
Out of Control: Stealthy Attacks Against
Robotic Vehicles Protected by Control-based

Techniques
Pritam Dash

University of British Columbia
Vancouver, Canada
pdash@ece.ubc.ca

Mehdi Karimibiuki
University of British Columbia

Vancouver, Canada
mkarimib@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Vancouver, Canada
karthikp@ece.ubc.ca

ABSTRACT
Robotic vehicles (RVs) are cyber-physical systems that operate in
the physical world under the control of software functions. They
are increasing in adoption in many industrial sectors. RVs rely
on sensors and actuators for system operations and navigation.
Control algorithm based estimation techniques have been used
in RVs to minimize the effects of noisy sensors, prevent faulty
actuator output, and recently, in detecting attacks against RVs. In
this paper, we propose three kinds of attacks to evade the control-
based detection techniques and cause RVs to malfunction. We also
propose automated algorithms for performing the attacks without
requiring the attacker to expend significant effort or know specific
details of the RV, making the attacks applicable to a wide range of
RVs. We demonstrate these attacks on ArduPilot simulators and
two real RVs (a drone and a rover) in the presence of an Intrusion
Detection System (IDS) using control estimation models to monitor
the runtime behavior of the system. We find that the control models
are incapable of detecting our stealthy attacks, and that the attacks
can have significant adverse impact on the RV’s mission (e.g., cause
the RV to crash or deviate from its target significantly).

CCS CONCEPTS
• Security andPrivacy→ Intrusion detection systems; •Com-
puter systems organization→ Sensors and actuators.

KEYWORDS
Cyber Physical Systems (CPS), Invariant Analysis, Robotic Vehicle
Security

ACM Reference Format:
Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman. 2018. Out of
Control: Stealthy Attacks Against Robotic Vehicles Protected by Control-
based Techniques. In Annual Computer Security Applications Conference
(ACSAC’19), December 09-13, 2019, San Juan, PR, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’19, Dec 09-13, 2019, San Jose, PR
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Robotic Vehicles (RVs) are cyber-physical systems that operate au-
tonomously leveraging closed-loop feedback control mechanisms
(e.g., PID controller [19]). Two prominent examples of such systems
are Unmanned Aerial Vehicles (UAVs also known as drones) and
autonomous robotic cars (also known as rovers). Such vehicles are
utilized in a variety of industrial sectors (e.g., agriculture, surveil-
lance, package delivery [6, 8, 49], warehouse management [52]) and
even critical missions such as space exploration [38]. Unfortunately,
such vehicles are not well protected, and are vulnerable to both
physical and cyber attacks. A few examples of such attacks demon-
strated in previous research are GPS spoofing [25, 56], gyroscope
sensor tampering [51], attacks on vehicles’ braking system [50].

Because RVs rely on control algorithms for path-following and
trajectory planning [45], using control properties as invariants to
monitor systems’ behaviour has been proposed to detect attacks.
Control Invariants (CI) [12] and Extended Kalman Filter (EKF) [9]
are two techniques that derive invariants using apriori knowledge
of the system. Using the CI and EKF methods, the next state and
control output signal of the RV is estimated. The estimated values
are used to monitor the RV’s runtime behaviour and flag anomalous
behaviour, thus detecting potential attacks.

In this paper, we propose a technique to perform targeted at-
tacks against RVs protected with the CI and EKF techniques. Our
technique can work for any RV with little to no human interven-
tion. Our main insight is that by design, CI and EKF techniques
have to accommodate some degree of deviation from the planned
trajectory due to environmental factors such as friction or wind,
and hence have a certain threshold for flagging deviations as attack.
Further, sensor noise and actuator defects exacerbate the problem.
We propose an automated process by which an attacker can learn
the thresholds and the tolerances of each system for any arbitrary
RV that uses Proportional Integral Derivative (PID) control, the
most commonly used control technique [31], and consequently per-
form targeted attacks against the RV. By controlling the deviation
introduced and the timing of the attacks, we show that the attacker
can remain stealthy and not be detected by techniques such as CI
and EKF. Furthermore, though the deviations may be small, the
consequences of the attacks are severe as they can be performed
over a prolonged period of time, and at a time and place of the
attacker’s choosing. This makes them particularly insidious when
RVs are used in safety-critical scenarios.

We propose three types of attacks that are undetectable by cur-
rent control-based techniques on RVs. i) False data injection: We

ACSAC ’19, Dec 09-13, 2019, San Jose, PR Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman

devise an automated approach through which the attacker can de-
rive the control state estimation model of RVs and reverse engineer
it to obtain the detection threshold and monitoring window used in
the IDS. Exploiting the aforementioned threshold related imperfec-
tions, the attacker can launch sensor and actuator spoofing attacks
such that the deviations in the control output is always maintained
under the detection threshold, i.e., a false data injection attack [32].
By performing such a controlled false data injection over a period
of time, the attacker will be able to significantly deviate the RV
from its original mission path. ii) Artificial delay: We launch artifi-
cial delays into the system’s control execution process which will
affect the timing behaviour of crucial system functions. We show
that the attacker can inject intermittent delays in the reception
of the RVs gyroscopic sensor measurements, which will, in turn
influence the estimation of RV’s angular orientation while eluding
detection. By launching stealthy, intermittent delays, the attacker
can adversely influence the RV’s performance and efficiency. iii)
Switch-mode attack: Finally, we identified that the invariants de-
rived by CI and EKF do not provide tight bounds when the RV
switches modes, e.g., when a drone switches from steady flight to
landing. We exploit this weakness to launch another form of false
data injection attack on actuator signals, which is triggered upon
the RV switching modes.

Prior work has focused on exploiting the vulnerabilities in com-
munication channels, and attacks on the RV’s sensors through noise
injection [12, 50, 51] in the absence of any protection. In contrast,
we consider a scenario where the RV is protected by control in-
variants, and the EKF technique, which makes the attacker’s job
much more difficult. Further, unlike prior work, we make minimal
assumptions on the RV itself, and instead completely automate the
attack generation and learning process, without requiring any apri-
ori knowledge of the system on the part of the attacker (other than
that the RV is using a PID control system). To the best of our knowl-
edge, we are the first technique to automatically find attacks against
the control state estimation model of RVs without being detected by
existing techniques, or targeting a specific type of RV.

We make the following contributions in this paper:

(1) Demonstrate three types of stealthy attacks namely: false
data injection, artificial delay, and switchmode attacks against
RVs in the presence of attack detection techniques such as CI
and EKF. Through the attacks, one can significantly deviate
the RVs from their missions without being detected.

(2) Propose automated algorithms for launching the above three
attacks against any arbitrary RV without apriori knowledge
of its internals. We derive the thresholds and states of the
RVs, and the protection techniques by repeated observations,
and learn the control models used for state estimation.

(3) Implement the attacks on two real RV platforms, namely
a robotic rover, and a drone, both based on the Ardupilot
stack. We also use simulation to demonstrate the attacks on
a wider range of RVs and trajectories.

(4) We find that attackers can learn the thresholds and states
of the RVs using a modest amount of effort (typically 5 to
7 missions). We further show that the stealthy attacks can
have severe repercussions such as deviating a drone by more
than 100 meters from its trajectory (for a mission distance

of 5 Kilometers), and deteriorating the efficiency and per-
formance of rovers by increasing their mission duration by
more than 50%. If launched strategically at vulnerable states,
the stealthy attacks can also cause a drone to crash while
landing, or cause other undesirable effects.

2 BACKGROUND
In this section, we first discuss the architecture and control of
RVs, followed by a description of its modes of operation. Then, we
present the attack detection mechanisms namely Control Invariants
[12] and Extended Kalman Filter [9] (EKF).

2.1 Robotic Vehicle Control
RVs use Proportional-Integral-Differential (PID) feedback control
for their navigation. Typically, an RV system has a number of sen-
sors (e.g., barometer, gyroscope, accelerometer, and magnetometer)
that capture the physical state of the vehicle in the environment.
The information about the vehicle’s current state (e.g., angular and
linear position) is used as feedback to estimate the actuator sig-
nals (e.g., rotors speed, steering) for positioning the vehicle in the
next state. In the case of drones or rovers, a PID controller is used
for position (e.g., altitude, latitude, longitude) control, and attitude
(e.g., yaw, roll, pitch) control. Figure 1 (based on ArduPilot [7])
shows an example illustrating the PID controller used to perform
attitude control along each axis.

Figure 1: PID Control operations in RVs: Position Control
and Attitude Control.

The position control is done using a P controller to convert the
target position error (difference between the target position and
actual position) into target velocity, followed by a PID controller
to derive the target angle (roll, pitch, yaw). Similarly, the target
angles are given as input to the attitude controller, and using the
PID control functions, a high-level motor command is calculated. P
is the proportional term, which aims to adjust the control signal
(e.g., the rotor currents) proportional to the error; I is the integral
term, which is for tracing the history of the error. It compensates
for P ’s inability to reduce the error in the previous iterations. D is
the derivative term to avoid stark change in the error.

