BinFI: An Efficient Fault Injector for Safety-Critical Machine Learning Systems

Zitao Chen, Guanpeng Li, Karthik Pattabiraman, Nathan DeBardeleben

Motivation

- Machine learning taking computing by storm
 - HPC-ML: precision medicine; earthquake simulation;
 - Growing safety-critical applications.
- Reliability of ML becomes important.

Image source: https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/

Soft Error

- Transient hardware fault
 - Growing in frequency:
 - Occur every 53 mins in 1m nodes [1]
 - Manifested as a single bit-flip
- Silent data corruptions (SDCs)
 - Erroneous ML output.
- Safety standard for road vehicles:
 - ISO26262: 10 FIT

Existing solutions

- Application-agnostic:
 - Triple modular duplication (TMR) for execution units.
 - Expensive: Hardware cost, performance (e.g., delay-based accidents).
- Application-specific:
 - Random fault injection to guide protection (e.g., instruction duplication).
 - Coarse-grained

Is Random FI Good Enough?

Randomly simulate bit-flip, and then obtain statistical error resilience

Where are the *critical faults* in the entire system?
 Are the critical faults uniformly distributed (or not)?

An efficient approach to obtain fine-grained understanding of the error resilience of ML systems

Contributions:

• Identify the property of ML computations which constrain the fault propagation behaviors.

• Characterize the pattern of critical faults.

• Propose a Binary-FI approach to identify critical bits.

ML framework - TensorFlow

- TensorFlow: framework for executing dataflow graphs
- ML algorithms expressed as dataflow graphs

Image source: https://www.easy-tensorflow.com/tf-tutorials/basics/graph-and-session

Fault model

- Focus on inference phase
- Faults at processor's datapath (e.g. ALUs)
- Interface-level fault injection (i.e. TensorFlow Operators) [2]

[2] Li et al. TensorFI: A Configurable Fault Injector for TensorFlow Applications. ISSREW'18). Image source: https://medium.com/@d3im/understand-tensorflow-by-mimicking-its-api-fromscratch-faa55787170d

How to cause an SDC in ML

- In ML, fault usually results in numerical change in the data.
- Output by ML is usually determined by numerical magnitude.
 - To cause SDC: large deviation at the output

- Error propagation (EP): from the fault occurrence to the output.
 - Each EP function: large response to Large input, i.e., monotone
 - Convolution function: $X * W = \sum x_i w_i$
 - Larger Input deviation: A > B
 - Larger Output deviation: $|Aw_i| \ge |Bw_i|$

Individual EP function

- Common computations in DNNs, satisfy monotone property
- Why: ML tends generate large responses to ``target'' class/feature

Basic	Conv; MatMul; Add (BiasAdd)	
Activation	ReLu; ELu;	
Pooling	Max-pool; Average-pool	
Normalization	Batch normalization (BN);	
	Local Response Normalization (LRN)	
Data transformation	Reshape; Concatenate; Dropout	
Others	SoftMax; Residual function	

Error propagation example

• One fault propagates into multiple faults.

Multiple faults

Image source: http://worldcomp-proceedings.com/proc/p2014/ABD3492.pdf

All EP functions

• Composite EP function:

We call it *approximate monotone*.

All EP functions (cont.)

• Approximate the EP behavior as an *approximate monotonic* function.

Input (with faults) and output deviation are constrained by the approximate monotonicity

Binary fault injection (BinFI)

• Consider the effects of different faults as a sorted array.

Experimental setup

- *SDC*: Image misclassification; degree of deviation.
- Fault injection tool: TensorFl
- *3 FI approaches*: BinFI vs Random FI vs Exhaustive FI

Dataset	Dataset Description	ML model
MNist	Hand-written digits	Neural Network LeNet
Survive	Prediction of patient surivval	kNN
Cifar-10	General images	AlexNet
ImageNet	General images	VGG16
Traffic sign	Real-world traffic signs	VGG11
Driving	Real-world driving frames	Nvidia Dave Comma.ai

FI tool: https://github.com/DependableSystemsLab/TensorFI

Effects of SDCs

Single bit-flip can cause undesirable output in ML

Identification of critical bits

- Recall: 99.56% (average)
- Precision: 99.63% (average)

 BinFl can identify most of the critical bits.
 Random Fl is not desirable for identifying critical bits.

Overhead

Overhead of BinFI is ~20% of that by exhaustive FI

Data-width: 16, 32, 64 bits.
99.5+% recall and precision

- 1. Overhead of BinFI grows *linearly* with the data width.
- 2. BinFI is *agnostic* to data width in identifying critical bits.

Summary

- Common ML functions exhibit monotonicity, which constrains the fault propagation behaviors.
- Critical faults in ML programs tend to be clustered: *If a fault at highorder bit does not lead to SDC (by FI), faults at lower-order bits would not lead to SDC (without FI)*

Zitao Chen, Graduate student at University of British Columbia <u>zitaoc@ece.ubc.ca</u>

Artifact: <u>https://github.com/DependableSystemsLab/TensorFI-BinaryFI</u>