 30, 53, 56]. These techniques may be used with known attacks and vulnerabilities. With these
techniques, the security analyst builds a model of speci�c attacks, and analyzes the steps required
to apply them. Examples of code-level techniques are static analysis and fuzzing [45]. Static analysis
attempts to �nd vulnerability patterns in the code that may lead to vulnerabilities. Fuzzing searches
for input data that may crash the system and therefore, indicate a �aw in the implementation which
can be exploited by attackers. design-level techniques leverage abstraction to avoid state-space
explosion during analysis, and therefore may have higher false positives or false negatives. On the
other hand, direct code analysis may provide higher accuracy as they map directly to the code.
However, such techniques may face state space explosion especially with large code bases that
exhibit complex behaviors.

Many classes of IoT devices, unlike general purpose machines, are designed to perform speci�c
tasks and as a result, their behavior follows a certain model regardless of implementation. Further,
they often have signi�cant resource constraints, and hence their software is generally smaller than
software designed for general purpose computers. Based on these observations, we believe that
IoT devices provide opportunities for both design-level and code-level security analysis. In this
paper, we propose a design-level and a code-level analysis technique for analyzing the security
of IoT devices, and compare the results. This provides insights regarding the applicability and
e�ectiveness of each of these techniques in the IoT domain.
Developing security analysis techniques for IoT devices is challenging since unlike remote

servers, many IoT devices are installed at locations that are accessible by potential attackers. This
provides extended accessibility for attackers, e.g. physically rebooting the device, and accessing its
internal/external communication interfaces. The attackers may use these extended accessibility to
interfere with the execution of the software running on the device. We call the attacks resulting
from these accesses, software-interference attacks. Unlike generic attacks, software-interference
attacks are highly speci�c to each IoT device, and hence need targeted analysis techniques to
be found. Generic approaches to �nd security attacks [12, 45] either incur high false-positives,
or are incapable of �nding hitherto unknown attacks against the system when used for �nding
software-interference attacks. Finding unknown attacks is important for IoT devices as they are
often deployed in critical scenarios, and it is di�cult to patch them regularly. Therefore, IoT devices
should be resilient to attacks that may arise in the �eld.
To demonstrate our approach, we picked smart meters as a testbed. Smart meters are key

components of the smart grid. They are installed at homes and businesses to calculate electricity
consumption, and communicate with the utility server. It is estimated that the worldwide revenue
of smart grids will soon exceed $12 billion [1]. The large scale deployment of smart meters and
the criticality of their operations, make smart meters and their security an important concern, and
there has been signi�cant work on addressing this problem [32, 41, 61].

The main insight to analyze security of smart meters and �nding software-interference attacks
is that we perform security analysis against a set of the attacker’s actions, rather than pre-de�ned
attacks. We de�ne a set of actions that represent the attacker’s capabilities. These are the actions
that the attacker can take, e.g. dropping messages that are communicated via network interfaces.
Note that these actions are not standalone attacks, but rather the capabilities of the attacker that are
building blocks of attacks. We de�ne the attacker’s actions in a way that they can be dynamically
activated/deactivated at run-time. This allows us to consider all the scenarios in which an attacker
may a�ect the system, during run-time, and tamper with the system. Therefore, we do not require
the knowledge of existing attacks to perform the analysis.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:3

We leverage the above insight to address the challenge of �nding software interference attacks
against IoT devices. We propose two techniques, one at the design-level and the other at the code-
level. In our design-level approach, we build a formal model of smart meters, capturing their main
functions. We also formalize the set of attacker’s actions. Finally, we perform automated search
(using model checking) to �nd out whether it is possible for the attacker to apply a sequence of the
primitive actions, and transition the system into an unsafe state. An unsafe state is any state for
which a user-de�ned security invariant does not hold. For example, in a smart meter, a state where
energy consumption data is lesser than zero is unsafe as it may result in incorrect billing.
In our code-level analysis technique, we de�ne attacker’s actions as code snippets, and inject

them into the source code of the system to transform it. We de�ne the code snippets of the
attacker’s actions in a way that they can be dynamically activated/deactivated at run-time. This
allows us to consider all the scenarios in which an attacker may a�ect the system, during run-
time. After transforming the code, we can leverage existing software analysis techniques, namely
symbolic execution, to �nd executions paths that lead to a software-interference attack. In other
words, We symbolically execute the transformed code. We search for any execution scenario in
which activation of attacker actions may result in violating security invariants. Any such solution
represents a software-interference attack on the system.
In this paper, we make the following contributions:

• We build a formal model of a smart meter in rewriting logic [38], using the abstract model of
a smart meter presented in Molazem et al. [46], which represents the generic operations of
a smart meter. We also develop a formal model of the attacker’s actions for a generic smart
meter also in rewriting logic The attacker may use a sequence of these actions to mount
sophisticated software-interference attacks on a smart meter. We use model-checking on
the two models to automatically �nd sequences of actions that may take the system into
an unsafe state. These sequences correspond to the software-interference attacks found by
our technique.
• We model attacker actions as code snippets, and develop a framework to inject attacker
actions directly in the code and via symbolic execution, �nd all the ways an attacker
may a�ect the code at run-time. This allows us to automatically �nd concrete software-
interference attacks on the system given a set of attacker abilities.
• Using o�-the-shelf, inexpensive equipment, we experimentally validate the software-

interference attacks found on an open source smart meter: SEGMeter [2]. We �nd that the
software-interference attacks found by our two techniques cause the meter to lose data
and get stuck in an in�nite loop, thereby allowing attackers to lower the meter’s energy
energy consumption fraudulently.
• Comparing the two techniques, the code-level analysis technique found over 9 di�erent

types of software-interference attacks, and over 50 ways to mount the attacks on the system.
This was 3 times more than the attacks found by our design-level technique. Also, our
code-level analysis technique incurs no false positives, while the design-level technique
incurs an average of 50% false positives. Finally, the total analysis time of the code-level
analysis technique is less than 1 hour, while this time for the design-level technique is close
to 2 hours, on a regular desktop computer.

In this paper, we focus on a single smart meter, SEGMeter, representing an IoT device as we
did not have access to the source code of any other IoT devices. However, we have designed our
technique in a generalizable fashion, and as such, we believe it can be applied to a wide range of
IoT devices - the precise criteria for the applicability of our technique are outlined in Section 8.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:4 Farid Molazem Tabrizi and Karthik Pa�abiraman

2 RELATEDWORK
Below we discuss techniques for performing automated security analysis, and their limitations.
Attack patterns: Attack patterns capture the common methods for exploiting system vulner-

abilities. Each attack pattern encapsulates information including attack prerequisites, targeted
vulnerabilities, attacker goals, and resources required. Thonnar et. al. [59] study a large dataset of
network attacks to �nd the common properties of some of the attacks. They develop a clustering
tool and apply them on di�erent feature vectors characterizing the attacks. Gegick et. al. [27] encode
attacks in the attack database and use them in the design phase to identify potential vulnerabilities
in the design components. Fernandez et. al. [26] study the steps taken to perform a set of attacks
and abstract the steps into attack patterns. They study Denial of Service (DoS) attacks on VoIP
networks and show that their patterns can improve the security of the system at design time, and
help security investigators trace the attacks.

Although integrating attack patterns into the software development process improves the security
of the software, it has two disadvantages. First, attack patterns are often at a high level of abstraction,
and require signi�cant manual e�ort to apply. Second, for new systems such as smart meters, there
is no well-known attack vector from which we can develop attack patterns. Further, IoT systems
are di�cult to patch in the �eld, and hence need to be resilient to even hitherto unknown attacks.
Attack trees: Attack trees are top-down hierarchical structures in which lower level activities

combine to achieve the higher level goals. The �nal goal of the attacker is presented at the root. Byres
et. al. [18] develop attack trees for power system control networks. They evaluate the vulnerability
of the system and provide counter measures for improvements. McLaughlin et. al. [43] use attack
trees for penetration testing of smart meters. Morais et. al. [48] use attack tree models to describe
known attacks, and based on the trees develop fault injectors to test the attacks against the system.
They test their analysis technique on a mobile security protocol.

Attack trees are mainly designed to analyze prede�ned attack goals. However, many security
attacks are not targeted and are based on the vulnerabilities that the attackers opportunistically �nd
in the system while testing it. In contrast, we are not bound to speci�c attack goals. We use attacker
actions to search through the set of all interactions an attacker may have with the system, in order
to tamper with it. Therefore, our technique may compliment attack tree approach in �nding viable
attacks against the system.
Attack graphs: Attack graphs have been mainly used to analyze attacks against networked

systems. They take the vulnerability information of each host in a network of hosts, along with
the network information, and generate the attack graph. Sheyner et. al. [56] and Jha et. al. [30]
propose techniques for automatically generating and analyzing attack graphs for networks. They
assume that the vulnerability information for each node is available. Based on this information,
they analyze the chains of attacks and their e�ects in the network.
To use attack graphs, the programmer needs the complete set of known vulnerabilities on the

host. If the hosts have unknown vulnerabilities, the analysis will be incomplete. In this sense, our
work may complement this analysis - we provide security analysis for embedded devices at the
node level which may be used as inputs for attack graphs.
Formal analysis: Formal techniques have been used to evaluate the security of computer

systems [28]. For example, Matousek et. al. formally verify security constraints on networks
with dynamic routing protocols [39]. Delaune et. al. analyze the security of PKCS#11, an API for
cryptographic devices [24]. Miculan et. al. formally analyze the security of Signle-Sign-On (SSO)
authentication protocols for Facebook [44]. However, these techniques target protocols that have a
formal speci�cation. Smart meters do not (yet) have a formal speci�cation that we can convert to a

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:5

model and formally analyze. Therefore, extending prior work for formally analyzing security of
smart meters is challenging.
Fuzzing: Fuzzing is a sub-category of fault injection. However, it is widely used in industry for

security evaluation and hence, we discuss it separately here. Fuzzing involves inserting random
inputs to a program and evaluating their e�ects [45]. This process facilitates automated penetration
testing. Some tools built based on fuzzing techniques include HP WebInspect [8], the IBM AppScan
[9], and Acunetix web application security scanner [3]. Neves et. al. presented a tool called AJECT
for fuzzing the input to the servers, based on prede�ned attack patterns [49]. Fuzzing may uncover
many of the existing bugs in the system. However, the e�ects of fuzzing may not necessarily
be security-related. Therefore, these tools report a high percentage of false positives [50]. Also,
embedded devices are exposed to a wide range of accesses (e.g., physical access) and attacker actions
(e.g., physically rebooting the device, and voltage manipulation) that may not easily be simulated by
fuzzing techniques. Therefore, even though fuzzing is an e�ective technique for �nding unknown
attacks against software systems such as web applications, it is not enough for embedded systems
with extended attack surfaces. Hence, our technique may complement fuzzing for such systems.

