
OneOS: IoT Platform
based on POSIX and Actors

Kumseok Jung, UBC
Julien Gascon-Samson, ÉTS Montréal
Karthik Pattabiraman, UBC



Motivation

Near-future IoT Project

City of 
Vancouver

2



Motivation

Near-future IoT Project

City of 
Vancouver

Public Infrastructure
3



Motivation

Near-future IoT Project

City of 
Vancouver

Public Infrastructure
4



Motivation

Near-future IoT Project

City of 
Vancouver

Public Infrastructure
5



Motivation

Near-future IoT Project

City of 
Vancouver

3rd Party Service

Public Infrastructure
6



Motivation

Alice
Engineer

City of 
Vancouver

7



Motivation

Alice
Engineer

City of 
Vancouver

8



Motivation

Alice
Engineer

City of 
Vancouver

Magic

9



Motivation

Alice
Engineer

City of 
Vancouver

Magic

10



Motivation

Alice
Engineer

City of 
Vancouver

Magic

11



Motivation

Alice
Engineer

City of 
Vancouver

Magic

12



Challenges

Alice
Engineer

Magic

Example Problem:

Collect GPS data from the 2 subsystems (Bus & Bike),
compute an optimal scheduling policy for another subsystem (Subway)

13



Challenges: Heterogeneity

Company A

Company B

14



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Heterogeneity in Hardware and Operating Systems

15



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Azure IoT 
Edge Runtime

AWS IoT 
Greengrass

Heterogeneity in Languages and Frameworks

16



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Azure IoT 
Edge Runtime

AWS IoT 
Greengrass

Solution

Software within a specific framework is
not portable across different frameworks

17



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Azure IoT 
Edge Runtime

AWS IoT 
Greengrass

Solution

Solution

Software within a specific framework is
not portable across different frameworks

18



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Azure IoT 
Edge Runtime

AWS IoT 
Greengrass

Solution

Solution_1

Need to rewrite the same application logic
for different frameworks

19



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Azure IoT 
Edge Runtime

AWS IoT 
Greengrass

Solution

Solution_1

Difference in application semantics
resolved by more glue software

20



Challenges: Heterogeneity

Company A

Company B

Windows 64bit

Linux 32bit

Azure IoT 
Edge Runtime

AWS IoT 
Greengrass

Solution

Solution_1

We end up with: Heterogeneity in Application Software

21



Challenges: Scale & Dynamicity

Company A

Company B

22



Challenges: Scale & Dynamicity

Company A

Company B

23



Challenges: Scale & Dynamicity

Company A

Company B

24



Challenges: Scale & Dynamicity

Company A

Company B

25



Challenges: Scale & Dynamicity

Company A

Company B

26



Challenges: Scale & Dynamicity

Company A

Company B

27



Related Work

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

28



Related Work

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

Device Independence
Interface Transparency

29



Related Work

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

Cluster Platform
Mesosphere DC/OS

Kubernetes
Docker Swarm

OpenHPC

30



Related Work

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

Cluster Platform
Mesosphere DC/OS

Kubernetes
Docker Swarm

OpenHPC

Interface Transparency
Topology Independence

Failure Tolerance

31



Related Work

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

Distributed OS
Amoeba

Sprite
Plan 9
Inferno

Barrelfish

Cluster Platform
Mesosphere DC/OS

Kubernetes
Docker Swarm

OpenHPC

32



Related Work

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

Distributed OS
Amoeba

Sprite
Plan 9
Inferno

Barrelfish

Cluster Platform
Mesosphere DC/OS

Kubernetes
Docker Swarm

OpenHPC

Interface Transparency
Application Portability
Topology Independence

Failure Tolerance

33



Our Goal: OneOS

Distributed Computing Platforms

Device Independence

A
pp

lic
at

io
n 

P
or

ta
bi

lit
y

OneOS

IoT Platform
AWS Greengrass
Azure IoT Edge

Google Cloud IoT

Distributed OS
Amoeba

Sprite
Plan 9
Inferno

Barrelfish

Cluster Platform
Mesosphere DC/OS

Kubernetes
Docker Swarm

OpenHPC

34



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

Chain of Programming Interfaces

35



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language
Low-Level

High-Level

Application 
Programming

Systems Programming

36

Chain of Programming Interfaces



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

37

Low-Level

High-Level



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

armv7

Linux

Runtime

x64

Windows

Runtime

38

High-Level

Low-Level



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

armv7

Linux

Runtime

x64

Windows

Runtime

Platform-Independence
by using High-level Language

39



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

armv7

Linux

Runtime

x64

Windows

Runtime

Platform-Independence
by using High-level Language,
not by using Framework API

Framework Framework

40



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

armv7

Linux

Runtime

x64

Windows

Runtime

Platform-Independence
by using High-level Language,
not by using Framework API

Platform

41



OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

Platform

42



OneOS: Approach

Hardware

OS

API/ABI (system call)

