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Abstract

Recent interest in Edge/Fog Computing has pushed loT
Platforms to support a broader range of general-purpose work-
loads. We propose a design of an IoT Platform called OneOS,
inspired by Distributed OS and micro-kernel principles, pro-
viding a single system image of the IoT network. OneOS aims
to preserve the portability of applications by reusing a subset
of the POSIX interface at a higher layer over a flat group
of Actors. As a distributed middleware, OneOS achieves its
goal through evaluation context replacement, which enables a
process to run in a virtual context rather than its local context.

1 Motivation and Approach

The Internet of Things (IoT) is now a reality. With an increas-
ing number of smart devices, the [oT topic of the year 2018
was loT Platform [13]. A recent interest in Edge/Fog Comput-
ing (i.e., the concept of taking the workload from the cloud
and spreading it across the IoT network) has posed new chal-
lenges for IoT platforms to evolve into more general-purpose
systems, providing the flexibility to deploy arbitrary programs
on a broad range of devices. Therefore, we need to design
an [oT platform that can fully utilize the network’s compute
resources for general-purpose workloads in addition to the
cyber-physical workloads. There are two high-level goals of
a general-purpose IoT platform: (1) to provide a dependable
computing infrastructure, (2) to provide a programming envi-
ronment for a user (e.g., an application developer) to leverage
the distributed computing features of the platform.

Building and maintaining a coherent software infrastructure
for an ever-increasing diversity of devices is a massive effort.
Platform-specific details need to be under strict bookkeep-
ing, and different programming abstractions and languages
need to be reconciled. Traditional reliability techniques be-
come inadmissible due to the heterogeneity and the resource
constraints of the devices. Furthermore, the solution must be
future-proof to account for the long life-cycle of IoT devices.
An IoT platform must meet these challenges gracefully and
reduce the complexity that a user has to deal with.
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Figure 1: OneOS operates over a network of abstract Actors,
as opposed to a bare-metal Von Neumann Machine

We observe that operationally, an IoT platform is analogous
to an Operating System (OS); it provides common services
and I/O interfaces for user programs, and runs programs un-
der a schedule and policy. However, unlike a Host OS, which
manages the local hardware resources like CPU and memory,
an IoT platform typically manages a heterogeneous network
of self-contained runtime systems. Thus we propose a design
of an 10T platform, which we call Overlay Network Operat-
ing System (OneOS), operating in the application layer over
a flat group of abstract Actors [21] to provide a single sys-
tem image of the computer network. As the model of the
underlying machinery does not directly involve low-level re-
sources, the focus of OneOS differs from a Host OS. OneOS
addresses higher-level concerns regarding distributed com-
puting: scheduling of programs on different runtime systems,
coordinating inter-process communication (IPC), providing a
mechanism for locating various resources within the network,
storage of data, and providing an API to the user.

Existing IoT platforms and other distributed computing
frameworks provide the aforementioned functionalities at the
cost of programmability; they often require the user to use a
specific API or adopt a certain programming paradigm. Al-
ternatively, we adopt the POSIX [1] interface, which already
provides abstractions sufficient for building a distributed sys-
tem. Adopting a living standard that has stood the test of time
can make it easier to maintain the system design and preserve
the portability of applications. Previous research on POSIX



kernels have shown challenges in managing low-level hard-
ware resources during run-time [33] and when writing the
kernel itself [9]. We avoid these issues by working with high-
level language runtimes, which handle the low-level tasks like
garbage collection, and selecting a subset of POSIX interfaces
relevant to distributed computing. By mapping abstractions
like I/O streams over an Acfor network, we can run existing
programs without modification. Reading a value from a sen-
sor and writing it to a file should be as simple as a single
line of command: cat /dev/sensorl > sensorl.log.To
actualize this concept, we highlight the following insight: all
we need to do is to adjust the operational semantics of a pro-
gram execution — we must interpret a program in a distributed
context, rather than in the local context.

2 Related Work

We first examine different approaches to building a distributed
computing framework, keeping in mind 3 qualitative criteria
for evaluating their usefulness: programmability, maintain-
ability, and efficiency. Programmability describes how easy it
is to write an application for the target platform, and it affects
the overall productivity of the user. For instance, being able
to use existing code is easier than having to write new code
in a domain-specific language. Maintainability describes how
easy it is to maintain the platform, and ultimately affects the
reliability of the system. Many factors can affect the maintain-
ability, such as the need to add redundancy, heterogeneity of
the software stack, and the complexity of the network topol-
ogy. Finally, efficiency describes the runtime performance
of the platform, and it can be measured more concretely in
terms of memory and bandwidth usage. The 3 criteria can be
quantified as cost of development, cost of maintenance, and
cost of computation respectively. However, as we do not yet
have an evaluation framework for speaking in terms of cost,
we discuss them qualitatively throughout this paper.