Program analysis: In recent work, Ivan et. al. [51] �nd sensor-spoo�ng attacks against embed-
ded systems via program analysis. They use symbolic execution to �nd sensor readings that leads
to unsafe states in the program. Then, as an attacker, they generate inputs that produces those
sensor readings. However, their work is limited to sensor spoo�ng and does not allow for �nding
attacks given a general model of the attacker (for instance, when an attacker can tamper with
network communications, reboot system, etc.). Davidson et. al., [22] propose a symbolic execution
engine, based on KLEE [19], and specialized for MSP430 family of 16-bit microcontrollers. They
show that this engine may be e�ectively used to analyze security of embedded systems for which,
a symbolic execution engine was not available. In this paper, we use existing symbolic execution
engines to enable our analysis technique and therefore, tools such as KLEE [19] can improve the
e�ectiveness of our work and extend its applicability to wider variety of platforms.
Power grid security: Prior work on smart grid security propose techniques for modeling risks

and threats associated with power systems, as well as detection of certain categories of attacks
at run-time. Ray et. al. [54] propose di�erent approaches for security risk management of smart
power grids, and discuss di�erent threat and vulnerability modeling schemes. Sridhar et. al. [57]
propose an approach to assess security risks of cyber physical systems used in smart power grids by
examining the dependencies between the cyber physical equipment and the power infrastructure.
Rahman et. al. [52] demonstrate the vulnerability of these systems to false data injection attacks .
Lie et. al. [37] model false data injection in power grid as a matrix separation problem, and propose
two methods to address it. While these techniques are useful, they do not address the problem of
discovering new attacks on the system, which is our focus. Moreover, our approach focuses on
�nding vulnerabilities before the system is deployed, while many of the above papers focus on
runtime detection and mitigation of security attacks. Security analysis at development time helps
harden the system and reduce the costs associated with runtime attack-mitigation.
Summary: IoT systems are being largely deployed in critical domains such as smart grids, homes

and modern cars. Therefore, their security is important. Existing techniques for analyzing attacks,
while useful, when applied to IoT, have limitations. Techniques such as fuzzing, are general purpose
and may be applied to IoT and �nd new attacks against them. However, due to their generality, they
fail to consider attacks that are speci�c to IoT devices due to special accesses the adversaries may
have to the devices (e.g., physical access). Due to the criticality of many of IoT domains, creating
security analysis techniques that are tailored for them, is especially important as such techniques
are likely to have higher coverage than generic techniques.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:6 Farid Molazem Tabrizi and Karthik Pa�abiraman

We attempt to address this problem in this paper and complement existing techniques when they
are applied to IoT. We do this by incorporating speci�c accesses the attacker has to the device. We
introduce an automated way to consider the actions an attacker may take against the system, and
violate its security properties. This allows for developing a security analysis that is tailored for a
speci�c IoT device, and its speci�c attacker model. However, our technique may be be speci�c to
IoT, and hence, not as widely applicable as some of the existing techniques such as fuzzing.

3 BACKGROUND
3.1 Smart Meter
A smart meter is a networked device that measures electricity consumption and communicates
with the utility server. Smart meters have three main components, as we explain below.

Control unit: Inside the meter, there is a Microcontroller that transfers data measured by the
low-level meter engine to a �ash memory. The Microcontroller can save logs of important events
during the activity of the smart meter.
Communication unit: For the meters to be able to communicate with each other and the

server, they are equipped with a Network Interface Card (NIC). Meters can be connected to in-home
displays, programmable controllable thermostats, etc. to form a Home Area Network (HAN). In
each area, smart meters will be connected to a collector through �eld area network (FAN). This
collector gathers all data and communicates with the utility server through Wide Area Network
(WAN). The communication interface di�ers from region to region.

Clock: For the meters to have the capability of providing time-of-use billing services, they are
equipped with a real-time clock (RTC). This clock should be synchronized with the server clock on
a regular basis to prevent any drift. This is done through synchronization messages.

3.2 Threat model
Attacker: In this paper, we assume that the attacker may have read/write access to the commu-
nication interfaces of the smart meter. Therefore, the attacker may intercept data sent from the
system, and send (incorrect) data to the system. We also assume that the attacker may have physical
access to the system and perform actions such as rebooting the system (e.g., powering it on and
o�). These are realistic assumptions as smart meters are installed in insecure locations (e.g., homes,
business entities) accessible to people other than the meter vendors. Due to �nancial bene�ts that
can be gained by tampering with the meter, the owners of the meter installations may act as the
adversary as well. For example, open source tools such as Termineter [58] allow communication
via the serial interface and optical probe, and sending/replaying messages. Accessing the serial
interface between the control unit and communication unit of smart meters may need the attacker
to remove the seal of the cover of the meter. However, it has been shown that it is relatively easy to
do so, and the attacker can erase any traces that the cover has been removed [42]. Based on this,
we assume an attacker may 1) drop messages communicated to the device’s interfaces, 2) replay
messages to the device’s interfaces, and 3) reboot the device at any point in time. We consider
reboot action to be a hard-reset, which completely clears the state of the system - this may not be
possible in all systems.
Software Interference Attacks: The attacker stated above is designed based on the charac-

teristics of IoT devices which allows the users to physically interact with them and access their
communication interfaces. This is unlike attacks against remote servers where physical access is
very limited. Therefore, we de�ne a new term for these attacks. We call the attacks resulting from
such interactions (e.g., the ones in the attack model above), which lead to corrupting data [20] of
the software and/or violating its control �ow [14], as software-interference attacks. We consider

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:7

this category of attacks in this paper. To the best of our knowledge, there is no existing term for
these attacks, which is why we coined a new term.
We do not consider social engineering attacks, attacks on con�dentiality, and denial of service

(DoS) attacks. The reason is that these attacks are generally addressed by other techniques such as
analysis of network infrastructure (DoS), analysis of cryptographic methods (con�dentiality), and
Human-Computer Interaction analysis/social studies (social engineering). Also, we do not consider
that other meters monitoring each other in the neighborhood-area network, as it is not a feature in
the platforms we have been considering.

4 OVERVIEW
In this section, we provide an overview of the high-level steps of the two analysis approaches
proposed in this paper.
Design-level analysis: We follow a three step process for design-level security analysis of smart

meters. In step 1, we formally model the components of smart meters and their operations. Smart
meters are computing devices and can be considered as small general purpose computers. However,
unlike general purpose computers, smart meters have low memory, low computing-capacity, and
are designed to carry out a speci�c set of operations. In prior work, an abstract model for operations
of smart meters is proposed [46]. This abstract model represents an implementation-independent
model of the components of the meter, their operations, and their execution order. In this paper,
we express the abstract model formally in rewriting logic [38]. Rewriting logic lets us model all the
operations (functions) of the system, and the transitions between its states. In step 2, we de�ne a
set of capabilities for the attacker also in rewriting logic. Modeling both the smart meter and the
attacker’s capabilities in rewriting logic allows us to automatically and systematically search for
all the possible scenarios in which the attacker’s actions on the meter can take the system to an
unsafe state. An example of an unsafe state is when consumption data calculated by the meter are
lost, and not submitted to the server. The users of our model may de�ne their own unsafe states
as a �rst order logic formula over the states of the model. In step 3, we compose the model of the
smart meter, concurrently with the model of attacker’s actions. Using model checking, our system
searches through all the execution paths of the models that lead to unsafe states. The actions that
take the smart meter into an unsafe state will be identi�ed as a potential attack on the system. We
map the execution paths to the implementation of the system to identify concrete attacks against
the system. Because we use model-checking, we are guaranteed to �nd all the possible paths that
may take the system into an unsafe state, within the scope of the model.
Code-level analysis: We follow a 2-step approach for code-level analysis of security of smart

meters. These two steps correspond to steps 2 and 3 of design-level analysis explained above. In
step 1, we transform the code of the smart meter. An attack is a result of one or more actions taken
by an attacker, e.g., dropping messages, replaying messages. The operations for the �rst step of
our approach are shown in boxes 1 and 2 of Fig. 5. In this step, we de�ne a set of functions that
represent attacker’s actions and inject these functions in the source code. We de�ne these functions
in such a way that they may be dynamically activated/deactivated during run-time. This allows us
to consider all di�erent ways an attacker may interact with the system. We call the code resulting
from injecting attacker’s actions, the transformed code. The operation of the second step is shown
in boxes 3, 4, and 5 of Fig. 5. In this step, the developer of the system (who wants to analyze its
security) may de�ne a set of assertions that verify the security invariants of the system. The user
of our technique injects these assertions in the transformed code. Our technique uses a symbolic
execution engine to symbolically execute the transformed code and �nds out whether there exist
any execution �ow in the code that violates the security assertions. The output of this step would

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:8 Farid Molazem Tabrizi and Karthik Pa�abiraman

be a set of inputs to the system that lead to violating security invariants. We translate this set of
inputs to attacks that an attacker may mount on the original system to successfully interfere with
the software’s execution.
Comparison: In both techniques we explore how the attacker’s actions may a�ect execution

paths of the system and transition it to a state where its correctness properties do not hold.
However, there are two notable di�erences in the two approaches. First, the design-level approach
analyzes execution paths with respect to attacker’s actions, at an abstract level. Therefore, certain
implementation details are not present in the analysis. The code-level analysis on the other hand,
performs the analysis directly on the code. Second, the design-level technique uses model-checking
for �nding attacks, while code-level analysis uses symbolic execution. These tools have been
chosen as they facilitate analyzing the e�ect of attacker’s actions on execution paths of the system.
Model checking allows for exhaustive exploration of paths of a system speci�ed in rewriting logic.
Symbolic execution allows for exploring run-time behavior of the code, without executing it.
Hypothesis: Abstraction typically reduces the state space of the system and hence, we hypoth-

esize the design-level approach to be more e�cient. On the other hand, abstraction may increase
false positives as some results may not be applicable to the code. Therefore, we expect the code-level
analysis to have fewer false positives compared to design-level analysis, although it may be slower.
We test this hypothesis in this paper.