2.2 Modes of Operation in RV Mission
For a given flight path, an RV transitions through a series of high
level states typically referred as modes of operation. In the case of

Out of Control: Stealthy Attacks Against Robotic Vehicles ACSAC ’19, Dec 09-13, 2019, San Jose, PR

a drone for instance, when a mission starts, the drone is armed at
its home location. When the Takeoff mode is triggered, the drone
takes off vertically to attain a certain height. Subsequently, a series
of modes can be performed such as Loiter mode,Waypoint mode,
which will prompt the drone to fly autonomously to a pre-defined
location, and Return to launch (RTL) mode, which will prompt the
drone to return to home. When the drone arrives at the destination,
its mode becomes Land mode, and finally the drone is disarmed.
Figure 2 (based on ArduPilot SITL [7]) shows a state diagram of
the various mode of operation commonly deployed in a drone.
The change in mode of operation causes a change in the angular
orientation, control input and actuator signals.

Figure 2: Modes of operation in RVs.

2.3 Control Invariants
The control invariant (CI) approach [12] models the physical dy-
namics of an RV and leverages its control laws to derive invariants
(e.g., control outputs). The control invariants are determined by two
aspects namely, vehicle dynamics, and the underlying control algo-
rithm. For a given RV, the CI model captures the system’s sensor
inputs, based on its current state to estimate the systems’ control
outputs. The approach then derives invariants using the following
state estimation equations.

x ′(t) = Ax + Bu (1)

y(t) = Cx + Du (2)
Where x(t) is the current state, and u(t) is the control input.

A,B,C,D are state space matrices determined through system iden-
tification [34]. The above equations determine the next state x ′(t)
and outputy(t) of the system based on the current state and control
input signal. The CI model uses a stateful error analysis, where
it accumulates the error (deviation) between the estimated out-
put and the actual output in a pre-defined monitoring window.
When the accumulated error exceeds a pre-defined threshold, the
CI technique raises an alert e.g., if the error for roll angle (error
= |y(t)est − y(t)act |) is larger than 91 degrees (threshold) for a
window of 2.6 seconds.

2.4 Extended Kalman Filter
Extended Kalman Filter [9] is commonly used in RVs to fusemultiple
sensor measurements together to provide an optimal estimate of the
position and/or orientation. For example, EKF fuses accelerometer,
gyroscope, GPS and magnetometer measurements with a velocity
estimate to estimate the UAV’s yaw, pitch and roll. Assuming that

the system is operating in a steady state, the estimate of the system’s
state is given by the following equation:

x ′(t) = Ax + Bu + K(y(t) −C(Ax + Bu)) (3)

Where K is the steady-state Kalman gain, and A,B,C are the state
space matrices. An IDS based on EKF uses the residual analysis
technique to detect sensors and actuator attacks. The difference
between the real-time sensor measurement and the estimate of the
sensor measurement is the residual vector, which is defined as:

r (t) = y(t) −C(Ax + Bu) (4)

Where r (t) is residual at each time-instant t . An IDS based on EKF
compares if the residual r (t) is larger than a pre-defined threshold
for a certain monitoring window, and raises an alarm when such
anomalous behaviour is observed [33].

3 LIMITATIONS IN EXISTING METHODS AND
ATTACK SCENARIOS

This section describes the limitations in CI and EKF models, and
how we exploit those limitations to design stealthy attacks. Then,
we discuss a few attack scenarios to analyze the repercussions of
such attacks when targeted at RVs deployed in industrial use-cases.
Finally, we describe the main challenge we address.

3.1 Limitations in Existing Methods
As mentioned, the CI and EKF models derive invariants leveraging
the control laws, and estimate the vehicles’ position and angular ori-
entation. An IDS based on CI and EKF models will analyze the error
(i.e., deviation) between the real-time values and the estimated val-
ues. If the error is substantial for a pre-defined monitoring window
(tw), it is treated as an anomaly and an alarm is raised. However,
RVs may incur natural errors caused due to environmental factors.
Therefore, to avoid false positives due to natural errors, and to
accommodate overshooting of the RV, the IDS accumulates errors
in a monitoring window, and compares the aggregated error with a
pre-defined threshold. Therefore, instead of performing direct com-
parison between the real-time control outputs and the predicted
control outputs, the detection techniques perform a threshold-based
(τ) comparison as shown below.

IDS(tw) =

{
1, i f

∑tj
ti |Vpredicted −Vr ealt ime |n > τ

0, otherwise
(5)

Attackers can exploit the aforementioned attack detection prin-
ciple and successfully perform stealthy false data injection attacks
on sensor readings and actuator signals in three ways as follows.

First, the error values under the threshold limit for a certain
monitoring window are acceptable, and will not be reported as
anomalies. Assuming the attacker figures out the threshold, he/she
can trigger stealthy attacks by injecting false data to the sensor
readings in a controlled manner, causing the RV to gradually de-
viate from the defined path. By performing such an attack for a
long period of time, the attacker will be able to cause a substantial
deviation. Because the deviation is within the accepted threshold,
the invariant-based techniques (CI and EKF) will not be able to
detect it.

ACSAC ’19, Dec 09-13, 2019, San Jose, PR Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman

Attack Goal Attack Scenarios Attack Type Consequences
Deviate the RV to a desired location Deviating a delivery drone False data injection Drone may deliver a package at wrong location

Influence RVs performance Disrupting productivity of warehouse rovers Artificial delay Rovers may not follow the right organization pattern
and products will be stored randomly.

Damage, crash or cause major disruptions Crash a drone while landing Switch mode Delivery items could be damaged

Table 1: Attacker’s goal, types of attack and its consequences.

Second, because the detection techniques employ a fixed mon-
itoring window for threshold comparison, an attacker can inject
artificial delays, which will obstruct the system from receiving the
current set of sensor measurements. Such delays can stop the sys-
tem for a few seconds, and prevent the system from performing
critical operations such as mode changes. The attacker can inject
the delay attacks intermittently to avoid accumulating large errors,
which might trigger the IDS.

Finally, we found that the invariants derived using CI and EKF
are insufficient in providing a close estimate of target angles when
the RV switches modes (e.g., when the drone is commanded to land
after flying at a fixed height). In other words, the difference between
the runtime values and the estimated values becomes larger when
the RV switches to Land mode fromWaypoint mode. Therefore,
the detection techniques will have to employ a larger threshold to
avoid false positives. This enables the attacker to inject large false
data, and thereby cause drastic changes in the RV’s path.

3.2 Attack Scenarios
Each of the stealthy attacks presented in this paper exploits a weak-
ness in the CI/EKF techniques identified in the previous section. In
this section, we discuss the impact of the attacks when performed
against RVs in industrial scenarios. Table 1 shows the attackers’
goal, the type of attack to achieve the goals, and how the attack
would affect the RVs operations in an industrial use-case.

False Data Injection This attack enables the attacker to mu-
tate the sensor measurements to a desirable value (for them). For
instance, an attacker may inject false readings to the gyroscopic
sensor measurements, which would make the drone unstable. Prior
work [12, 51] simulated similar attacks using acoustic noise signals
to tamper with the sensors of an RV, causing a major deviation in
the intended path of the RV. However, we are interested in per-
forming more subtle mutations to sensor readings. The goal is to
simulate subtle and minor deviations in a controlled manner for
an extended time period, and to maintain the deviation factor just
under the threshold pre-defined by an IDS using CI and EKF. In-
stead of deviating the drone by a large factor (e.g., 60 degrees) at
once (which might trigger the IDS and result in the attack being
detected), the attacker can intermittently inject small false data
values to the sensor readings. This will influence the control op-
erations causing a difference in the drone’s position and angular
orientation. By performing such minor deviations for a period of
time, the attacker will be able to divert the drone to his/her desired
location.

Artificial Delay With this attack, the attacker influences the
timing behaviour of the system events or the controller events by
injecting artificial delays. Such artificial delays can allow attackers
to change the timing of important system actions (e.g., change in

mode of operation), delay essential API calls, or cause other con-
troller functionality to be suppressed. For instance, autonomous
rovers are increasingly deployed in warehouses to facilitate inven-
tory management and packaging. These rovers receive real-time
commands to pick up or drop a package at a given location in
the warehouse area. With artificial delay attacks, the attacker can
cause an RV to receive a particular command at a delayed time.
However, if the RV receives the sensor data of a previous state in
the mission, the difference between the estimated behavior and
observed behaviour for a pre-defined motioning window will in-
crease. This may potentially trigger an alert by the IDS. Therefore,
to maintain stealthiness, the attacker will need to inject such delays
intermittently and not perpetually.