IoT Middlewares. Without project-specific details, we
first discuss the general organization of an IoT middleware.
We observe that most systems [15, 17,25,32,35] are made
up of a set of services, organized in a hierarchy. There is a
loose coupling between the logical software topology and the
physical network topology. For instance, a local "manager"
service aggregates data from "worker" services in the local
area network, then communicates with a "compute service"
on the cloud. While there is nothing fundamentally preventing
a user from deploying the "manager" service on the cloud, the
platform design assumes that the logical structure mirrors the
physical layout; breaking this assumption may render the sys-
tem to operate sub-optimally, or even be unusable. As there
are operational dependencies between the infrastructural com-
ponents, maintaining the whole system is not trivial. We also
observe that most systems are designed for specific use cases
and are not general-purpose. The user must write applications
specifically for the target framework, using specific APIs and

following a certain programming paradigm [5, 11, 14,30].

Cloud Management Platforms. Cloud Management Plat-
forms are generally organized in a flat cluster topology, which
is easier to maintain and scale [4,22,23]. Such systems are
useful for scaling applications that are laid out as a set of
micro-services, which are embarrassingly parallel [26]. For
more complex deployment scenarios in which the services
have operational dependencies, the user is responsible for
configuring the platform accordingly. We note that these plat-
forms are designed and optimized for horizontal scaling of
containerized applications, and they are not designed for pro-
viding a general-purpose application platform. As we tar-
get 10T systems, which are geographically spread out and
resource-constrained, Cloud Management Platforms are not
directly applicable for our use case.

Distributed Operating Systems. Distributed OSes [6, 10,
29,38] provide a single system image of a network of comput-
ers. The complexities of managing heterogeneous set of re-
sources are hidden under an abstraction layer, and the user sim-
ply interacts with a single interface. Philosophically, this con-
cept is closest to the system we envision. However, previous
research has identified several challenges such as distributed
shared memory, clock synchronization, and context-switching,
making it diffcult to achieve a practical implementation and
adoption of this design [36,37]. While there has been sig-
nificant work in addressing some of these problems [6,27],
building OSes from scratch and keeping up with the pace of
the IoT landscape requires a monumental investment.

3 System Design

One of our design goals is to provide a single system image of
the computer network by hiding the logistical complexities of
distributed computing. At the same time, we want to minimize
the effort a user needs to make to write an application. Ideally,
we want to be able to run existing programs transparently
without modification. As we target the [oT ecosystem, we
make the following assumptions: (1) the machines in the
network have different processor architectures and memory
layouts, and each run a POSIX-based Host OS, even if they
are relatively constrained (e.g., Raspbian OS on Raspberry
Pi Zero with 1GHz single-core CPU and 512MB RAM). We
do not include microprocessors in our model; they are treated
as peripheral devices. (2) All applications that run on OneOS
are written in a high-level language like JavaScript or Python.
Thus, we require that each machine has at least one high-level
language runtime, such as Node.js or CPython. (3) We do
not assume any particular physical network topology. (4) The
majority of devices are unmonitored and may be deployed for
a long time.

Keeping in mind our design goal and the assumptions, we
discuss our model of the platform and articulate the design
choices we make.



3.1 Logical Network Topology

OneOS is a thin virtual layer realized by a network of mid-
dleware services, which we refer to as OneOS runtimes, or-
ganized as a flat cluster. Instead of a structured, hierarchical
logical topology, we adopt the flat topology because it is more
resilient against arbitrary node failures [39]. Furthermore, in
contrast to a hierarchical design, there is no logical coupling
between the physical structure of the network and the software
model [40], making it easier to maintain and deploy. Coor-
dinating communication in a flat software layout over a geo-
graphically dispersed network (i.e., building a grid [12]) can
be challenging due to the dynamic and heterogeneous nature
of the network. We address some of the challenges by using
the Publish-Subscribe (Pub-Sub) interface within the underly-
ing communication infrastructure. The Pub-Sub interface pro-
vides an extra level of indirection between the communication
endpoints via software-defined topics, which allows for com-
munication logic free from low-level network properties like
IP addresses. By representing network resources in the form
of topics, OneOS is able to provide a dynamic and topology-
agnostic communication infrastructure. While the Pub-Sub
interface simplifies the programming interface, it incurs per-
formance overhead, since all packets go through a broker
and consume additional bandwidth. Some overhead can be
relieved by using the Pub-Sub infrastructure only for exchang-
ing metadata such as public IP addresses before switching to
direct TCP communication. However, such an optimization
has not been done in the current implementation.