5 DESIGN-LEVEL ANALYSIS
In this section, we explain the three-step approach highlighted in Sec. 4 for analyzing security
of smart meters at design level. We use rewriting logic [38] to formally model smart meters
and attacker’s actions. Rewriting logic is a �exible framework for expressing proof systems. We
implement the formal model of the system in rewriting logic using Maude [21]. Maude is a tool that
supports rewriting logic, and enables the users to both execute rewriting logic rules and formally
verify them. This allows us to execute the model to gain con�dence before formally verifying it.

5.1 Formal Model
We use the abstract model of smart meters presented by Molazem et. al. [46] as our input to build the
formal model of smart meters in rewriting logic. This abstract model presents an implementation-
independent model of the components of the meter, their operations, and their execution order.
Therefore, it is valid for di�erent implementations of smart meters. Using the abstract model, we
extract the execution paths of components of the meter, and formally describe them. Below, we
brie�y explain the major operations of a smart meter as per the abstract model.
Smart meter’s operations: Upon starting, the meter initializes the sensors and communication

interfaces. The microcontroller periodically collects data from all the sensor channels by polling
them, and averages data samples to calculate consumption data for each channel. Then, the micro-
controller listens to incoming data requests from the communication unit, via a serial interface.
Upon receiving a data request, consumption data calculated so far are sent to the communication
unit of the meter, which stores the data on physical storage. The meter veri�es connection to the
network and to the server by pinging the server periodically. At speci�c time intervals, the meter
retrieves all the unsent consumption data from the physical storage and transmits them to the
utility server via its network interface. The communications unit of the meter also periodically
checks for any input commands that may be sent from the utility server. The meter parses and
veri�es any incoming command from the server, and executes them.

We explain the formal model for one part of the smart meter, namely passing the consumption
data from the microcontroller to the communication unit of the meter. The corresponding paths

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:9

M
ic

ro
co

nt
ro

lle
r

St
or

e 
da

ta
 o

n 
ph

ys
ic

al
 m

em
or

y

R
et

rie
ve

 d
at

a 
an

d
se

nd
 th

em
 to

 th
e 

se
rv

er

U
til

ity
 s

er
ve

r

Se
ns

or
s

Data over
serial 

interface Network

1 2 3

Smart Meter

Fig. 1. In this section, we discuss and formalize the first execution path of the smart meter, shown in this
figure.

M
ic
ro
co
nt
ro
lle
r

Se
ns
or
s

… ൏ ,௜భݏ ௜భݒ ൐	൏ ,௜మݏ ௜మݒ ൐	൏ ,௜యݏ ௜యݒ ൐ 	…

SensorElement

SensorList

Fig. 2. SensorList is a series of SensorElements and is the result of microcontroller operations.

are shown in Fig.1. For clarity and simplicity, we omit some details of the model - the formal model
description for other parts may be found in our prior work [47].

5.1.1 Passing consumption data to the storage component. A smart meter has a number of sensor
channels. A microcontroller periodically reads each of these channels in a loop, calculates the
consumption data associated with them, and produces a stream of sensor data. Below we discuss
the formal model for production of a stream of sensor data resulting from sensor channels in the
meter. The illustration of sensor data is presented in Fig. 2. Sensors produce data tuples that indicate
the index of the sensor and its value. A list of data is formed by putting these tuples together.

The formal model of sensor data is shown in Fig. 3a. In line 2 of Fig. 3a, we de�ne SensorElement,
SensorList, SensorNumber, and SensorValue. These are the data types that we use to formally de�ne
sensor data and the operations on it. In Maude, each of these types is called a sort. Each sensor
element is a tuple < s,� > (as shown in Fig. 2), which is the result of the operations of the
microcontroller on sensor channels. s indicates the channel index, which is of type SensorNumber,
and � indicates its value, which is of type SensorValue. This tuple is formally de�ned in line 3, by
putting two natural numbers (indicated as ’Nat’) together. A stream of these tuples forms SensorList,
which is de�ned in line 4. SensorList is built by putting a series of SensorElements together. In line
8 of Fig. 3a, we de�ne a common operation on the sensor data: hasSensor. This operation checks
whether a stream of sensorElements (i.e., sensorList), contains data associated with a speci�c sensor
index.

After de�ning the sensor data in a smart meter, we present the rules that de�ne their production
in Fig. 3b. We de�ne the production of sensor data using a recursive rule. At each step of the
recursion, we either create a tuple of sensor data for a new sensor channel (line 6), or create a new
value for an existing sensor channel (line 7). Line 5 is simply the base case of recursion representing
a tuple of sensor data for channel 0. The model lets us de�ne a limit for the number of sensor
channels - the number of sensor channels depends on the speci�c model of the meter.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:10 Farid Molazem Tabrizi and Karthik Pa�abiraman

SENSOR-DATA
1. fmod SENSOR-DATA is

 
2. sort SensorElement SensorList SensorNumber
        SensorValue.
   
3. op sensorElement : Nat Nat —> SensorElement.
4. op __  : SensorList SensorList —> SensorList.
5. op hasSensor : SensorList Nat—> Bool.

6. var r n t : Nat.
7. var dataList : SensorList.
8. eq hasSensor(sensorElement(r, n) dataList, t) = 
      if r==t then true else hasSensor(dataList,t) fi.
9. endfm

(a) Formal model of sensor data in Maude.

SENSOR-STATES
1.mod SENSOR-STATES is
2.op getSensorDataList : —> SensorDataList.

3.var dataList : SensorDataList.
4.var r n : Nat.

5.rl [r1]:getSensorDataList —> sensorDataElement(0,0).
6.crl[r2]:sensorDataElement(r,n) —> 
   sensorDataElement(r,n) sensorDataElement(r+1, 0) 
   if r < maxSensorNumber.
7.crl[r3]:sensorDataElement(r,n) —>
   sensorDataElement(r,n+1) if n < maxSensorData.
8.endm

(b) Formal model of states of sensor data in
Maude.

Fig. 3

ATTACKER-ACTIONS
1. mod ATTACKER-ACTIONS is
2. op crash : —> state.

3. var num : NodeNumber.
4. var val : Nat.
5. var element : SensorDataElement.
6. var list : SensorDataList.
7. var s c p : State.

8. rl [DropMessage] : element list —> list.
9. rl [Reboot] : s —> reboot.
10.rl [Replay] : c —> p if before(c, p).
11.endm

Fig. 4. Formal model of the a�acker actions.

5.2 A�acker model
We formally de�ne actions for dropping messages, rebooting and restarting the system (to interrupt
data �ow and message processing), and replaying a message. These actions are simple and can be
done by ordinary users of smart meters. It is possible to extend the set of attacker’s actions to more
sophisticated ones.

We present the formal rules for the attackers’ actions in Fig. 4. Dropping a message is de�ned in
line 8 of Fig. 4 for dropping SensorDataElements. The complete set of rules include other communi-
cation protocols of the meter. As a result of this rule, any element of sensor data, at random, may
be dropped by an attacker at a random time.

Line 9 presents the general rule for rebooting the system. This action may correspond to simply
rebooting the meter by unplugging it from power and plugging it back in. To de�ne this action, we
de�ne an extra operation reboot. At any state s, we can transition to a reboot state from the current
state s. For instance, while the system is generating a series of sensor data tuples, transitioning to
the reboot state will interrupt the normal execution path as the rules for generating sensor data
cannot be applied anymore. This action can hence lead to data loss.
Line 10 presents a rule that lets the system go from current state c to a previous state p. This

transition is not part of the legitimate �ow of the system. p is replaced by any state in the system
that involves communication. By transitioning back to such a state, the model can re-execute
the communication procedure. This rule models an attacker that replays messages sent between

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:11

1- Define	functions	
representing	attacker	

actions

2- Inject	attacker	actions	
into	the	source	code

4- Symbolically	execute	
the	transformed	code

5- Find	execution	
scenarios	that	attacker	

breaks	security	invariants

Source	
code

Developer-
defined	

Assertions

Transformed	
code

InputOutput

3- Inject	assertions	into	
the	transformed	code

InputInput

St
ep
	1

St
ep
	2

Fig. 5. Overview of code-level analysis technique to find so�ware-interference a�acks against the system.

components of the meter via its interfaces, e.g, serial interface. The equation before in line 10, will
return true, if state p is a prior state in the system.
By adding these extra actions to the rules of the system, we are able to search through the

execution steps and verify whether we can reach unsafe states. Examples of unsafe states are those
in which produced sensor data are not stored on �ash memory, and allows transitioning to a data
submission state while the socket is closed. Note that not all the unsafe states necessarily represent
a feasible software-interference attack on the real smart meter. We discuss this in more detail in
Sec. 7.
Mapping the results of formal analysis to the code: We need to map the results of the

formal model back to the meter’s code to mount the software-interference attacks. To facilitate the
process of mapping the results of the formal model to the code, we developed a semi-automated
tool. The input to the tool is L = (r1, r2, ..., rn ), a sequence of rewrite rules ri , 1  i  n that lead
to an unsafe state. The output of the tool is the execution paths of the code that may represent L.
The process is semi-automated at present, as the user of the tool needs to manually match the �rst
and the last rewrite rules (r1 and rn ) to two nodes of the control �ow graph, �1 and �2. This can be
done by providing the id of the rewrite rule and the corresponding function name in the code that
implements the rule. The tool performs simple graph traversal and generates the paths between �1
and �2 in the control �ow graph. These represent the viable paths corresponding to the input L,
and are returned to the user. We used this semi-automated tool to translate the results of formal
analysis to the meter’s code.