Switch Mode The switch mode attack is a form of false data
injection launched at highly vulnerable states in the RV’s mission.
Knowing the current mode of operation the attacker can inject
malicious code, which is triggered when the RV switches its mode
of operation. For instance, when a drone switches to Land mode, a
malicious code snippet will overwrite the actuator signals. This will
prompt the drone to gain elevation instead of landing, or increase
the rotor speed causing the drone to land harder than is safe, poten-
tially resulting in a crash. When such an attack is launched against
delivery drones, it may damage packages or may hurt the recipients
of the package. Because the attack will not cause the monitoring
parameters to exceed the pre-defined threshold, the IDS will not be
able to detect it.

3.3 Challenges
The main challenge for the attacker is to launch automated attacks
against RVs while remaining undetected by CI and EKF IDS systems,
if they are deployed. Therefore, the attacker needs to (1) learn the
parameters of the system and the IDS, and (2) manipulate the sensor
readings or inject delays by just the right amounts, and at the right
times to remain stealthy, even while achieving their aims. This is
the challenge we address in this paper.

4 APPROACH
In this section, we describe the approach for performing each of
our stealthy attacks. First, we describe our attack model, followed
by the steps necessary for preparing and performing the stealthy
attacks by an attacker. We then present automated algorithms for
executing the stealthy attacks on RVs.

4.1 Attack Model
The goal of the attacker is to i) perform stealthy attacks and prompt
deviations in the RV’s mission by manipulating sensor measure-
ments and actuator signals in the presence of an IDS using the CI
and EKF techniques, and ii) modify the timing behaviour of the
system events or control events of the RV and adversely influence

Out of Control: Stealthy Attacks Against Robotic Vehicles ACSAC ’19, Dec 09-13, 2019, San Jose, PR

its performance and efficiency. Stealthy means the attack does not
cause any unexpected system behaviour that is detected by the IDS.
For instance, in a stealthy attack, the sensor readings and actuator
signals are within the expected thresholds for a particular state in
the RV’s mission path.

We assume that the attacker has the following capabilities:
• Can compromise only the RVs (drones or rovers) and no
other components (e.g., GCS, telemetry etc.) of the system.
• Can snoop on the control inputs and outputs, and derive the
RV’s state estimation model (i.e., the state space matrices).
• Can replace the libraries used in the RV’s software stack
through code injection [4]. This will enable the attacker to
modify the program code and inject malicious behaviour.
• Using these capabilities, the attacker can perform targeted
spoofing attacks such as compromising the gyroscopic sensor
and accelerometer of the RV. The attacker can arbitrarily
manipulate sensor readings to his/her desired values.

However, we assume that the attacker cannot tamper with the
firmware, cannot have root access to the Operating System (OS),
or delete system logs. Furthermore, the attacker does not know the
physical properties of the RV, such as the detailed specifications of
its shape. In addition, the low-level control parameters (e.g., how
the vehicle reacts to control signals) and the commands from the
auto-navigation system (e.g., mission semantics of the vehicle) are
not known to the attacker. However, the attacker does need to
know that the IDS uses CI and/or EKF models to derive invariants
- this is so that he/she can modulate the attack accordingly (if
not, the attacker can assume both techniques are deployed and be
conservative).

4.2 Attack Preparation
Figure 3 presents an overview of the common steps required for
carrying out each attack. This section describes the steps in detail.

Figure 3: Attack Overview.

Data Collection: The first step in attack preparation is to collect
mission profile data of the RV. The attacker can either collect mis-
sion profile data from a real RV, or he/she can simulate the missions
for the RV to achieve a realistic mission profile. The time series data
of the target state x ′(t), current state x(t), control inputu(t), control
output y(t) parameters will be used to derive the state estimation
model (i.e., the state space matrices). Ideally, the attacker will collect
traces from two control operations namely, position control and
attitude control (Figure 4). The Position Controller takes the target

position as input, and applies the PID control algorithm to calculate
the target angles along X , Y , and Z axis). The actual position is
looped back as feedback to the controller. The Attitude Controller
takes the target angle as input, and calculates the motor outputs
(rotation speed). The actual angles are looped back to the controller.
The attacker will record the parameters pertaining to the above
mentioned control operations (e.g., target velocity and actual veloc-
ity along x ,y, z axis, target acceleration, target and actual angles,
angular velocity and angular rate). Ideally, the attacker will collect
mission profile data from different mission trajectories, covering
multiple modes of operation to generate an accurate state estima-
tion model. However, the data does not have to be comprehensive
to derive the state estimation model for RVs [12].

Figure 4: Position and Attitude Controllers in RV.

Control State Estimation Model: Both CI and EKF derive in-
variants based on the vehicle dynamics and the underlying control
algorithm (typically PID control in the case of RVs). The invariant
generation process heavily relies on the state estimation model as
shown in Equations 1,2, 3 and 4. The attacker’s goal is to derive
the unknown coefficients for solving the aforementioned equations.
The mission profile data collected in the above steps can be used
to derive the state estimation model (i.e., state space matrices). To
derive the A,B,C,D state space matrices, the attacker can use sys-
tem identification (SI) [34], which is a process to develop a dynamic
model of the system using the system’s control input and control
output data. From the state space matrices, the attacker can derive
the Kalman gain K . The procedure is explained in Appendix A.

Malicious LibrariesTypically, the RV’s software uses two broad
set of libraries for i) control operations such as PID control, attitude
estimation (AHRS), and motor mixing etc. ii) sensor operations
such as performing inertial measurements, GPS interface, optical
interface etc. The APIs are specific to each class of RVs, but do not
vary within a class (typically distributed as shared libraries). For
example, the Autopilot software stack, which is deployed on many
RVs, has a common set of shared libraries. One of the ways the at-
tacker can perform the stealthy attacks is by replacing the original
shared libraries with malicious ones. The malicious libraries will
contain the attack code snippets. Once the unknown coefficients
(A,B,C,D,and K) for solving the control equations are derived, the
attacker will package them with the malicious library to perform
threshold comparisons in runtime.

MaliciousWrapper: The attacker will design a malicious wrap-
per which will overwrite the original control and sensor libraries
with malicious libraries by exploiting the dynamic linking fea-
ture [4]. When the RV software makes an API call to the control or
sensor libraries, the malicious libraries will be called.

ACSAC ’19, Dec 09-13, 2019, San Jose, PR Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman

The attacker can also inject acoustic noise at the resonant fre-
quency [51] to achieve the same results. However, because of the dif-
ficulties associated with such noise injection (e.g., the noise source
has to be in close proximity of the RV, and the impact of the attack
is unknown) it will be harder to perform the attacks in realistic
settings. Our approach is similar to that of Choi et al.[12], who also
simulated noise injection through a piece of attack code.

4.3 Attack Execution
False Data Injection (FDI) To perform an FDI attack, the attacker
will need to derive the threshold and the monitoring window for
the CI and EKF approaches as follows. i) CI approach - To derive
the monitoring window, the attacker can use the time series data
collected in the steps above to figure out the maximum temporal
deviation between the observed control output sequences and the
corresponding estimated control output sequences via a sequence
alignment algorithm (e.g., [48]). Once the window is obtained, the
attacker can calculate the accumulated error in this window and
select the accumulated value as the threshold. This is similar to
the dynamic time wrapping technique used in Choi et al.[12] ii)
Leveraging EKF’s state correction - EKF accumulates the error be-
tween the predicted angular orientation and the measurements of
accelerometer and gyroscope in a large matrix called State Covari-
ance Matrix. When the error is larger than the threshold, it applies
a filter which is referred to as State Correction, and the state covari-
ance matrix is updated. The attacker can perform experiments on
the simulator by injecting noisy sensor measurements to observe
the time interval at which the state covariance matrix is updated.
This time interval is the most viable monitoring window the state
estimation model based IDS can employ, and the accumulated error
in this monitoring windowwill be the threshold. To remain stealthy,
the attacker will manipulate the control input parameters such that
the deviations in the control output signal are within the detection
threshold of both CI and EKF.

Algorithm 1 shows the algorithm to launch FDI attack on the
RV’s position controller by manipulating the angular orientation
measurements. The function falseDataInjection will get trig-
gered when the RV’s software components make an API call to
the malicious libraries. The pre-computed state space matrices and
the threshold values will be packaged with the malicious library
(Lines 2 to 5). Based on the error threshold, the attacker will derive
a value f for a target sensor. The duration of false data injection
tattack is based on the monitoring window. Lines 10 to 13 manip-
ulate the control input u(t) by injecting false data f in the sensor
measurements. Lines 18 to 24 manipulate the value of f when the
deviation approaches the detection threshold in order to remain
stealthy. Since the detection procedure resets the accumulated er-
ror (Line 25) for each monitoring window, the attack will not be
detected by the CI and EKF techniques.