Framework A

yourApp

API A

Framework C

herApp

API C

Framework B

User App

API B

Runtime

Language

PlatformHeterogeneity in Software
unresolved by frameworks

43



Framework A

yourApp

API A

Framework C

herApp

API C

OneOS: Approach

Hardware

OS

Framework B

User App

API B

Runtime

API/ABI (system call)

Language

PlatformHeterogeneity in Software
unresolved by frameworks

Application Portability
worsens with more frameworks

44



OneOS: Approach

Adding Abstraction Layers on top

45



OneOS: Approach

Adding Abstraction Layers on top
leads to “API hell”

46



OneOS: Approach

Adding Abstraction Layers on top
leads to “API hell”

47



Our approach:
Not a high-level framework

OneOS: Approach

Hardware

OS

Framework

User App

API

Runtime

API/ABI (system call)

Language

48



OneOS: Approach

Hardware

OS

Runtime

API/ABI (system call)

Language

User App

49

Our approach:
Not a high-level framework



OneOS: Approach

Hardware

OS

Runtime

API/ABI (system call)

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

50

Embrace heterogeneity in software
allow existing technology to work together



OneOS: Approach

Hardware

OS

Runtime

POSIX API

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

High-level Language VMs share a common interface 
to the underlying abstract machine

51



OneOS: Approach

Hardware

OS

Runtime

POSIX API

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

High-level Applications are agnostic about the underlying abstract machine

52

?



OneOS: Approach

Hardware

OS

Runtime

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

High-level Applications are agnostic about the underlying abstract machine
System call modeled as message between Actors

POSIX API

Actor.js Actor.py

Actor
(kernel)

53



OneOS: Approach

Hardware

OS

Runtime

POSIX API

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

Applications make system calls
to interact with other agents

54



OneOS: Approach

Hardware

OS

Runtime

POSIX API

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

Hijack low-level Abstraction Layer
alter the operational semantics
of high-level software

55

OneOS 
Middleware



OneOS: Approach

Hardware

OS

Runtime

POSIX API

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

Hijack low-level Abstraction Layer
alter the operational semantics
of high-level software

Intercept system calls
redirect to various distributed services

56

OneOS 
Middleware



OneOS: Approach

Runtime

POSIX API

Language

Node.js CPython

PythonJavaScript

User App herAppyourApp

File System
Network Interfaces

I/O Streams

57

IPC ServiceFile System 
Service

Scheduler 
Service

OneOS 
Middleware



OneOS: Design

x64 armv7x86

Windows MacOS Linux

OneOS

App 1 App 2 App 3

Network

OneOS 
Middleware

OneOS 
Middleware

OneOS 
Middleware

IPC FileSystem Scheduler Storage Session

58



OneOS: Design

x64 armv7x86

Windows MacOS Linux

App 1 App 2 App 3

Network

OneOS

OneOS 
Middleware

OneOS 
Middleware

OneOS 
Middleware

IPC FileSystem Scheduler Storage Session

fs.writeFile

59



OneOS: Design

x64 armv7x86

Windows MacOS Linux

OneOS

App 1 App 2 App 3

Network

OneOS 
Middleware

OneOS 
Middleware

OneOS 
Middleware

IPC FileSystem Scheduler Storage Session

fs.writeFile

60



OneOS: Design

x64 armv7x86

Windows MacOS Linux

OneOS

App 1 App 2 App 3

Network

OneOS 
Middleware

OneOS 
Middleware

OneOS 
Middleware

IPC FileSystem Scheduler Storage Session

process.stdout.write

61



OneOS: Design

x64 armv7x86

Windows MacOS Linux

OneOS

App 1 App 2 App 3

Network

OneOS 
Middleware

OneOS 
Middleware

OneOS 
Middleware

IPC FileSystem Scheduler Storage Session

62

POSIX Machine



OneOS: Proof-of-Concept Demo

DependableSystemsLab/OneOS
63



OneOS: Discussion

Feedback Wanted:
● Evaluation strategies
● Practicality of Actor-based micro-kernel
● Suitability of high-level language for 

systems programming

Controversial Points:
● Single system image appropriate for a 

geographically distributed grid?
● Mapping POSIX interface over an 

inherently distributed and concurrent 
architecture?

● Limiting application space to high-level 
languages?

Open Issues & Future Work:
● Security and Privacy model
● Failure handling
● Semantics of cyber-physical resources

Potential Drawbacks:
● Fundamental tension between 

cyber-physical resources and their abstract 
representations

● Reasoning about security concerns within 
high-level programming space

● Inability to make low-level optimizations

DependableSystemsLab/OneOSkumseok@ece.ubc.ca
64