6 CODE-LEVEL ANALYSIS
In this section we explain the two-step approach highlighted in Sec. 4, for �nding software-
interference attacks against the system at the code level. We model the attacker’s actions in a
generic way, which allows us via symbolic execution, to exhaustively search for all the ways
an attacker may interfere with execution of the software during rum-time. Our technique �nds
the interactions that lead to breaking security invariants of the system, and identi�es these as
software-interference attacks on the system.

6.1 Problem formulation
We denote the program running on the device as P . We also assume that the attacker is capable of
mounting a set of actions A = {a1,a2, ...,ak } on P . These actions may include dropping messages,
and rebooting the system. Each of these actions, interfere with execution of P and change its

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:12 Farid Molazem Tabrizi and Karthik Pa�abiraman

…
!"#$!
if	the	next	boolean value	read	from	‘stream’	is	true

f()
endif

…

A=<{<!"#$!, after>},	f(),	‘stream’>

Program

Fig. 6. High-level representation of injecting a�acker’s action in the code.

behavior. V = {�1,�2, ...,�m } denotes the set of security invariants that must hold true for P . We
show execution of P with respect to input I and attacker’s actions Ai ⇢ A, which satis�es the set of
invariants � ⇢ V as hold (PI,Ai ,� ) = true .

We callM (P ), to be a transformation of P , if the following conditions hold: 1) The set of security
invariants for P is equivalent to the set of security invariants forM (P ), and 2) For any set of inputs
and attacker’s actions on P that result in violating a subset of security invariants in P , there exists a
set of inputs forM (P ) that result in breaking the same subset of security invariants and vice versa.
More formally, we can write these conditions as follows:

8� ⇢ V9I ,Ai ⇢ A ) [hold (PI,Ai ,� ) = f alse () 9I 0 ) hold (M (P )I 0,?,� ) = f alse] (1)

Any modi�cation to program P that satis�es the above two conditions is a valid transformation
of P . In the �rst step we want to �nd such a transformation. In the second step we analyzeM (P ) as a
stand-alone program, �nd execution instances that result in breaking its security invariants. These
execution instances, may be translated back to an execution instance of P and a set of attacker’s
actions that interfere with the software and lead to breaking the same security invariants in P .

6.2 Step 1: Code transformation
To �nd software-interference attacks against the system, we mount attacker’s actions on the source
code. This means that we insert code snippets to reset variables to NULL, reboot the system, or
re-send messages, to account for attacker’s actions that drop messages, rebooting, and replaying
messages. However, due to program structures such as branches and loops, there are many run-time
possibilities to invoke attacker’s actions within code paths. In this section we discuss how we inject
attacker’s actions in the code so that we search all possible scenarios an attacker may perform at
run-time to attack the system.

We de�ne an attacker’s action A as a triplet A =< l , e, t >. l denotes the instruction after which,
either data or execution �ow changes due to attacker’s action. In other words, l indicates the location
in the code the attacker a�ects. e denotes the change in data or control as a result of the attacker’s
action. Examples of this include setting a value to NULL, or jumping to an arbitrary location in
code. t indicates the time the attacker’s action occurs.

Fig. 6 shows the high-level representation of attacker’s action injection. We explain the procedure
in more detail. To de�ne each attacker’s action, we de�ne elements l , e , and t . For any action, l
is a set of tuples < si ,pi > where si is a instruction in the code, and pi determines whether the
attacker’s action must be applied before or after si . We de�ne wildcard ’*’ in place of si to denote
that an attacker’s action may be applied before/after any instruction. An example of this scenario
is rebooting a device when an attacker has physical access to the system. For simplicity, here we
consider the representation of the code in a high-level language (e.g., C, C++, Lua, etc.) as the
granularity for l . We made this choice to simplify the implementation and decrease its performance

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:13

overhead, while still keeping high granularity for l . However, our technique can also consider
machine-level instructions as the granularity for l .

For example, if an attacker is capable of dropping messages sent to/from the device, the location
l in which the software-interference attack manifests itself is before/after send/receive system calls.
Therefore, we will have:

l = {< send,be f ore >, < recei�e,af ter >} (2)

e represents the e�ect of the attacker’s action at run-time. It may be any change in data and/or
execution �ow. Therefore, we de�ne it as a function that implements the e�ect of attacker’s action.
The arguments of the function are the return values of the instructions listed in l . The argument
set may be empty if there exist no return values. For example, dropping a message before it is
received, may result in the return value of NULL. In this scenario, e will be a function taking one
argument, which is the result of receive(), and sets it to NULL. We de�ne t as a boolean stream
deciding the time attacker’s action A occurs. A control function, at locations indicated by l , simply
reads a boolean value from the input stream, deciding whether the function associated with e must
be invoked.
We explain attacker’s action injection further with an example. Figure 7 presents an example

software-interference attack. The corresponding code is

A = h{hhttp.reques,af ter i},alt_request (bod�, code,header , status ),drop_streami (3)

which allows malicious users to drop an http response. In this example, l indicates that the
attacker’s action is injected after ’http.request’ instruction. e indicates the pointer to function
’alt_request’() that implements the e�ect of attacker’s action. t refers to �le ’drop.stream’ which
contains the boolean values determining the times when the attacker’s action must be invoked. In
Figure 7, the code segment we inject an attacker’s action into is presented in box 3. As determined
by l and t , and e , we inject the functions ’control()’ and ’alt_request()’ after ’http.request’ instruction.
At run-time, every time the execution �ow reaches this location, a new boolean value is read from
’drop.stream’ and is returned as the value of ’control()’. If the value is true, ’alt_request()’ is executed,
which sets the response of ’http.request’ to nil. This is what happens when in fact no response is
received (which is the case when the attacker drops the response). If the value read from the stream
is false, no extra action is taken and the execution �ow continues as normal. As the example shows,
by injecting the function ’alt_request()’ at the right places, and using boolean streams, we can
represent all the ways in which an attacker may drop the ’http’ response to our system at run-time.

6.3 Step 2: Finding so�ware-interference a�acks
As we stated before, our goal is to �nd software-interference attacks on the system. This means
�nding actions an attacker must take, at certain times, so that security invariants of the system are
violated. In the previous section we injected code snippets, corresponding to the attacker’s actions,
in the code base. We also introduced streams of boolean values into the input. The assignment of
di�erent boolean values to the introduced streams represent di�erent actions taken by the attacker
at run-time, and covers the entire space of attacker’s actions.

A sequence of attacker’s actions leads to a successful software-interference attack, if it violates
one or more of the security invariants of the system. For every security invariant in the system, the
user of our technique needs to introduce assertions in the code. These assertions verify the state of
�les, network ports, or values of sensitive data.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:14 Farid Molazem Tabrizi and Karthik Pa�abiraman

alt_request(body, code, header, status)   
return nil;

}

control() {
file = io.open(“drop.stream”)
for i = 1 to n

file:read()
end
x = file:read()
n = n + 1
file:close()
return x;

}

. . .
body, code, header, status = http.request{

. . .
}
if control() == 1 then

body = alt_request(body, code, header, status)
end
. . .
if body == nil

response = nil
end
. . .
return response

Controlling	t the	time	of	
attack	

Injecting	e,	the	effect	of	
attack

Location	l of	attack,	after
http	request	instruction

Stream	of	boolean values	to	
control	the	time	of	attack

001110111…

1

2

3

Fig. 7. ’alt_request()’ represents action of an a�acker that is capable of dropping h�p response messages.

1.				success	=	heartbeat_handler()
...

2.				sent	=	do_sendabale(data)
…

3.				while	time_is_ok ==	false	do
…

4.										time_is_ok =	check_time()				
5.										if	(time_is_ok ==	true)	then

…
6.										else

...
7.									end
8.									assert(counter	<	max)
9.									counter=counter+1
10.		end

sending	http	request	
message

Checking	invariant	
violation

Fig. 8. By symbolically executing the code, we find out how a�acker’s actions may lead to violating security
invariants in the code.

Given this setup, any set of input values that lead to violating the assertions, correspond to a
successful software-interference attack that may be mounted on the system. We explain this with an
example. Fig. 8, presents an execution path in the code in which, attacker’s action for dropping http
response messages has been injected. In lines 1, 2, and 4, the function calls ’heartbeat_handler()’,
’do_sendable()’ and ’check_time()’, send and receive http requests and responses to/from the server.
The piece of code that handles the http communication is shown in Fig. 7. ’heartbeat_handler()’
sends heartbeat messages to the server to show that the meter is up and running. ’do_sendable()’
sends consumption data to the server. ’check_time()’ performs time synchronization with a server.

