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Challenges
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OneOS: Proof-of-Concept Demo
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OneOS: Discussion

Feedback Wanted:
● Evaluation strategies
● Practicality of Actor-based micro-kernel
● Suitability of high-level language for 

systems programming

Controversial Points:
● Single system image appropriate for a 

geographically distributed grid?
● Mapping POSIX interface over an 

inherently distributed and concurrent 
architecture?

● Limiting application space to high-level 
languages?

Open Issues & Future Work:
● Security and Privacy model
● Failure handling
● Semantics of cyber-physical resources

Potential Drawbacks:
● Fundamental tension between 

cyber-physical resources and their abstract 
representations

● Reasoning about security concerns within 
high-level programming space

● Inability to make low-level optimizations

DependableSystemsLab/OneOSkumseok@ece.ubc.ca
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