3.2 Middleware Model

Drawing some parallels with Distributed OSes, the OneOS
runtime is analogous to a distributed kernel. Unlike a kernel,
the runtime operates high-level language runtimes — such as
Node.js or CPython — via message passing. As a comparison,
consider a scenario where we execute a program. A tradi-
tional kernel is responsible for reading the program from a
disk, allocating memory for the program, initializing the links
and the environment, and scheduling the processor. Thus, a
kernel operates the hardware resources directly. In contrast,
the runtime is responsible for creating a virtual evaluation
context for a program, then executing the program with the
appropriate high-level language runtime. A runtime is thus
modeled as an Actor that can create another Actor.

As a middleware-based platform, OneOS is limited from
having granular control over the hardware resources such
as memory and thread. The smallest unit of computation
in OneOS is a process, which we call an agent, and not a
single CPU instruction. An agent is treated as a black-box
with inputs and outputs, thus is again modeled as an Actor.
This coarse-grained control of resources is a desired prop-
erty. Previous work on Distributed OS has demonstrated the
challenges in dealing with low-level resources over the net-
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Figure 2: Similar to a UNIX kernel, a runtime is responsi-
ble for initializing a runtime environment. A OneOS context
encapsulates the process to evaluate the given program in a
distributed environment, redirecting all the system calls to the
appropriate kernel agent on the network.

work [3,6,31,33]. As the network latency would be orders
of magnitude larger in an IoT setting, generally it would be
more efficient to run a single process on a single host rather
than splitting it across a network.

Evaluation Context Replacement. If a runtime naively
spawned an agent as a child process, it runs as a regular UNIX
process accessing local host resources. In order to interpret the
program in the OneOS virtual context, the runtime performs
an evaluation context replacement procedure before it spawns
the program as a child process. The purpose of this procedure
is to intercept all the system calls and redirect them through
the network to the respective system-level services, referred
to as kernel agents, thus changing the run-time semantics and
allowing the program to run in a virtual context distributed
over multiple runtimes. The procedure comprises 2 phases:
(D an offline code instrumentation step, performed once per
program, and (2) an environment bootstrapping step carried
out just before instantiating a child process.

During the code instrumentation step, all the built-in mod-
ules abstracting the POSIX API (e.g., £s in Node.js) are re-
placed with the equivalent OneOS API. For example, consider
the following JavaScript program:

var outpath = process.argv([2];

var fs = require('fs’);
process.stdin.on(’data’, (data)=> {
fs.appendFile (outpath, data, (err)=> {});
b i

[ N O R S

Code 1: logger. js

This simple program expects a file path as an argument,
receives data via stdin, and it appends the received data to
the specified file. After instrumentation, the native £s module
is replaced with oneos/fs. As a result, the appendFile call
does not use the underlying kernel API, but instead it gets
routed via the network to the File System agent. Since we
have limited our application space to high-level languages



(e.g., JavaScript), the overhead of code instrumentation is
relatively low due to a much smaller code footprint compared
to the same logic in a low-level language (e.g., C). Moreover,
the POSIX API is already abstracted as built-in modules
in high-level languages, and the instrumentation step is just
replacing import statements.

Taking the instrumented code, a runtime then creates a new
environment before spawning it as a child process, injecting
environment variables that represent the virtual OneOS en-
vironment. The child process is assigned a globally unique
agent 1D, different from the PID assigned by the Host OS.
Additionally, the runtime creates unique Pub-Sub streams and
routes them to the corresponding I/O streams of the child
process, enabling IPC between processes over the network.
process.stdin in Code | receives data via a Pub-Sub chan-
nel {AgentID}/stdin instead of the native FD 0 of the UNIX
process. This environment bootstrapping step introduces a
small delay before the execution of a program, but does not
incur overhead during run-time. However, network queuing
delay can propagate to the I/O streams of the child process.

3.3 Service Model

Having discussed the infrastructure, we now discuss the ser-
vice model, which enables the system to serve as an OS for
an IoT network. Amongst the runtimes, some of them are
selected to be kernel runtimes, based on hardware capacity
and physical location. These kernel runtimes form a quo-
rum, which collectively decides which kernel agents to run
on which kernel runtime, using a consensus protocol like
Paxos [24] or Raft [28]; the exact consensus protocol is an
implementation detail and not part of the OneOS design. A
kernel agent performs a single root-level service expected
to be provided by an OS, and thus OneOS adopts the micro-
kernel design. We describe below the essential services.