In lines 8 and 9, the user of our technique adds an assertion check to verify that the system is not
stuck in the loop. Parameter ’max’ may be adjusted according to the acceptable delay. Assuming
’max=5’, assertion in line 8 of Fig. 8 will be violated, if we let the values read from ’drop.stream’
in Fig. 7 be false, false, true, true, true, true, true, true. We note that changing either of the �rst
two values to true (which leads to failure of heartbeat and data communication) may change the
execution path from those considered in Fig. 8 (for simplicity, the alternative paths are not shown).
By observing the values read from ’drop.stream’, we can infer what the attacker has to do to

mount a software-interference attack that violates a security invariant. In this example, the attacker
must let the heartbeat and data message as well as response pass through intact, and drop the
response for only the time synchronization messages 5 times in a row.
To �nd the input values (including the boolean streams) that lead to violating the security

invariants, our system symbolically executes the code injected with attacker’s actions. Symbolic

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:15

execution analyzes the code to �nd the input values that lead to execution of di�erent parts of the
code. There are many existing symbolic execution engines that we can use for this purpose. We
are interested in input values that result in violation of security invariants (assertions in the code).
The values of boolean streams in every set of input that leads to violation of security invariants
determine the actions the attacker must take to mount a software-interference attack on the system.

7 EVALUATION
7.1 Research questions
In this section, we evaluate our techniques for �nding software-interference attacks at the design-
level and the code-level for embedded systems. We lay out the following questions:

• RQ1 (Performance): Using our techniques, how long does it take to analyze the code?
• RQ2.1 (Comprehensiveness of design-level analysis): Howmany software-interference
attacks does our design-level analysis technique �nd against a real smart meter?
• RQ2.2 (Comprehensiveness of code-level analysis): How many software-interference
attacks does our code-level analysis technique �nd against a real smart meter?

7.2 Testbed
Smart meter: We evaluate our technique for �nding software-interference attacks on SEGMeter,
an open-source smart meter from Smart Energy Groups [2]. SEGMeter consists of two main boards:
1) an Arduino board [10] with an ATMEGA32x series microcontroller, which is connected to a set
of sensors and calculates consumption information and, 2) a gateway board which has LAN and
wi� network interfaces, and communicates with the utility server. The boards communicate with
each other through a serial interface. The meter software is split between the two boards, with
the communication unit running on the gateway board and the control unit on the Arduino board.
The software running on the gateway board consists of about 1300 lines of code written in the Lua
language (not counting the communication stack implementation). The software running on the
Arduino board consists of about 1500 lines of C code (not including the Arduino libraries).

Analysis platform:We ran the formal analysis and code analysis on a Linux machine equipped
with 16 GB of RAM and 3.4 GHz CPU. To run the symbolic execution, we use SymbolicLua [13],
a dynamic symbolic execution engine for Lua (as the smart meter’s code is written in the Lua
language). SymbolicLuca uses Z3 [23] as its SMT (Satis�ability Modulo Theory) solver. We stubbed
out the external dependencies such as server calls to create a stand-alone program for performing
the analysis. For the sensor board’s code that is in the C language, we used Clang’s static analyzer,
which has a symbolic execution engine [4]. To evaluate the formal model written in rewriting logic,
we used Maude 2.7 [21] released for Linux64. Maude is a tool to run analysis and search queries on
models written in rewriting logic.

7.3 Performance (RQ1)
In this section, we �rst present the performance results for our design-level analysis technique and
then discuss the performance results of our code-level analysis technique.

7.3.1 Design analysis. We measure the time taken to run the searches associated with each
attacker’s action in Maude, along with the number of attack paths for each action found by the
model in Table 1. As can be seen, the time varies widely from a few seconds to a couple of hours
depending on the kind of attack and the attacker’s actions. As expected, the larger the state space
explored by the search queries, the longer it takes for the search. The search for the e�ects of
dropping packets takes the least time (7 seconds) as it only a�ects the messages sent/received

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:16 Farid Molazem Tabrizi and Karthik Pa�abiraman

Design-level analysis Code-level analysis
Time (m) Attacks Found Time (m) Number of injected actions

Rebooting 114 6452 23 327
Dropping messages 0.12 12 4 6
Replaying messages 0.3 845 19 274

Table 1. Performance of our two analysis techniques for di�erent a�acks.

between the meter components and the server, and as each message has only two states, namely
dropped or unchanged. However, the search for the e�ects of system reboot takes about 2 hours as
the system can be rebooted (or not), at every state in the state space of the model, which are much
more numerous than messages.

Table 1 shows that when the attacker’s action a�ects a larger state space (such as system reboot),
the number of paths to explore in the model is higher. However, we observed that many of the paths
in the model represent the same attack, applied on di�erent elements of the model (for example
dropping di�erent packets of time synchronization, or dropping such packets at di�erent runs of
the system). Therefore, although a search query may return hundreds of results, in most cases we
only need to try one of them on the code to test whether it applies, as they are all mostly equivalent.
This signi�cantly reduces the number of attacks that need to be tested on the code.

Our results show that with a running time of a few hours, the model checker is able to analyze
the model and �nd attacks on di�erent execution paths of the model. Since the analysis is done
o�ine prior to deployment, we do not expect the analysis time to be a bottleneck. Further, our
formal model captures the design-level properties of smart meters, and not their implementation.
Therefore, the size of the code does not a�ect the model checker’s performance.

Another consideration in evaluating performance of the system is the time taken to successfully
map an attack found by the formal model to the implementation. Based on our experience, this
process was straightforward and took a few minutes for each attack (maximum duration was half
an hour). We also developed a semi-automated tool for this purpose (Sec. 5.1). We acknowledge
that we were very familiar with the SEGMeter’s code and implementation. Because we target the
smart meter’s developers in our work, we expect them to be even more familiar with their code.

7.3.2 Code analysis. We measure the time it takes to run the analysis on the transformed code.
Table 1 shows the analysis time for three attacker’s actions: dropping messages, replaying messages,
and rebooting. The times shown in the table are rounded up to the nearest minute.
We also show the number of points where the attacker’s actions are injected in the code. We

�nd that the analysis time is correlated with the number of injection points. For example, the
analysis time for dropping messages action is only 4 minutes, as the number of injection locations is
small (6 locations in the code). The reason is that based on the model for the action of dropping
messages, the action is only injected after http and serial communication API calls. However, the
number of injected attacker’s actions for replaying messages and rebooting are far higher. The serial
communication may receive data asynchronously, therefore, the attacker may replay messages
at any time. The reboot action may occur at any time as well, and hence, both these actions are
injected after every instruction in the code.
This increases the number of states of the code, and hence the analysis time increases to 19

minutes for replaying messages, and 23 minutes for rebooting the meter.
The reboot operation (as explained in Sec.7.4) jumps to the beginning of the code. This may

increase the analysis time inde�nitely. Therefore, we added a �ag to limit the number of reboots
by the symbolic executor to a single one. This is reasonable as a single reboot resets the run-time
memory of the system and extra reboots will have a similar e�ect. It is worth noting that reboot

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:17

operation is an extreme example of code transformation in terms of increasing the states of the
code. Therefore, it is a measure of the worst case time taken by our technique.
The total analysis time for our technique for all attacker’s actions is less than an hour. This is

acceptable as the analysis is performed o�ine, and prior to the deployment of the system.

7.3.3 Comparison. The total analysis time at the design-level is about 2 hours, which is twice
as long as code-level analysis. In our evaluation we observed that symbolic execution engine
(using its SMT solver) was able to drop many of execution paths in the code that were not viable.
Symbolic execution tries each execution path only once, using symbolic values, which leads to
shorter analysis time. In contrast, the design-level analysis technique had to try each path multiple
times, as it did not have the information from the code to prune them.

7.4 Comprehensiveness (RQ2)
In this section, we �rst present the results of �nding software-interference attacks for our design-
level analysis technique and later, discuss the results of our code-level analysis technique with
regard to RQ2.

7.4.1 Design analysis (RQ2.1). Our formal model is based on an abstract model of smart meters.
Hence, it does not factor in the implementation details of SEGMeter, and some attacks found by
our model may not be applicable to it. This is because our formal model must be applicable to other
implementations of smart meters as well.

In this RQ, we investigate which of the attacks found by the formal model are applicable to the
SEGMeter. For each of the attacks, we attempt to execute the attack on SEGMeter, and check if it
results in an unsafe state on the meter. The results of this section show that the �ndings of the
formal analysis result in real attacks on the SEGMeter
In our experiments, Maude found 9 distinct groups of solutions for the cases where the system

may face data loss as a result of system reboot. These solutions correspond to four meter components
shown in Fig. 1, namely 1) receiving sensor data, 2) storing sensor data to the �ash, 3) retrieving
data from �ash memory, and 4) submitting data to the server. In our experiments, we observed
that in three of these components (1, 3, and 4), SEGMeter handles system reboot correctly without
losing data. However, we found that component 2, namely storing data to �ash memory, does not
handle reboot correctly, and is vulnerable to attacks found by our model. In particular, storing data
to �ash memory lacks proper acknowledgment mechanisms which leads to data loss if the system
is terminated at speci�c points in this component. Also, Maude �nds 2 paths where dropping
messages may lead to data loss, one of which was applicable to the meter code. In this scenario,
dropping time-synchronization messages leads to the meter getting stuck in a loop and failing to
record consumption data. Finally, Maude �nds 2 paths where replaying messages leads to incorrect
behavior in the model. Only one of these paths may successfully be instantiated on the meter. In
this case, replaying request for sensor data leads to early submission of data and hence, the meter
fails to record them. As an example, we explain how our design-analysis technique �nds attacks
with respect to the reboot action.