Artificial Delay The attacker can trigger the artificial delay (AD)
attack by including a code snippet in the malicious library called
ArtificialDelay, which when triggered will perform certain re-
source intensive operations. Such delays will obstruct other system
calls and control operation, thereby disrupting the timing behaviour
of the systems. However, if the delay is triggered for a long time

Algorithm 1: False data injection in sensor readings
1 Function FalseDataInjection():
2 A, B, C , D: pre-calculated state-space matrices.
3 K : pre-calculated Kalman gain.
4 TCI : pre-defined threshold for CI.
5 TEKF : pre-defined threshold for EKF.
6 tattack : duration of attack.
7 f : false data
8 while (tattack) do
9 TAnдle ←− Tarдet anдle;

10 AAnдle ←− Actual anдle; (read data from sensor)
11 AAnдle ←− AAnдle + f ;
12 attitude tarдetX = Aanдle −Tanдle ;
13 u = attitude tarдetX ;
14 Xn = A ∗ x + B ∗ u;
15 YRoll = C ∗ x + D ∗ u;
16 R = YAnдle −C ∗ Xn ;
17 d = |YAnдle −TAnдle |;
18 errorCI = errorCI + d ;
19 errorEKF = errorEKF + R;
20 dsum = dsum + d

21 if dsum > TCI and dsum > TEKF then
22 f = 0;
23 end
24 end
25 errorCI , errorEKF ,dsum = 0;
26 return TAnдle ;

period, the error accumulation in the invariant analysis will in-
crease and the IDS might raise an alarm. To remain stealthy under
such an IDS, the attacker can use the monitoring window found in
the above steps as a threshold (TAD) and not allow delays longer
than this threshold. By triggering the snippet ArtificialDelay
intermittently and under the threshold TAD , the attacker will be
able to bypass the detection mechanism. For the artificial delay
attack, the algorithm is similar to the one shown in Algorithm 1,
where the tattack will be derived based on the monitoring window
of CI and EKF techniques. The code snippet delay_attack will be
triggered when an API in the malicious libraries is triggered. The
algorithm for artificial delay attack is presented in Appendix B.1
Switch Mode The switch mode (SM) attack is a form of FDI attack
launched at a few, highly vulnerable states of an RV mission. To
execute this attack, in addition to the detection threshold and the
monitoring window as per the CI and EKF techniques, the attacker
will have to monitor the mode of operations of the RV. Algorithm 2
shows an example of switch mode (SM) attack launched when the
RV changes its operations to LAND mode (Line 11). The attacker
can also launch such attacks at other mode transitions (e.g., from
Takeoff toWaypoint). Similar to the FDI attack, here the attacker
will derive a value f , which when injected to the motor thrust value
will disrupt the RV’s behaviour (Line 23). Further, to remain stealthy
this attack will be carried out for a specific attack duration tattack ,
which is derived based on the monitoring window. In this case, as

Out of Control: Stealthy Attacks Against Robotic Vehicles ACSAC ’19, Dec 09-13, 2019, San Jose, PR

Algorithm 2: Switch mode attack - influencing actuator sig-
nals
1 Function SwitchModeAttack():
2 A, B, C , D: pre-calculated state-space matrices.
3 K : pre-calculated Kalman gain.
4 TCI : pre-defined threshold for CI.
5 TEKF : pre-defined threshold for EKF.
6 tattack : duration of attack;
7 f : false data;
8 while i<num-motors do
9 Tmotor = дetPWMOutput(i);

10 Mode = дetCurrentMode();
11 if Mode = LAND then
12 while (tattack) do
13 Xn = A ∗ x + B ∗ u;
14 Ymotor = C ∗ x + D ∗ u;
15 R = Ymotor −C ∗ Xn ;
16 d = |Ymotor −Tmotor |;
17 errorCI = errorCI + d ;
18 errorEKF = errorEKF + R;
19 dsum = dsum + d

20 if dsum > TCI or dsum > TEKF then
21 f = 0;
22 end
23 motor [i] = thrustToPWM() + f ;
24 end
25 else
26 motor [i] = thrustToPWM();
27 end
28 end
29 end

the threshold is found to be larger than normal, the attacker can
inject larger false values which may result in severe consequences
in a short time duration.

5 EXPERIMENTAL EVALUATION
In this section, we discuss the experimental setup, followed by the
research questions (RQs) we ask. Then, we present the results of
the experiments to answer the RQs.

5.1 Experimental Setup
To demonstrate the stealthy attacks, we use both real RVs and
simulation platforms. We use two types of RVs in each, namely (1)
Pixhawk based drone [37] (henceforth called Pixhawk drone) , and
an Aion R1 [47] ground rover (henceforth called R1 rover) for real
RVs, and (2) quadcopter (henceforth called ArduCopter SITL), and
ground rover (henceforth called ArduRover SITL) for simulation.
Figure 5 shows the real RVs used to test the stealthy attacks. For
vehicle simulation, we use APM SITL [7] and JSMSim [27]. We
run the simulators on an Ubuntu 16.0 64-bit machine with Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz processor and 8 GB RAM.

(a) Pixhawk based DIY drone (b) Aion R1 Rover

Figure 5: RVs used for Experiments.

SoftwareAll the subject vehicles are based on ArduPilot’s software
suite [7]. Though there are other popular software suites such as
PX4 [55] and Paparazzi [54], we chose to use ArduPilot because it
is the largest open-source autopilot software suite deployed in over
one million UAVs [23], and supports a wide variety of RV hardware
platforms (e.g., Pixhawk, Bebop, Navio etc.) [53]). That said, our
attacks are not tied to a specific hardware or software platform.
Hardware Both the drone and the rover (Figure 5) used in our
experiments are based on the Pixhawk platform [37]. Pixhawk is an
ARM Cortex based all-in-one hardware platform, which combines
flight management unit (FMU) controller, I/O, sensors and memory
in a single board. It runs NuttX, which is a Unix-based real-time
operating system, on a 32-bit Cortex processor and 256 KB RAM
[58].
Attack Setup We performed 20 missions on both the simulations
and the real vehicles, and collected the time series data of control
input u(t), system state x(t), and the control output y(t). The time
series data was collected from position control and attitude control
operations of the RV (Figure 4). These data sets were used to derive
the state estimation model 1.

To perform the attacks, we designed a set of malicious libraries
for the following control libraries of the ArduPilot software suite:
AHRS, AttitideControl, and PositionControl.We overwrote the
environment variable (LD_LIBRARY_PATH) in the .bashrc file to
point to the malicious libraries instead of the originals - this tech-
nique has been used in prior work as well [4]2. Henceforth, when
the RV software components call functions defined in the above
libraries, the corresponding function in the malicious library will
be called (as the malicious libraries have a function with same name
as defined in the original library). The malicious libraries can be
timed to stay dormant until the RV is deployed on a critical mission,
at which point, they can get triggered.

5.2 Research Questions
RQ1. How much effort does the attacker need to expend to derive

the state estimation model?
RQ2. What are the impacts of the stealthy attacks on the subject

RVs?
RQ3. How effective are the attacks in achieving the attacker’s

objectives?

1All the code and data-sets used in this paper can be found at
https://github.com/DependableSystemsLab/stealthy-attacks
2This can also be done by executing a Trojan program or shell code, for example.

ACSAC ’19, Dec 09-13, 2019, San Jose, PR Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman

5.3 Results
In this section, we present the results of the stealthy attacks experi-
ments performed on the subject RVs to address the RQs.
RQ1:Attacker’s effortThe first set of experiments aim to quantify
the effort required on the attacker’s part in deriving an accurate
state estimation model for a subject RV. We divided the mission
data into two sets: i) Model extraction set - used to derive the state
estimation model (15 missions for each subject RV, both simulation
and real vehicles), and ii) Model testing set - used to test the accuracy
of the obtained state estimation model (5 missions for each subject
RV, both simulation and real vehicles).

We followed an iterative approach in deriving the state estima-
tion model and evaluating its accuracy. In the first iteration, we
randomly picked 5 mission profiles from the model extraction set
and using system identification [34, 35], we derived the A,B,C,D
matrices and the Kalman gain K . Following Equations 1, 2, 3, and 4,
we estimated the system output (e.g., roll, pitch, yaw) for missions
in the model testing set. Then we analyzed the accuracy of the state
estimation model by comparing the estimated and the realtime
system outputs.

For each subsequent iteration, we added 1 more mission profile
data from the model extraction set, derived an updated model,
and performed the above analysis to identify if the accuracy of
the state estimation model has converged. From this experiment,
we found that all model estimated outputs converged with the
realtime outputs by the third iteration. For some subject RVs, the
convergence occurred after the first iteration. Overall, the model
converged with just 5 to 7 mission data, and hence the attacker can
derive an accurate state estimation model with modest effort.

Figure 6: State space model - Realtime vs Estimated values.