Inter-Process Communication Service. The IPC agent
mediates the communication between different agents, and is
implemented as a Pub-Sub service. For example, when piping
data between agents via a command such as ./foo.js |
./bar. js, the runtime that executes foo. js publishes the
output of foo. js to the IPC agent, and the runtime hosting
bar. js subscribes to that data stream.

File System Service. Adopting the UNIX philosophy that
"everything is a file", the File System agent provides an in-
dexing mechanism for locating resources within the network
including regular files, I/O of peripheral devices, and net-
work sockets. We decouple the indexing mechanism from the
monolithic file system and define a separate storage service.

Storage Service. The Storage agent is responsible for stor-
ing blocks of data in the appropriate storage devices. As a
kernel agent, it just needs to provide a consistent read-write
interface to other agents, and the underlying storage mecha-
nism can be provided by exiting storage services. The current
implementation uses a central database.
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Figure 3: OneOS is organized as a middleware-based dis-
tributed operating system

Scheduler Service. The Scheduler agent is responsible for
deciding where to deploy a new agent upon request. Upon
receiving an execution request from another agent, such as
the Session agent, it decides from the list of runtimes where
to run it. Once it has decided where to run the new agent, it
sends a command message to the target runtime. The current
implementation uses a greedy first-fit algorithm, but a more
appropriate scheduling algorithm is an area of active research.

Session Service. Finally, the Session agent manages in-
teraction with a user. A user contacts the session agent to
authenticate and create a session. Upon signing in, the session
agent creates a new Shell agent for the user, and the user can
interact with the system through the Shell Client or through a
graphical interface via the Web Client. Any browser can be
used as a graphical terminal for the system.

3.4 Operation Model

We now describe the operation of the platform to provide
an intuition for applying this design in practice. When de-
ploying the platform, the runtime middleware is installed on
each device. Upon installation, 2 pieces of information are
configured on the device: (1) an RSA keypair, representing
the identity of the runtime, and 2) the location of a Name
Server, which serves the boot record containing information
about the kernel runtime quorum and the list of start-up kernel
agents. The public key of the runtime must be registered in
the Name Server for it to be recognized as part of the cluster.
Upon starting up, a runtime contacts the Name Server and
fetches the boot record, and then announces its membership.
If it discovers its role as a kernel runtime, it joins the consen-
sus quorum. The quorum ensures that all the kernel agents
defined in the boot record are running. Thus, a runtime dy-
namically loads its behaviour from the Name Server, making
it easy to update the platform; only the boot record needs to
be updated and a runtime simply needs to restart.



3.5 Programming Model

Finally, we provide a simple example to demonstrate how
POSIX abstractions map to the distributed context, enabling
the use of regular JavaScript programs. Consider the following
3 programs sensor. js, controller. js,and actuator. js,
together constituting an IoT application.

var GPIO = require(’onoff’).GPIO;

var sensor = new GPIO(4, 'in’);

sensor.watch((err, data)=>{
process.stdout.write (Buffer.from([data]));

i

wn B W N =

Code 2: sensor. js

process.stdin.on(’data’, (data)=>{
2 if (data[0] === 1)
process.stdout.write (ON");
3 1)

Code 3: controller.js

var GPIO = require(’onoff’).GPIO;
var actuator = new GPIO(7, ’'out’);
process.stdin.on(’data’, (data)=>{
if (String(data) === ’"ON’)
actuator.write(l, (err)=>{});

AW N =

5 1);

Code 4: actuator. js

sensor. js writes to stdout whenever the value on GPIO
pin 4 changes. controller. js receives data via stdin, and
outputs the string ON when the input value is 1. actuator. js
writes 1 to GPIO pin 7 whenever it receives the message
ON via stdin. These are generic JavaScript programs, using
only the onoff module [8] commonly used for interfacing
GPIO devices. Now, consider the following shell command:
./sensor.js | ./controller.js | ./actuator.js

The Scheduler deploys sensor. js and actuator. js on
runtimes with GPIO, while controller. js can be deployed
on any runtime. The runtimes transparently create IPC pipes
between the 3 processes over the network, as stdin and
stdout objects are replaced with the OneOS stream objects.

4 Implementation

We have written a prototype of OneOS entirely in JavaScript.