Rebooting meter. We study the e�ect of rebooting execution by adding its action model (as de�ned
in Sec.5.2), to the model of the smart meter. For this experiment, we de�ne an unsafe state as one
in which some of the consumption data is lost. In other words, state sB , reachable from state sA,
is unsafe, if sA contains some consumption data that is not included in sB . Here we consider the
states before data is submitted to the server. Below is an example of the search we perform on the
model to �nd such unsafe states (simpli�ed for clarity):

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:18 Farid Molazem Tabrizi and Karthik Pa�abiraman

search sensor (N1,M1) sensor (N2,M2) sensor (N3,M3) ) sensor (N1,M1) sensor (N2,M2). (4)

The above search phrase considers 3 sensor channels for the meter, represented as sensor (Ni ,Mi ).
Ni indicates the channel index, andMi indicates its corresponding measured energy. The search
�nds the paths where data are received from three sensor channels, but only two of them have
been stored. This entails that the data measured by one of the sensor channels is lost, and not sent
to the server.

We explain a concrete example of an attack path found in our model by applying the reboot action,
which successfully maps to the meter’s code. To understand this attack, we need to understand
how consumption data is updated in our smart meter model. Fig.9 shows the state diagram of this
process. In state 1, the meter receives new data from sensors. These data may be directly sent to the
server (state 2), or be stored in a data �le. The main reasons for storing data before sending them to
the server are reduction of communication overhead, and handling temporary unavailability of
connection to the server. When storing the data, the meter appends them to the previously stored
data (states 3 and 4) and updates the data �le (state 5). By letting the attacker reboot the system,
our model produces paths from states 1, 3, and 4 of Fig.9, to the initial state of the system. In these
paths, the meter receives new consumption data, but does not update the data �le, and hence the
data is lost when the meter is rebooted.

We explain the details of a reboot attack found on the meter. We show the snapshot of the code
in SEGMeter associated with updating data �le in Fig.10. In line 2 (associated with state 3 of Fig.9),
previously recorded data (called all_data) are read from the data �le. In line 3 (associated with state
4 of Fig.9), current data and previous data are merged together. In line 5 (associated with state 5 of
Fig.9), the data �le is updated with the merged data.
The meter updates the data �le in alternating 30 second and 42 second intervals. Smart meters

follow a precise procedure for sampling data and calculating consumption, to ensure correct billing.
The indicated timing is the result of this process. We measured these by pro�ling the software
running on the meter. Although software pro�ling may not be feasible for an adversary, we observed
that data transmission via serial interface and storing data, are indicated on SEGMeter by a �ashing
LED. Therefore, anyone who is able to physically observe the meter may synchronize their operation
of rebooting the meter with these time intervals.
We observed that rebooting the system after line 4, not only erases new data, but in the worst

case, all the previously stored data in the �le are wiped out from the system. The reason is that in
line 4 of Fig. 10, the data �le is opened in write mode (shown as ’w’ in the code), which erases the
contents of the �le. This is not a problem in normal execution as the content of the �le is read
into memory (before overwriting it), and merged with the new data (line 3). However, if we reboot
the system right after line 4, the meter does not get the chance to write the in-memory data to
the persistent storage. Rebooting the meter before the �le has been closed results in losing a large
portion of previously stored data 2.

7.4.2 Code analysis (RQ2.2). In this section we explain the results of our code-level analysis tech-
nique for �nding software-interference attacks. As mentioned earlier, we consider 3 actions for the
attacker, namely rebooting the system, dropping messages, and replaying messages. The functions
de�ning these actions are shown in Fig. 11. The meter uses 2 di�erent APIs for communication. One
is via LAN, using http, and the other is via serial interface. Therefore, we have two sets of actions

2We found a similar vulnerability on YoMo [33], another open source smart meter, suggesting that this is a common design
pattern, and likely a bug in the design.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:19

1- Receive 
consumption 

data

2-Send 
data to the 

server

3-Fetch 
previous 

data

4-Append 
new data to 

previous 
data

5-Update 
the data file

Terminate Start

Fig. 9. The abstract model for updating sensor data file.

1.function update_node_list()
// state 3

2. all_data = get_node_list()
    …

// state 4
3. all_data = 
     merge_tables(current_data,all_data)
   …
4. data_file = assert(io.open(dataFile, “w”))
    …

// state 5
5. for key, value in pairs(node_list) do

…
6.   data_file:write(data)
7. end    

…
8. assert(data_file:close())
    …
9.end

Fig. 10. SEGMeter code for updating sensor data file. The comments are added by us to show the mapping
with the states in Fig. 9.

targeting data received through each of these interfaces. Function ’alt_http_receive’ targets http
messages received via LAN, and function ’alt_serial_receive()’ targets messages received via serial
interface. Functions ’alt_http_resend’ and ’alt_serial_resend()’ replay messages via LAN and serial
interface respectively. Function ’alt_boot’ represents rebooting the system. It calls ’resetVariables’
function which reset all the variables in the code to their initial values and then jumps to the
beginning of the code. It is important to note that this way of representing reboot makes analysis
via symbolic execution easier as it provides a continuous execution �ow.

Our technique �nds solutions for software-interference attacks as a series of symbolic input
values to the system that satisfy certain conditions. An example of such a solution is shown in Fig.
12. The solution in Fig. 12 suggests that to reach line 7 where an assertion fails, the sensor input s
may have any value greater than 0, received messagems� may be any string, and the value of x
which determines whether or not the attacker’s action of dropping message should be invoked, is 1
(indicating that the attacker’s action should be invoked). This solution provides us with the input
values and the precise time at which the attacker’s action should be invoked during execution (i.e.,
between line 2 and 6 in Fig.12). Therefore, we can mount the software-interference attack on a real
system with relative ease and precision.
Our technique found 12 solutions where dropping messages, either communicated through

the LAN or serial interface, leads to a software-interference attack against the system. These
solutions represent 3 di�erent types of software-interference attacks. These attacks lead to 1)
over�owing sensor bu�er, 2) losing new consumption data from sensors, and 3) getting stuck in
the time-synchronization process. The �rst two attacks allow the attacker to pay lower amounts
for electricity consumption. The third attack delays the meter which may a�ect recording of
consumption data, and/or processing server commands. Finally, our technique found 18 solutions
where replaying messages results in breaking security invariants in SEGMeter. These solutions
indicate two di�erent types of attacks. The �rst type results in losing new consumption data, while
the second type results in over�owing a data bu�er and overwriting consumption data.
Below we provide an example software-interference attack that our technique �nds, based on

the attacker replaying messages.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:20 Farid Molazem Tabrizi and Karthik Pa�abiraman

function alt_http_receive(body, code, header, 
status)   

return nil;
end

function alt_serial_receive(length)
// returning nil for stream, 
// status and partial   
return nil, nil, nil;

end

function alt_http_resend(uri, method, msg, 
msg_len, content_type, response)

n = io.read(“*n”)
for i = 1, n do 

local body, code, headers, status =
http.request{    
url = uri,
method = method,
headers = {      

["content-length"] = message_length,      
["content-type"] = content_type

},    
source = ltn12.source.string(message),    
sink = ltn12.sink.table(response)  

}
end
return body, code, headers, status

end

function alt_serial_resend(address, 
port, msg)

serial_client = 
socket.connect(address, port)

n = io.read(“*n”)   
for i = 1, n do

serial_client:send(msg)
end
serial_client:close()

end

function alt_boot()
resetVariables()
goto start

end

Fig. 11. The functions defining dropping messages, replaying messages, and rebooting the system.

1- s = read_sensor()
2- msg = recv();

3- x = read();
4- if (x == 1)
5- msg = nil;

6- if (msg = nil and s > 0)
7- assertion_fail()

Solution:	s	>	0,	msg =	anything,	x	=	1

Attacker	action	
control	variable

Attacker	action

Fig. 12. Solution to an a�ack.

Replaying messages. Fig. 13 shows the code snippet for ’serialHandler()’ function. The controller
of the sensors calls this function when reading data via a serial interface. Received data will be
stored in bu�er, de�ned in line 2. The length of this bu�er is set to 64, which is de�ned in line 2.
This size is picked based on the maximum length of commands received by sensor controller. In
line 6, ’serialHandler’ loops over available characters on the serial interface and adds the characters
to the bu�er in line 12. As a precaution, in line 9, ’serialHandler’ wraps around the bu�er and starts
over from index 0, if it goes over the size of the bu�er. However, an attacker can exploit this feature
and send data of the size 64 - sizeof(command) to the sensor controller, after command string is sent
to it. This leads to the controller thinking the size of the received data (as indicated by length in the
code) is 0, and therefore, ignoring the command. Our technique �nds this software-interference
attack as symbolic execution discovers a path in which replaying messages leads to failure of an
assertion that ensures that the command size is greater than 0. This assertion is presented in row
5 of Table 2. These assertions are extracted from functional and non-functional requirements of
smart metering operations speci�ed in the corresponding design documents [11, 31].

To mitigate this problem, the sensor controller may use two bu�ers for consecutive communica-
tions, and alternate between them (i.e., dual bu�ering). This ensures the content of the bu�ers are
processed, before they are used again for receiving a message.

7.4.3 Comparison. Code-level analysis �nds 3 times more software-interference attacks than
design-level analysis. Moreover, analysis at the design level has false positive rates of up to 75%
(average of 50%). The reason for this high false positive rate is that the design-level analysis is done
on an abstract model of the meter. Not all the attacks on the abstract model may be applicable to
the code. For example, of the 4 types of reboot attacks found on the design-level analysis, 3 of them
were mitigated at the code level, and hence did not apply to it.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:21

1- void serialHandler(void) {
2- static char buffer[64];
3- int count = Serial.available();

…
4- if (count == 0) {

…
5- } else {
6- for (byte index = 0; index < count; index++) {
7- char ch = Serial.read();
8- if (length >= (sizeof (buffer) / sizeof (*buffer))) {
9- length = 0;
10- } else if (ch == '\n' || ch == ';') {

…
11- } else {
12- buffer[length++] = ch;
13- }
14- }
15- }       

…
16- }

Fig. 13. Code snippet for reading data from the serial interface.