Even in cases where the model converged, for some states of
the RV’s mission path, the state estimation model failed to provide
precise estimates. Figure 6 shows an example of the Pixhawk drone,
where the model did not converge. We have divided the graph into
4 regions: 1, 2, 3, and 4, based on the different modes of the RV’s
mission. As can be seen in the figure, the model estimated output
converges with the realtime outputs in Regions 2 and 3, but not
in Regions 1 and 4. The RVs realtime control outputs relies on the
realtime sensor measurements (control input u(t)) and the P , I ,D

gains (Section 2). Based on the RV’s trajectory and its current mode
of operation, the sensor measurements may incur additional noise.
The PID control functions may consequently adjust the gain param
to mitigate the effects of the noise, which will influence the realtime
control outputs. However, the model estimated control outputs are
not affected by runtime PID parameter adjustments. Therefore, it is
difficult to achieve 100% convergence between the model estimated
and the realtime values.
RQ2: Impact of the stealthy attacks In the second set of exper-
iments, we performed the stealthy attacks in the presence of an
IDS using the CI and EKF models respectively. Before performing
the attacks, the attacker will have to derive the detection threshold
and the monitoring window. For the CI model, we followed the
dynamic time wrapping method (explained in Section 4), to derive
the monitoring window. To identify the monitoring window of
the EKF model, we performed experiments in ArduCopter SITL by
injecting smaller noise into the sensor measurements and observed
the intervals at which the state covariance matrix is updated (ex-
plained in Section 4) . The detection thresholds and monitoring
windows for all the subject RVs are presented in Table 2.

Table 2 also shows the impact of the attacks on the subject RVs.
The results shown in the table are based on data from 5 missions,
and consist of the average values of the attack’s outcomes (devi-
ations, delays) in the presence of CI-based IDS, EKF-based IDS,
and both together. Our results show that the thresholds set by CI
and EKF model allow a considerable margin for stealthy attacks
to be launched. Though the attacks do not always cause drastic
repercussions, they cause substantial deviation in the RVs trajec-
tory (deviation of 8 to 15 m for a mission distance of 35-50 m),
and adversely influence their efficiency by increasing the mission
duration by 30% to 50%. We discuss a few examples of the attacks.

(a) Aion R1 Rover (b) Pixhawk Drone

Figure 7: FDI attacks on subject RVs.

False Data Injection. For all the subject vehicles, we injected
false data in the sensor measurements as per Algorithm 1 which
influences the yaw, roll and pitch angles. The injected false data
modified the angles in the range 0−45 degrees. Figure 7 shows how
the FDI attack manipulates the RV’s Euler angles. The intermittent
and controlled false data injection prevents accumulation of large
error within the monitoring windows, thereby bypassing the CI
and EKF invariant analysis. Table 2 shows that for the Pixhawk
drone, the average deviation caused by FDI attack is 11 m for a
mission distance of 50m. The deviation ismuch larger than standard
GPS offsets [46] (video can be found at [43]). As it is difficult to
perform experiments on real vehicles with large mission duration
and distance, we instead perform detailed analysis of this attack

Out of Control: Stealthy Attacks Against Robotic Vehicles ACSAC ’19, Dec 09-13, 2019, San Jose, PR

on our simulator by increasing the mission distance (from 100m to
5000m). We found that the deviation increases almost linearly with
mission distance. Therefore, for a mission distance of 5000 m, the
FDI attack can deviate the drone by more than 100 m.

Artificial Delay The artificial delay attacks were also launched
intermittently, and the duration of the delay was under the monitor-
ing window duration found above. For a given monitoring window,
we injected delay attacks in the vehicles’ position controller esti-
mations. We found that these attacks were more disruptive for the
rovers than the drones, both in the real world and in simulations
(video can be found at [42]). As shown in Table 2, the attack in-
creases the mission time of the rover and drones by more than 50%
and 30% respectively.

Switch Mode We only applied the switch mode attack on drones
(both real and simulated), as the rovers used in our experiments
only had a few operational modes, and hence did not experience
many mode transitions. Figure 8 shows the divergence between
the roll angle and the realtime roll angles when the Pixhawk drone
switches to Land mode. As we discussed above (Figure 6), the model
estimated values and the realtime values do not converge for all
modes, and hence we posit that the detection threshold should
accommodate large offsets to prevent false positives. We found that
for the Pixhawk drone, the offset was as large as 11 degrees. This
enabled us to inject large false values into the roll angle during
mode switching (Figure 8), which resulted in major disruptions.

Figure 8: Switch Mode Attack against Pixhawk Drone.

RQ3: Effectiveness of the attacks From the above experiments,
we found that the false data injection attack can cause a deviation
of 30 m (for a mission distance of 100 m) in a drone’s trajectory.
The deviation increases to more than 100 m for a mission distance
of 5 km. Typically, drones deployed in industrial use-cases such as
package delivery, surveillance, etc., will operate autonomously for
a mission duration of about 30 minutes [8, 10], and cover a distance
up to 20 km [24]. In such missions, the impact of the FDI attacks
can be much more significant.

The switch mode attacks can also cause major repercussions,
even for short missions. From our experiments (not presented in
the table) we found that for a mission distance of 50 m, the switch
mode attack prevented the drone from flying to the destination.
Instead the drone loitered at a certain height. In another instance,
the attack caused the drone to ignore the "land" command, and the
drone kept gaining elevation (video can be found at [44]). Further,
in simulations, we were able to crash the drone by strategically

launching the switch mode attack when the drone switched to
the Land mode. When such attacks are launched against drones
in industrial use-cases, it can damage the drone and other nearby
objects as well.

The artificial delay attack increased themission duration bymore
than 50% for rovers and by 30% for drones. Although this attack
does not directly deviate or damage the RVs, it can have major
performance and efficiency related consequences when launched
against RVs in industrial use-cases. For example, drones are used for
delivery of time critical items such as blood samples and drugs [8,
10], and rovers are used to increase the productivity in warehouses
[52]. Delay attacks can have adverse consequences in these cases.

6 DISCUSSION
The main limitation of our attack approach is that the state esti-
mation model, as well as the threshold and monitoring window
values, vary for RVs using different hardware platforms (e.g., the
model derived from Pixhawk drone does not not apply to Bebop2
drone). Therefore, the attacker will have to expend the effort of
repeating the steps in the Attack Preparation Phase for each class
of RVs. In this section, we present the design of a self-learning
malware program that will attack an RV adaptively without any
human effort. Then, we discuss the other limitations of our attacks,
followed by a discussion on how IDSes can be better designed for
dynamic CPS such as RVs. Finally, we discuss some of the threats
to the validity of our results.

6.1 Self-Learning Malware
We propose a technique though which an attacker with the same
capabilities as in our attack model (Section 4.1) can automate the
attack preparation phase through a self-learning malware. The
attacker can design a program called modelExtractor to collect
the sensor measurement and the mission profile data from position
controller and attitude controller. The modelExtractor will work
in tandem with the malicious library on the RV.

For each mission, the modelExtractor will collect the data, and
create an archive of mission profile data for various mission tra-
jectories and mode of operations of the RV. As we said earlier
(Section 4.2), the mission profile data from 5-7 missions is suffi-
cient to derive an accurate state estimation model. After the RV
has completed n missions, the modelExtractor will trigger a sys-
tem identification library [18, 41] to derive the state space matrices
A,B,C,D and the Kalman gain K .

From our experiments, we have found that the values of the
monitoring window and the detection threshold based on EKF
are typically smaller than those of CI. Therefore, the attacker can
focus on deriving the EKF’s threshold and monitoring window, by
recording the time intervals at which EKF’s state covariance matrix
is updated. This way, the monitoring window can be extracted,
and the error accumulated in this monitoring window will be the
threshold. The modelExtractor program will pass these values
to the attack algorithms (Algorithm 1, Algorithm 2), which will
trigger the attacks based on the RVs mode of operation and mission
state. While we have not implemented such a malware program and
hence cannot measure its overhead, our preliminary experiments

ACSAC ’19, Dec 09-13, 2019, San Jose, PR Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman

Vehicle
Type

Attack
Types

Mission
Distance
(in m)

Flight
Time
(in sec)

Threshold
CI - IDS

(in degrees)

Monitoring
window
CI-IDS

(in seconds)

Deviation
CI-IDS
(in m)

Threshold
EKF - IDS
(in degrees)

Monitoring
window
EKF-IDS
(in seconds)

Deviation
EKF-IDS
(in m)

Deviation
CI & EKF
(in m)

Attack Impact

ArduCopter SITL
FDI 50 45 60 (yaw angle

estimate) 2.0
11 45 (yaw angle

estimate) 2.3
8 8 drone deviated from its trajectory

SM 50 49 7 7 7 drone landed (crash landing) at wrong location
AD 50 71 - - - mission took more than 20s longer than usual

ArduRover SITL FDI 50 42 72 (roll angle
estimate) 2.6 14 60 (roll angle

estimate) 2.3 11 11 rover followed wrong path
AD 50 72 - - - mission took more than 30s longer than usual

Pixhawk Quadcopter
FDI 50 32 60 (yaw angle

estimate) 2.0
11 45 (yaw angle

estimate) 1.9
8 8 drone deviated from its defined trajectory

SM 50 34 6 6 6 drone landed at wrong location
AD 50 41 - - - mission took 10s longer than usual

Aion R1 Rover FDI 36 35 82 (roll angle
estimate) 2.6 11.2 60 (roll angle

estimate) 2.5 9 9 rover followed wrong path
AD 36 59 - - - mission took more than 20s longer than usual

Table 2: Results of the attacks on different types of RVs and the impacts of the attacks. Note that SM attacks are only applicable
to drones and not to rovers in our experiments.

on performing these measurements and calculating the thresholds,
indicate that the overhead of the malware will likely be small.