While the choice of language is an implementation detail, we
chose JavaScript for the following reasons: JavaScript is the
language of the Web, and the Web is a major part of the IoT
landscape (i.e., the Web of Things [19]). Since the advent of
Node.js, the server-side codebase has grown substantially and

many libraries exist [7, 18] for interfacing physical hardware.

We reduce the development overhead by adopting this large
codebase. Moreover, its single-threaded execution and event-
driven model makes it trivial to build Actor systems. Although
the runtime itself is written in JavaScript, it currently supports
running JavaScript, Python, and WebAssembly programs. We
envision that supporting WebAssembly opens door to other
languages that can be compiled to WebAssembly [20].

5 [Evaluation

To evaluate our design, we consider the 3 criteria we discussed
in section 2. As we do not have a quantitative evaluation
framework at the moment, we only suggest a plan and pro-
vide preliminary speculations. Evaluating programmability
and maintainability will involve user studies in which we com-
pare the experience of developers when using well-known
platforms versus OneOS. For evaluating the efficiency of our
design, we make reasonable assumptions about the target ap-
plications and use Distributed Stream Processing Systems as
an evaluation testbed — these systems are used for processing
data streams, such as sensor data produced by IoT applica-
tions [34], and can be deployed in the edge as services [2,16].
As OneOS is a general-purpose framework, we do not ex-
pect it to outperform specialized software systems. However,
we can define a reasonable target for deciding if its perfor-
mance is acceptable. Intuitively, we can say that the platform
is "good enough" if it does not introduce a significant run-time
overhead. More precisely, if running a service on OneOS does
not incur a large enough overhead to cause a back-pressure in
the stream-processing pipeline, it is acceptable. For instance,
consider a stream operator receiving data frames at N frames
per second (fps). To avoid back-pressure, it must process each
frame within % seconds. Assuming OneOS adds a run-time
overhead of 100D %, we can define a maximum frame process-
ing interval of m. The real processing time varies for
every runtime-service pair, so we model the real processing
interval as a function p(r,s) of runtime r and service s. If
OneOS distributes the set of services among the runtimes,
such that V(r,s), p(r,s) < ﬁ, the performance is accept-
able. Thus, the efficiency of the system is heavily determined
by the scheduling policy, which is a part of our research plan.
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Availability

A proof-of-concept of OneOS is available on Github at:
https://github.com/DependableSystemsLab/0ne0S.


https://github.com/DependableSystemsLab/OneOS

6 Discussion Topics

As our research is at the intersection of several domains such
as Computer Systems Organization, Software Engineering,
and Theory of Computation, we look forward to receiving
feedback from researchers from various backgrounds. In par-
ticular, we welcome comments on: modeling an abstract ma-
chine as an Actor network, suitability of high-level languages
for systems programming, and methodologies for evaluating
programming platforms and frameworks.

One of our main design choices is the adoption of the
POSIX interface. POSIX is heavily tied to the C standards,
which is based on a sequential abstract machine. What we
have attempted is mapping a subset of the POSIX API that
are not tightly-coupled with C semantics (e.g., file system,
streams, sockets, etc.), over an alternative abstract machine
with concurrent runtimes. Since our model anticipates con-
currency and reliability issues due to its networked nature, it
might be difficult to conform to POSIX specifications.

The major part of our work is about the rationale behind
the design choices and the trade-offs we make in building a
distributed software platform. Hence, we expect to see discus-
sions about competing ideas in system organization, OS archi-
tecture, programming practices, etc. Some examples are: dis-
tributed versus centralized layout, peer-to-peer versus server-
client communication, monolithic kernel versus micro-kernel,
single-system image versus explicit system image, and the
trade-off between run-time efficiency and programmability.

As this is early-stage work, we have not addressed many
important parts of the design, such as service scheduling.
The scheduling problem is further complicated by the fact
that there are additional constraints like locality of cyber-
physical resources. Certain programs need to be "location-
aware" and POSIX falls short in providing a useful abstraction.
Thus, there is a need for a semantics that can model this
aspect, and provide abstractions that a scheduling algorithm
can incorporate.

We have situated our platform entirely in the application
layer by restricting the programming space to high-level lan-
guages. The reason for this is because it is difficult to dy-
namically replace the evaluation context of a compiled binary
(e.g., a statically linked executable) due to the heterogeneity
of host platforms. By making this choice, we have essentially
lost the ability to directly control the bare-metal. Would there
be serious limitations with this approach, such as not being
able to guarantee certain security properties? The impact on
performance is another concern, as we do not have control
over low-level optimizations. How far can we optimize at
this higher and abstract layer, and will it yield acceptable
performance?
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