Security invariant Assertions How to de�ne assertions
- Check ’save_data’ �ag is set �nd all data �les in the

1- Data must be stored - Check ’seg_data.dat’ �le exists and is non-empty code and make sure
- Check ’node_list.dat’ exists and is non-empty they are created/updated

- Check ’site_token’ has the latest value at startup correctly
2- Data must be sent to - Check ’talk_to_seg’ �ag is set, Find the necessary condition
communication board otherwise the communication fails for server communication in the code
3- Meter must meet - Check http timout is at most 5s, Study the timing constraints

its functional otherwise delays operations described in the speci�cation document
requirements in a loop - Check loop counters do not exceed maximum and make sure they are

limit, otherwise delay operations satis�ed in the code
- Check consecutive time stamps are within correct range Check requirements of correct consumption calculation

4- Consumption data must be - Check consumption data is within correct range based on the speci�cation document and
calculated correctly - Check data size is smaller than size of bu�er for storing data make sure they are satis�ed in the code

- Check bu�er indices are within the range of bu�er size
5- Commands must be - Check size of command bu�ers be at least the size of command strings Finds all the commands described in the speci�cation

received/processed correctly - Check the size of commands be greater than 0 and make sure enough bu�er capacity and resources is
- Check bu�er indices are within the range of bu�er size assigned to each corresponding command string

Table 2. Assertions used for SEGMeter

The software-interference attacks found via code analysis on the other hand, are a strict superset
of the attacks found by design analysis, with no false positives. Although symbolic execution may
potentially lead to false positives, we did not observe any in our evaluations probably due to the
simplicity of the meter’s code.

While code-level analysis outperforms design-level analysis both in terms of time and accuracy,
design-level analysis is still helpful as it allows developers to discover shortcomings of the design
early, and avoid implementation mistakes that may lead to security attacks. This is important as
addressing the bugs after implementation signi�cantly increases the development cost [15, 16].

7.5 Mounting the a�acks
To evaluate feasibility of the software-interference attacks found by our analysis techniques, we
mount them on SEGMeter. In our evaluation, our techniques found several solutions for each attack
category. Each solution represents an attack. To mount the attacks on the meter, we used commonly
available hardware/software, and inexpensive tools to perform rebooting, replaying/dropping
messages. The total value of the hardware required for mounting the attacks was less than $50 USD
(based on prices in 2017 on eBay.com), and the hardware was easily available.

To drop and/or send messages to SEGMeter via serial interface, we used a 6-pin-serial-to-USB
cable. This way we interfaced our laptop with the meter and intercepted the tra�c. The parameters
needed to be set for serial communication are data size in the frame (5-9 bits), stop bits (1-2 bits),
parity bit (0-1 bit), and baud rate (there are about 10 common baud rates). There are a limited
number of available con�gurations, and we tested di�erent con�gurations to arrive at the correct
one: 8 bit data size, 1 stop bit, no parity and 38400 bps baud rate. The solutions indicate the exact
points in time where the attacker’s actions must be applied. Having this information, we were able
to estimate the timing of messages indicated in the analysis solutions, via software pro�ling. Based
on the timing estimation, we were able to mount the attacks targeting the serial interface.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:22 Farid Molazem Tabrizi and Karthik Pa�abiraman

Fig. 14. We used a programmable solid state timer for rebooting the system at precise times, and a USB-to-
Serial cable to mount replay a�ack on the meter.

To mount the attacks targeting http communication via LAN, we used IPTables, which is a user-
space �rewall installed on many Linux distributions by default. We selected one of the machines
in our lab that route the tra�c of SEGMeter, and inserted IPTables rules that drop the messages
speci�ed in our solution. We used source and destination IP addresses to identity the messages,
and therefore, the attack was feasible regardless of encryption.

To mount the reboot attacks, we used a programmable solid state timer (Fig. 14). This allows us
to send reboot signals to at exact pre-programmed times. The solutions provide us with the exact
execution points in the code at which the reboot must be applied. Having this information, we
identi�ed the timing of the reboot attacks via software pro�ling. Also, we took advantage of the
LEDs on the meter that indicate the state of the meter (e.g., data communication via green �ashes).
We place the timer between the power source and the meter, and repeatedly reboot the meter in
the calculated time intervals using it. We were able to successfully mount the reboot attacks on the
meter with high probability in most of the trials (17 out of 20 trials).

8 DISCUSSION
8.1 Limitations
Generalizability In this paper we consider �nding software-interference attacks against IoT devices,
and evaluated our techniques on a smart meter. We considered three actions, namely dropping
messages, replaying messages, and rebooting the device as the attacker capabilities. Since we
have not applied our technique on platforms other than the smart meter, its generalizability to
other IoT devices is yet to be evaluated. Unfortunately, we did not have access to other candidate
platforms, such as source code of other meters [29, 35], and smart car embedded systems. The
characteristics of other IoT devices, e.g., code complexity, accessibility, and their behavior model
may a�ect the results of our technique. However, we note that we did not rely on any speci�c
feature of smart meters to develop our technique. We rather relied on the characteristics of similar
platforms in general. The main features that our technique relies on include: 1) small search space
of the code: small size of the code for special-purpose IoT devices makes their analysis using our
technique feasible, 2) physical accessibility: we are able to de�ne a clear set of physical accesses
the attacker has to the device, 3) Single-purpose platform: since, unlike general-purpose machines,
our target device is designed to carry-out speci�c tasks, we are able to build their formal model in
our technique. If an IoT device has these three characteristics, we expect the same approach and
attacker model to be applicable to them. However, further investigation is required to con�rm this
expectation.
Model correctness: The correctness of the results of our design-level analysis depends on

the correctness of the formal model. There are two aspects to correctness. First, there may be a

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:23

mismatch between the design of the model and the speci�cations. We mitigate this by building
a single model for the common features of smart meters, rather than a di�erent model for every
di�erent meter. This allows us to re�ne potential �aws of the model over time by reusing and
improving the model. The second aspect of correctness is implementation bugs in the model. We
partially mitigate this limitation by using the executable engine of Maude to execute the model and
verify that, in the absence of attacker actions, it matches the real smart meter’s behavior.

Scalability: Increasing the complexity of the model and the number of attacker actions, as well as
increasing the size of the code, increase the state space for model-checkers and symbolic execution
engine. This in turn increases the time taken to generate attacks (proportionately). Intuitively, we
do not expect the software running on embedded systems to have high complexity as embedded
devices typically have limited computational and memory resources, and perform a narrow range of
functions. Therefore, we believe these techniques can apply to many classes of embedded systems.
Attacker actions: In the code-level approach, we assume that attacker actions that can always

be represented as a code snippet. If a an attacker action cannot be simply represented as a function,
we cannot incorporate it in our model. For example, removing and corrupting �ash memory, and
changing power voltage outside the program cannot be easily represented as a function in the code.
The design-level approach does not su�er from this limitation, however.

8.2 Lessons Learned
One of the surprising results of our study is that the code-level technique surpasses the design-level
technique for discovering software-interference attacks both in terms of accuracy and scalability.
This shows that our initial hypothesis was incorrect, as, we had expected code-level analysis to
be more accurate (i.e., have fewer false-positives), but slower than the design-level analysis. This
was not the case however, even without considering the cost of translating in the model-based
technique, as our technique had fewer paths to analyze at the code level (as many of the paths
could be pruned as they were found to be infeasible paths). On the other hand, the design-level
technique had to contend with larger number of paths, as it could not easily determine which paths
were infeasible. This seems to indicate that code-level techniques such as symbolic execution may
be more e�ective for security attack analysis than design-level techniques for IoT devices.

9 CONCLUSION
IoT devices, unlike remote servers, are user facing and therefore attackers have extended access to
them. This may include physical access, and access to internal communication interfaces. We call
the attacks resulting from this extended level of access software-interference attacks. We introduced
two techniques, one at the design-level and the other at the code-level, for automatically �nding
such attacks in IoT devices. We evaluated our techniques on SEGMeter, an open source smart meter.
Although both techniques successfully discovered real attacks against the system, our code-level
analysis technique proved to be more e�cient and more accurate. The design-level technique found
3 types of attack on SEGMeter and completed the analysis in about 2 hours. On the other hand,
the code-level analysis technique found 9 di�erent types of attacks, including the attacks found
by design-level approach, and took less than one hour. It also has no false-positives unlike the
design-level approach, which incurred false-positive rates of up to 75% (average of 50%).