6.2 Limitations
In FDI attacks, the value of the false data to be injected is calculated
dynamically based on the threshold and the current state of the
system in order to remain stealthy. However, in some situations
the threshold values based on the CI and EKF models will not al-
low much room for performing FDI. For example, for a Bebop2
drone, the CI model employs a threshold of 5.6 degrees (roll an-
gle estimation) for a monitoring window of 1.8s [12]. We did not
have access to a Bebop2 drone to perform the attacks ourselves.
Therefore, we performed experiments in the simulator using the
thresholds and monitoring window for Bebop2 [12]. We found that
for a mission distance of 50 meters, the deviation caused by the
FDI attack was only 4 meters, which was considerably smaller than
what we observed for the Pixhawk drone.

Further, in some of our experiments, we found that if the drone
overshoots its trajectory because of the injected false values (for
example, in a switch mode attack, where we injected large false
values) the drone system activates the (hardware) fail-safemode and
forces the drone to land amidst the mission. This can be considered
a limitation of our attack because the attack failed in achieving
the desired outcome. However, an attacker can take advantage of
such a fail-safe landing mechanism, and force the drone to land at a
location conducive to the attacker (different from the original one).

6.3 Countermeasures
One way to mitigate the attacks in this paper is to design adaptive
thresholds and variable monitoring windows for the IDS techniques.
The conventional methods for invariant extraction (both CI and
EKF) use pre-defined fixed thresholds and monitoring windows
for a subject RV. We exploit this notion of fixed bounds invariant
analysis to trigger our attacks. If the IDS uses an adaptive threshold
(e.g., different threshold for steady state flight and Land/Takeo f f
modes), the leeway for injecting false values into sensor and actua-
tor parameters will decrease, which in turn will reduce the impact
of the FDI and switch mode attacks. Similarly, if the IDS employs
variable-sized monitoring windows, the impacts of artificial delay
attack will decrease. If the attacker injects a fixed size delay (as
we do in our artificial delay attack), an IDS using a variable sized
monitoring windowmay detect the attack. We defer detailed design
of mitigation techniques for these attacks to future work.

6.4 Threats to Validity
We consider three threats to validity - i) Internal, ii) External and
iii) Construct. An internal threat to our work is that we have con-
sidered only control-based attack detection techniques. Although
we do not evaluate other attack detection techniques against our
stealthy attacks, we posit that methods that follow a threshold
based detection such as CI and EKF are vulnerable to our stealthy
attacks. Another internal threat is that our experiments with real
vehicle were not very extensive. This is largely because of the re-
strictions and regulations around flying unmanned RVs, as well as
time limitations. However, we mitigate this threat by performing
extensive unbiased experiments on a simulator.

An external threat to work is that we used only one software
platform (i.e. Ardupilot) and one type of hardware platform (i.e.
Pixhawk). RV software mostly uses pre-designed libraries for con-
trol and sensor operations. Therefore, our stealthy attacks can also
be extended to other RV software platforms such as PX4[55] and
Paparazzi [54], which will require development of platform specific
malicious libraries.

Finally, the construct threat to validity is that if the detection
threshold and monitoring windows are small, the effects of the
stealthy attacks will not be as critical. However, as the detection
threshold in CI and EKF methods is calculated using training traces,
it is difficult to come up with small and precise threshold bound-
aries, for reasons such as sensor noise and environmental factors.
Moreover, an aggressively calculated small detection threshold may
result in high false positives, which is undesirable. Secondly, even
with small detection windows, the artificial delay attack will still
be able to cause undesirable consequences in the RV mission.

7 RELATEDWORK
Sensor spoofing attacks. Previous work has demonstrated sen-
sor spoofing attacks such as GPS spoofing [25][56] to misguide a
drone’s trajectory, optical spoofing [17] to gain an implicit control
channel etc. It has also been shown that inaudible sound noise when
injected at resonance frequency can adversely affect the MEMS gy-
roscopic sensor, which can cause the drone to crash [51]. Likewise,
attackers can compromise the accelerometer of drones by injecting
acoustic noise in a controlled manner [57]. Jha et al.[26] devel-
oped a ML-based fault injection technique for autonomous vehicles
(AV) that will modify the states of the AV that are most vulnerable.
However, these attacks are not necessarily stealthy, as they can
be detected by the IDS depending on the degree of deviation they
cause. In contrast, our attacks are designed to be stealthy.

Out of Control: Stealthy Attacks Against Robotic Vehicles ACSAC ’19, Dec 09-13, 2019, San Jose, PR

Stealthy attacks such as false data injection have been demon-
strated on industrial control systems to mislead state estimators and
controllers [16, 32, 36]. Stealthy sensor spoofing attacks can induce
the supervisor control layer into allowing the system to reach an un-
safe state, thereby causing physical damage to the system [21]. Our
attacks cause perturbations in the sensor measurements thereby
inhibiting the RV from performing its task, and not necessarily
causing physical damage (which is easier to detect).
Malware attacks Multiple instances of malware attacks on in-
dustrial control systems have been reported. A few prominent
examples are the Stuxnet attack [28], and the attack on the power
grid in Ukraine [30]. Malware with learning capabilities can derive
an optimal attack vector and launch man-in-the-middle attacks
[20]. Alamzadeh et al. [4] present a malware attack targeting a tele-
operated surgical robot, where the malware identities an optimal at-
tack time and injects faults. Similar attacks have been demonstrated
on pacemakers [22]. Chung et al.[14] demonstrated feasibility of
attacking water treatment systems using a self-learning malware.
Subsequently, they [15] extended their work to launch MITM at-
tacks on surgical robots by exploiting the vulnerabilities in the
underlying runtime environment (ROS). However, none of these at-
tacks have been demonstrated on RVs protected with control-based
IDS as in our work (to the best of our knowledge).
Intrusion Detection Systems (IDS) IDS have been proposed that
uses physical invariants for each sensor and actuator to tackle at-
tacks against different cyber-physical systems, including UAVs [39].
BRUIDS [40] is a specification based IDS that is adaptive based
on the attacker type and environment changes. CORGIDS [2] de-
rives correlations between physical properties using hiddenMarkov
models, and uses these correlations as invariants. Choudhury et
al.[13] uses scheduling invariants and physical invariants in the
form of Lyapunov functions for attack detection. Adepu et al.[1]
design an IDS for a water treatment plant by manually describing
the invariants for a particular sensor in terms of the water level
changes between two consecutive readings. ARTINALI [5] dynam-
ically mines data, time and event invariants from an execution
trace of the program and use data-time-event invariants to detect
anomalies. Chen et al. [11] present an approach for automatically
constructing invariants of CPS, by using supervised ML on traces of
data obtained from systematically mutated PLC programs. Ahmed
et al.[3] propose a technique to fingerprint the sensor and process
noise to detect sensor spoofing attacks. Kim et al.[29] proposed
a technique for detecting control semantic bugs (input validation
bugs) leveraging a control instability detector to detect RV mal-
functions. Most of the above IDS [2, 39, 40] use a threshold based
technique to detect deviations from the invariants or models. There-
fore, they are vulnerable to stealthy attacks like ours. That said, we
did not consider these IDS in our evaluations as our attacks target
control-based IDS techniques.

8 CONCLUSION
In this paper, we highlight the vulnerabilities in control-theory
based techniques used for attack detection in RVs. We find that
these techniques use pre-defined detection threshold and monitor-
ing window based invariant analysis techniques, and are hence
susceptible to stealthy attacks.

To demonstrate how an attacker can exploit the vulnerabilities,
we designed three stealthy attacks namely: false data injection, ar-
tificial delay attack and switch mode attack. We present algorithms
that will automate the process of deriving the detection thresholds.
Knowing the threshold, an attacker can perform stealthy sensor and
actuator spoofing attacks, thereby bypassing the detection mecha-
nisms. Though the attacks are stealthy in nature, and do not cause
large-scale disruptions, we found that the consequences can still
be quite severe such as: deviating a drone by more than 100 meters
from its trajectory, increasing the mission duration of a rover and
drone by more than 50% and 30% respectively, and causing a drone
to crash while landing (or harming other objects). Furthermore,
we discuss the attacker’s goals in the context of industrial use-
cases, and discuss how the attacker can perform stealthy attacks to
achieve his/her goals.

In our future work, we intend to design an intelligent malware
that will enable stealthy attacks to be mounted on RVs. We will
also explore the design of intrusion detection techniques that can
detect such attacks by adjusting its thresholds on the fly.

ACKNOWLEDGEMENT
This research was supported by a research grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC), and
a research gift from Intel. We thank Prof. Ryozo Nagamune, Depart-
ment of Mechanical Engineering, University of British Columbia
for his valuable feedback. We also thank the anonymous reviewers
of ACSAC’19 for their comments which helped improve the paper.

REFERENCES
[1] Sridhar Adepu and Aditya Mathur. 2016. Using process invariants to detect cyber

attacks on a water treatment system. In IFIP International Information Security
and Privacy Conference. 91–104.

[2] Ekta Aggarwal, Mehdi Karimibiuki, Karthik Pattabiraman, and André Ivanov.
2018. CORGIDS: A Correlation-based Generic Intrusion Detection System. In
Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy
(CPS-SPC ’18). ACM, New York, NY, USA, 24–35. https://doi.org/10.1145/3264888.
3264893

[3] Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P. Mathur. 2018. Noise
Matters: Using Sensor and Process Noise Fingerprint to Detect Stealthy Cyber
Attacks and Authenticate Sensors in CPS. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC ’18). ACM, New York, NY,
USA, 566–581. https://doi.org/10.1145/3274694.3274748

[4] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk, and R. K. Iyer.
2016. Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based
Detection and Mitigation. In 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 395–406. https://doi.org/10.1109/
DSN.2016.43

[5] Maryam Raiyat Aliabadi, Amita Ajith Kamath, Julien Gascon-Samson, and
Karthik Pattabiraman. 2017. ARTINALI: Dynamic Invariant Detection for Cyber-
physical System Security. In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 349–361.
https://doi.org/10.1145/3106237.3106282

[6] Amazon Prime [n. d.]. Amazon Prime Delivery. Retrieved January 24, 2019 from
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011

[7] ArduPilot [n. d.]. Ardupilot - Software in the Loop. Retrieved May 24, 2018
from http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html

[8] Aryn Baker. [n. d.]. Zipline Drone Delivery. Retrieved January 24, 2019 from
http://www.flyzipline.com/

[9] P.-J. Bristeau, E. Dorveaux, D. VissiÃĺre, and N. Petit. 2010. Hardware and
software architecture for state estimation on an experimental low-cost small-
scaled helicopter. Control Engineering Practice 18, 7 (2010), 733 – 746. https:
//doi.org/10.1016/j.conengprac.2010.02.014 Special Issue on Aerial Robotics.

[10] Stephen Burns. [n. d.]. Drone meets delivery truck. Retrieved May 24, 2019
from https://www.ups.com/us/es/services/knowledge-center/article.page?name=
drone-meets-delivery-truck&kid=cd18bdc2

ACSAC ’19, Dec 09-13, 2019, San Jose, PR Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman

[11] Y. Chen, C. M. Poskitt, and J. Sun. 2018. Learning from Mutants: Using Code Mu-
tation to Learn and Monitor Invariants of a Cyber-Physical System. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,
CA, USA, 648–660. https://doi.org/10.1109/SP.2018.00016

[12] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu Zhang,
Dongyan Xu, and Xinyan Deng. 2018. Detecting Attacks Against Robotic Vehicles:
A Control Invariant Approach. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18). ACM, New York, NY, USA,
801–816. https://doi.org/10.1145/3243734.3243752

[13] A. Choudhari, H. Ramaprasad, T. Paul, J. W. Kimball, M. Zawodniok, B. McMillin,
and S. Chellappan. 2013. Stability of a Cyber-physical Smart Grid System Us-
ing Cooperating Invariants. In 2013 IEEE 37th Annual Computer Software and
Applications Conference. 760–769. https://doi.org/10.1109/COMPSAC.2013.126

[14] Keywhan Chung, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2019. Avail-
ability Attacks on Computing Systems Through Alteration of Environmental
Control: Smart Malware Approach. In Proceedings of the 10th ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (ICCPS ’19). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/3302509.3311041

[15] Keywhan Chung, Xiao Li, Peicheng Tang, Zeran Zhu, Zbigniew T. Kalbarczyk,
Ravishankar K. Iyer, and Thenkurussi Kesavadas. 2019. Smart Malware that
Uses Leaked Control Data of Robotic Applications: The Case of Raven-II Surgical
Robots. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019). USENIX Association, Chaoyang District, Beijing, 337–351.
https://www.usenix.org/conference/raid2019/presentation/chung

[16] G. Dan and H. Sandberg. 2010. Stealth Attacks and Protection Schemes for
State Estimators in Power Systems. In 2010 First IEEE International Conference
on Smart Grid Communications. 214–219. https://doi.org/10.1109/SMARTGRID.
2010.5622046

[17] Drew Davidson, Hao Wu, Rob Jellinek, Vikas Singh, and Thomas Risten-
part. 2016. Controlling UAVs with Sensor Input Spoofing Attacks. In 10th
USENIX Workshop on Offensive Technologies (WOOT 16). USENIX Association,
Austin, TX. https://www.usenix.org/conference/woot16/workshop-program/
presentation/davidson

[18] ETH-Agile and Dexterous Robotics Lab. [n. d.]. Control Toolbox. https://
ethz-adrl.github.io/ct/ct_doc/doc/html/index.html

[19] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 2018. Feedback
Control of Dynamic Systems (8th Edition) (What’s New in Engineering). Pearson.
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/
dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=
chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=
0134685717

[20] Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cintuglu, Ahmad-Reza Sadeghi,
Osama A. Mohammed, and Saman A. Zonouz. 2017. Hey, My Malware Knows
Physics! Attacking PLCs with Physical Model Aware Rootkit. In NDSS.

[21] R. M. GÃşes, E. Kang, R. Kwong, and S. Lafortune. 2017. Stealthy deception attacks
for cyber-physical systems. In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC). 4224–4230. https://doi.org/10.1109/CDC.2017.8264281

[22] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan,
K. Fu, T. Kohno, and W. H. Maisel. 2008. Pacemakers and Implantable Cardiac
Defibrillators: Software Radio Attacks and Zero-Power Defenses. In 2008 IEEE
Symposium on Security and Privacy (sp 2008). 129–142. https://doi.org/10.1109/
SP.2008.31

[23] Jason Baker (Red Hat). [n. d.]. Open source drone projects. https://opensource.
com/article/18/2/drone-projects

[24] Andrew J. Hawkins. [n. d.]. UPS will use drones to deliver medical supplies in
North Carolina. Retrieved May 24, 2019 from https://www.theverge.com/2019/
3/26/18282291/ups-drone-delivery-hospital-nc-matternet

[25] Todd E. Humphreys. 2008. Assessing the Spoofing Threat: Development of a
Portable GPS Civilian Spoofer. In In Proceedings of the Institute of Navigation
GNSS (ION GNSS.

[26] Saurabh Jha, Subho S. Banerjee, Timothy Tsai, Siva Kumar Sastry Hari, Michael B.
Sullivan, Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravishankar K. Iyer.
2019. ML-based Fault Injection for Autonomous Vehicles: A Case for Bayesian
Fault Injection. CoRR abs/1907.01051 (2019). arXiv:1907.01051 http://arxiv.org/
abs/1907.01051

[27] JSMSim [n. d.]. JSBSim Open Source Flight Dynamics Model. Retrieved May 24,
2018 from "http://jsbsim.sourceforge.net/"

[28] S. Karnouskos. 2011. Stuxnet worm impact on industrial cyber-physical system
security. In IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics
Society. 4490–4494. https://doi.org/10.1109/IECON.2011.6120048

[29] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory
Walkup, Xiangyu Zhang, XinyanDeng, andDongyanXu. 2019. RVFuzzer: Finding
Input Validation Bugs in Robotic Vehicles through Control-Guided Testing. In
28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, 425–442. https://www.usenix.org/conference/usenixsecurity19/
presentation/kim

[30] Robert M. Lee, Michael J. Assante, and Tim Conway. 2016. Analysis of the Cyber
Attack on the Ukrainian Power Grid. Technical Report. Electricity Information
Sharing and Analysis Center (E-ISAC) (2016).