ACKNOWLEDGEMENTS
This research was supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC) through the Strategic Networks Grants programme for Developing next generation
Intelligent Vehicular Networks and Applications (DIVA), and the Discovery Grants Programme.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



1:24 Farid Molazem Tabrizi and Karthik Pa�abiraman

REFERENCES
[1] 2017. In-Stat and NDP Group Company. (2017). http://www.instat.com/press.asp?ID=3352&sku=IN1104731WH.
[2] 2017. Smart Energy Groups Home Page. (2017). http://smartenergygroups.com.
[3] 2017. Acunetix web application security scanner. (2017). http://www.acunetix.com/.
[4] 2017. Clang: a C language family frontend for LLVM. (2017). https://clang.llvm.org/.
[5] 2017. FBI: Smart Meter Hacks Likely to Spread. (2017). http://krebsonsecurity.com/2012/04/

fbi-smart-meter-hacks-likely-to-spread/.
[6] 2017. Hacking Humans. (2017). http://blog.kaspersky.com/hacking-humans/.
[7] 2017. Hacking Medical Devices for Fun and Insulin: Breaking the Human. (2017). https://media.blackhat.com/

bh-us-11/Radcli�e/BH_US_11_Radcli�e_Hacking_Medical_Devices_WP.pdf.
[8] 2017. HP WebInspect. (2017). http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/

index.html.
[9] 2017. IBM Security AppScan. (2017). http://www-03.ibm.com/software/products/en/appscan.
[10] 2017. (July 31 2017) Arduino home page. (2017). http://www.arduino.cc.
[11] 2017. (July 31 2017) UK Department of Energy, smart meter design document. (2017). https://www.ofgem.gov.uk/

ofgem-publications/63541/smart-metering-prospectus.pdf.
[12] 2017. National Vulnerability Database. (2017). https://nvd.nist.gov/.
[13] 2017. SymbolicLua. (2017). https://github.com/kohyatoh/symboliclua.
[14] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-�ow integrity. In Proceedings of the 12th

ACM conference on Computer and communications security. ACM, 340–353.
[15] Barry Boehm and Victor R Basili. 2005. Software defect reduction top 10 list. Foundations of empirical software

engineering: the legacy of Victor R. Basili 426 (2005), 37.
[16] Barry W Boehm. 1988. Understanding and controlling software costs. Journal of Parametrics 8, 1 (1988), 32–68.
[17] S. Brinkhaus, D. Carluccio, U. Greveler, D B. Justus, and C. Wegener. 2011. SMART HACKING FOR PRIVACY. In 28th

Chaos Communication Congress. Berlin, Germany.
[18] Eric J Byres, Matthew Franz, and Darrin Miller. 2004. The use of attack trees in assessing vulnerabilities in SCADA

systems. In Proceedings of the International Infrastructure Survivability Workshop. Citeseer.
[19] Cristian Cadar, Daniel Dunbar, Dawson R Engler, and others. 2008. KLEE: Unassisted and Automatic Generation of

High-Coverage Tests for Complex Systems Programs.. In OSDI, Vol. 8. 209–224.
[20] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar K Iyer. 2005. Defeating memory corruption

attacks via pointer taintedness detection. In DSN 2005. IEEE, 378–387.
[21] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn Talcott.

2007. All about maude-a high-performance logical framework: how to specify, program and verify systems in rewriting
logic. Springer-Verlag.

[22] DrewDavidson, BenjaminMoench, Thomas Ristenpart, and Somesh Jha. 2013. FIE on Firmware: Finding Vulnerabilities
in Embedded Systems Using Symbolic Execution.. In USENIX Security Symposium. 463–478.

[23] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

[24] Stéphanie Delaune, Steve Kremer, and Graham Steel. 2010. Formal security analysis of PKCS# 11 and proprietary
extensions. Journal of Computer Security 18, 6 (2010), 1211–1245.

[25] K. Fehrenbacher. 2010. Smart Meter Worm Could Spread Like A Virus. (2010). http://earth2tech.com/2009/07/31/
smart-meter-worm-could-spread-like-a-virus/.

[26] Eduardo Fernandez, Juan Pelaez, and Maria Larrondo-Petrie. 2007. Attack patterns: A new forensic and design tool. In
Advances in digital forensics III. Springer, 345–357.

[27] Michael Gegick and Laurie Williams. 2005. Matching attack patterns to security vulnerabilities in software-intensive
system designs. ACM SIGSOFT Software Engineering Notes 30, 4 (2005), 1–7.

[28] David Gries. 2012. The science of programming. Springer Science & Business Media.
[29] itron. 2018. https://www.itron.com/. (2018).
[30] Somesh Jha, Oleg Sheyner, and Jeannette Wing. 2002. Two formal analyses of attack graphs. In Computer Security

Foundations Workshop, 2002. Proceedings. 15th IEEE. IEEE, 49–63.
[31] (July 31 2017) Department of Energy and Climate Change and the O�ce of Gas and Electricity Markets. 2011. Smart

Metering Implementation Programm. (March 2011).
[32] Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A. Frincke. 2010. Smart-Grid Security Issues. IEEE Security

& Privacy (2010), 81–85.
[33] Christoph Klemenjak, Dominik Egarter, and Wilfried Elmenreich. 2015. YoMo: the Arduino-based smart metering

board. Computer Science-Research and Development (2015), 1–7.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.



Security Analysis of IoT Devices 1:25

[34] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen Checkoway, Damon
McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, and Stefan Savage. 2010. Experimental Security Analysis of
a Modern Automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP ’10). IEEE Computer
Society, Washington, DC, USA, 447–462.

[35] landis. 2018. https://www.landisgyr.com/. (2018).
[36] N. Lewson. 2010. (July 31 2017) Smart meter crypto �aw worse than thought. (2010). http://rdist.root.org/2010/01/11/

smart-meter-crypto-�aw-worse-than-thought.
[37] Lanchao Liu, Mohammad Esmalifalak, Qifeng Ding, Valentine A Emesih, and Zhu Han. 2014. Detecting false data

injection attacks on power grid by sparse optimization. IEEE Transactions on Smart Grid 5, 2 (2014), 612–621.
[38] Narciso Martí-Oliet and José Meseguer. 1996. Rewriting logic as a logical and semantic framework. Electronic Notes in

Theoretical Computer Science 4 (1996), 190–225.
[39] Petr Matousek, Jaroslav Ráb, Ondrej Rysavy, and Miroslav Svéda. 2008. A formal model for network-wide security

analysis. In ECBS 2008. IEEE, 171–181.
[40] Sjouke Mauw and Martijn Oostdijk. 2006. Foundations of attack trees. In Information Security and Cryptology-ICISC

2005. Springer, 186–198.
[41] P. McDaniel and S. McLaughlin. 2009. Security and Privacy Challenges in the Smart Grid. IEEE S&P (2009).
[42] Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel. 2010. Energy theft in the advanced metering infras-

tructure. In Critical Information Infrastructures Security. Springer, 176–187.
[43] Stephen McLaughlin, Dmitry Podkuiko, Sergei Miadzvezhanka, Adam Delozier, and Patrick McDaniel. 2010. Multi-

vendor penetration testing in the advanced metering infrastructure. In Proceedings of ACSAC’10. ACM, 107–116.
[44] Marino Miculan and Caterina Urban. 2011. Formal analysis of Facebook Connect single sign-on authentication

protocol. In SOFSEM, Vol. 11. Citeseer, 22–28.
[45] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Commun.

ACM 33, 12 (1990), 32–44.
[46] Farid Molazem and Karthik Pattabiraman. 2012. AModel for Security Analysis of Smart Meters. InWRAITS, Dependable

Systems and Networks Workshops (DSN-W).
[47] Farid Molazem and Karthik Pattabiraman. 2016. Formal Security Analysis of Smart Embedded Systems. In Proceedings

of the 2016 Annual Computer Security Applications Conference (ACSAC ’16). IEEE Computer Society, USA.
[48] Anderson Morais, Eliane Martins, Ana Cavalli, and Willy Jimenez. 2009. Security protocol testing using attack trees.

In Computational Science and Engineering, 2009. CSE’09. International Conference on, Vol. 2. IEEE, 690–697.
[49] Nuno Neves, Joao Antunes, Miguel Correia, Paulo Verissimo, and Rui Neves. 2006. Using attack injection to discover

new vulnerabilities. In Dependable Systems and Networks, 2006. DSN 2006. International Conference on. IEEE, 457–466.
[50] James Newsome and Dawn Song. 2005. Dynamic taint analysis: Automatic detection, analysis, and signature genera-

tion of exploit attacks on commodity software. In Proceedings of the 12th Network and Distributed Systems Security
Symposium.

[51] Ivan Pustogarov, Thomas Ristenpart, and Vitaly Shmatikov. Using Program Analysis to Synthesize Sensor Spoo�ng
Attacks. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. 757–770.

[52] Md Ashfaqur Rahman and Hamed Mohsenian-Rad. 2013. False data injection attacks against nonlinear state estimation
in smart power grids. In Power and Energy Society General Meeting (PES), 2013 IEEE. IEEE, 1–5.

[53] Indrajit Ray and Nayot Poolsapassit. 2005. Using attack trees to identify malicious attacks from authorized insiders. In
Computer Security–ESORICS 2005. Springer, 231–246.

[54] Partha Datta Ray, Rajgopal Harnoor, and Mariana Hentea. 2010. Smart power grid security: A uni�ed risk management
approach. In Security Technology (ICCST), 2010 IEEE International Carnahan Conference on. IEEE, 276–285.

[55] Bruce Schneier. 1999. Attack trees. Dr. DobbâĂŹs journal 24, 12 (1999), 21–29.
[56] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M Wing. 2002. Automated generation

and analysis of attack graphs. In Security and privacy, 2002. Proceedings. 2002 IEEE Symposium on. IEEE, 273–284.
[57] Siddharth Sridhar, Adam Hahn, and Manimaran Govindarasu. 2012. Cyber–physical system security for the electric

power grid. Proc. IEEE 100, 1 (2012), 210–224.
[58] smart meter testing framework Termineter. 2017. https://code.google.com/p/termineter/. (2017).
[59] Olivier Thonnard and Marc Dacier. 2008. A framework for attack patterns’ discovery in honeynet data. digital

investigation 5 (2008), S128–S139.
[60] K. Zetter. 2010. Security Pros Question Deployment of Smart Meters. Threat Level: Privacy, Crime and Security Online

(March 2010).
[61] Berthier R. Zonouz, S. and P. Haghani. 2012. A Fuzzy Markov Model for Scalable Reliability Analysis of Advanced

Metering Infrastructure. In ISGT’12.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.