[31] J. Li and Y. Li. 2011. Dynamic analysis and PID control for a quadrotor. In
2011 IEEE International Conference on Mechatronics and Automation. 573–578.
https://doi.org/10.1109/ICMA.2011.5985724

[32] Yao Liu, Peng Ning, and Michael K. Reiter. 2009. False Data Injection Attacks
Against State Estimation in Electric Power Grids. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS ’09). ACM, New York,
NY, USA, 21–32. https://doi.org/10.1145/1653662.1653666

[33] K. Manandhar, X. Cao, F. Hu, and Y. Liu. 2014. Detection of Faults and Attacks
Including False Data Injection Attack in Smart Grid Using Kalman Filter. IEEE
Transactions on Control of Network Systems 1, 4 (Dec 2014), 370–379. https:
//doi.org/10.1109/TCNS.2014.2357531

[34] MATLAB. [n. d.]. System Identification Overview. ([n. d.]). https://www.
mathworks.com/help/ident/gs/about-system-identification.html

[35] MATLAB. [n. d.]. System Identification Toolbox. ([n. d.]). https://www.
mathworks.com/products/sysid.html

[36] S. McLaughlin and S. Zonouz. 2014. Controller-aware false data injection against
programmable logic controllers. In 2014 IEEE International Conference on Smart
Grid Communications (SmartGridComm). 848–853. https://doi.org/10.1109/
SmartGridComm.2014.7007754

[37] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. 2011.
Pixhawk: A system for autonomous flight using onboard computer vision. In
2011 IEEE International Conference on Robotics and Automation. IEEE, 2992–2997.

[38] MARS 2020 Mission. [n. d.]. MARS Exploration Rover. https://mars.nasa.gov/
mer/mission/rover/

[39] Robert Mitchell and Ing-Ray Chen. 2012. Specification based intrusion detection
for unmanned aircraft systems. In Proceedings of the first ACM MobiHoc workshop
on Airborne Networks and Communications (2012), 31–36.

[40] Robert Mitchell and Ing-Ray Chen. 2014. Adaptive intrusion detection of mali-
cious unmanned air vehicles using behavior rule specifications. IEEE Transactions
on Systems, Man, and Cybernetics: Systems 44, 5 (2014), 2014.

[41] GNU Octave. [n. d.]. GNU Octave Scientific Programming Language. https:
//www.gnu.org/software/octave/

[42] Out of Control. [n. d.]. Artificial Delay Attack Demo Video. https://drive.google.
com/open?id=1_CHITopKSraKZXnAIyeUoQZqki8fgUXe

[43] Out of Control. [n. d.]. False Data Injection Attack Demo Video. https://drive.
google.com/open?id=1JgrCpwspsBiYdNvKUxeKnl-bZQ9WS_Cg

[44] Out of Control. [n. d.]. Switch Mode Attack Demo Video. https://drive.google.
com/open?id=1yUSGa5GoBQYl0GTiTbcPFN5NnjBHXL-Y

[45] Hadi Ravanbakhsh, Sina Aghli, Christoffer Heckman, and Sriram Sankara-
narayanan. 2018. Path-Following through Control Funnel Functions. CoRR
abs/1804.05288 (2018). arXiv:1804.05288 http://arxiv.org/abs/1804.05288

[46] Brent A. Renfro, Miquela Stein, Nicholas Boeker, Emery Reed, and Eduardo
Villalba. [n. d.]. An Analysis of Global Positioning System (GPS) Standard
Positioning Service (SPS) Performance for 2018.

[47] Aion Robotics. [n. d.]. R1 ArduPilot Edition. https://docs.aionrobotics.com/en/
latest/r1-ugv.html

[48] H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing 26, 1 (February 1978), 43–49. https://doi.org/10.1109/TASSP.1978.
1163055

[49] Nicolas Sheilds. [n. d.]. Walmart Drone Delivery. Re-
trieved December 09, 2018 from https://www.businessinsider.com/
walmart-blockchain-drone-delivery-patent-2018-9

[50] Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani Srivastava. 2013. Non-
invasive Spoofing Attacks for Anti-lock Braking Systems. In Cryptographic Hard-
ware and Embedded Systems - CHES 2013, Guido Bertoni and Jean-Sebastien
Coron (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 55–72.

[51] Yunmok Son, Hocheol Shin, Dongkwan Kim, Youngseok Park, Juhwan Noh,
Kibum Choi, Jungwoo Choi, and Yongdae Kim. 2015. Rocking Drones with
Intentional Sound Noise on Gyroscopic Sensors. In 24th USENIX Security Sym-
posium (USENIX Security 15). USENIX Association, Washington, D.C., 881–
896. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/son

[52] Christopher Steiner. [n. d.]. Bot-In-Time Delivery. https://www.forbes.com/
forbes/2009/0316/040_bot_time_saves_nine.html#68ee53d9b942

[53] ArduPilot Development Team. [n. d.]. Building ArduPilot. https://github.com/
ArduPilot/ardupilot/blob/master/BUILD.md

[54] Paparazzi Development Team. [n. d.]. Paparazzi - The Free Autopilot. https:
//wiki.paparazziuav.org/wiki/Main_Page

[55] Pixhawk Development Team. [n. d.]. Pixhawk AutoPilot. https://docs.px4.io/en/
flight_controller/pixhawk_series.html

[56] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan
Capkun. 2011. On the Requirements for Successful GPS Spoofing Attacks. In
Proceedings of the 18th ACMConference on Computer and Communications Security
(CCS ’11). ACM, New York, NY, USA, 75–86. https://doi.org/10.1145/2046707.

Out of Control: Stealthy Attacks Against Robotic Vehicles ACSAC ’19, Dec 09-13, 2019, San Jose, PR

2046719
[57] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu. 2017. WALNUT: Waging

Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks.
In 2017 IEEE European Symposium on Security and Privacy (EuroS P). 3–18. https:
//doi.org/10.1109/EuroSP.2017.42

[58] Zhaolin Yang, Feng Lin, and B. M. Chen. 2016. Survey of autopilot for multi-rotor
unmanned aerial vehicles. In IECON 2016 - 42nd Annual Conference of the IEEE
Industrial Electronics Society. 6122–6127. https://doi.org/10.1109/IECON.2016.
7793820

A RESEARCH METHODS
A.1 State Estimation Model
The Algorithm 3 shows how we derive the state estimation model
(i.e., A,B,C,D matrices) from the mission profile data. We collected
time series dataM from n missions, and we use Matlab’s SI toolbox
to generate the matrices [35].

Algorithm 3: Generating State Space Model
1 M ←− Mission pro f ile data.
2 n: number of missions.
3 ts : sampling interval.
4 Np : poles.
5 Nz : zeroes.
6 while i < k do
7 data(i) = iddata (y(i), u(i), ts);
8 end
9 A,B,C,D ←− systemIdenti f ication(data,Np ,Nz);

10 while i < n − k do
11 if checkModelAccuracy(A,B,C,D) then
12 break;
13 else
14 data = iddata (y, u, ts);
15 A,B,C,D ←− SystemIdenti f ication(data,Np ,Nz);
16 checkModelAccuracy(A,B,C,D);
17 end
18 end
19 Function SystemIdentification(data, Np , Nz):
20 t f = t f est(data,Np,Nz);
21 [num,den] = t f data(t f);
22 [A,B,C,D] = t f 2ss(num,den);
23 return A, B, C, D

For the first iteration, we randomly select k mission profile data
from the data setM (Line 6). The time series data from k missions is
combined with iddata object, which consists of input and output
value matrices and a fixed sampling interval ts (Line 6 to 8). The con-
trol inputs u and control outputs y values collected in mission i are
represented as vectors. At line 20, the tfest function identifies the
optimal coefficients for the model template from the RV’s mission
profile data. The transformation turns a time-domain function into
the frequency domain and hence substantially reduces the complex-
ity of fitting the profile data. At line 21, function tfdata accesses
the resultant model: num and den that encode the model in the fre-
quency domain. At line 22, tf2ss function converts a discrete-time
transfer function into equivalent state-space representation.

We test the accuracy of the state space model by comparing the
model estimated values (y(t),x ′(t)) with the recorded values. To
improve the accuracy of the state estimation model, we perform
system identification iteratively (Line 10 to 18) by adding 1 more
mission profile data to the iddata object.

A.2 Kalman Gain
The state space matrices derived using system identification can be
used to formulate a system model sys . The Matlab function kalman
creates a state space model Kss of the Kalman estimator given the
system model sys .

[Kss,K,P] = kalman(sys,Qn,Rn,Nn)

K is the Kalman gain matrix, P is the error covariance matrix,
Qn ,Rn ,Nn are the noise covariance data.

B ATTACK ALGORITHMS
B.1 Algorithm for Artificial Delay Attack
The function Arti f icialDelay shown in Algorithm 4will get trig-
gered when the RV’s software components trigger the malicious
libraries. The duration of delays to be injected tattack will be de-
rived based on the monitoring window (tw) used in the invariant
analysis model (CI, EKF) as shown in Line 4. The algorithm will
execute certain resource intensive operation (e.g., infinite recursion,
computationally intensive calculations etc.) to cause delays.

Algorithm 4: Artificial Delay Attack
1 Function ArtificialDelay():
2 tNow : current system time.
3 tw : monitoring window.
4 tAD = tNow + tw ;
5 while true do
6 if tAD < tNow then
7 ArtificialDelay();
8 else
9 break;

10 end
11 end
12 tattack = Null;
13 return

