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Motivation
•Machine learning taking computing by storm

• HPC-ML: precision medicine; earthquake simulation; 

• Growing safety-critical applications.

• Reliability of ML becomes important.

2Image source: https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/

https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/


Soft Error 
• Transient hardware fault

• Growing in frequency: 
• Occur every 53 mins in 1m nodes [1]

• Manifested as a single bit-flip

• Silent data corruptions (SDCs)
• Erroneous ML output.

• Safety standard for road vehicles:
• ISO26262: 10 FIT 
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[1] J. Dongarra, T. Herault, and Y. Robert, “Fault tolerance techniques for high-performance computing,” in Fault-
Tolerance Techniques for HighPerformance Computing, 2015, pp. 3–85.



Existing solutions
• Application-agnostic:

• Triple modular duplication (TMR) for execution units.

• Expensive: Hardware cost, performance (e.g., delay-based accidents).

• Application-specific: 

• Random fault injection to guide protection (e.g., instruction duplication).

• Coarse-grained
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Is Random FI Good Enough?

1 0 0 1 0 1 1 1

SDC Non-SDC

0 0 1 1 1 1 0 1

1. Where are the critical faults in the entire system?
2. Are the critical faults uniformly distributed (or not)?
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25% SDC

Randomly simulate bit-flip, and then obtain statistical error resilience



Our goal

An efficient approach to obtain fine-grained 
understanding of the error resilience of ML systems
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Contributions:

• Identify the property of ML computations which constrain the 

fault propagation behaviors.

• Characterize the pattern of critical faults.

• Propose a Binary-FI approach to identify critical bits.
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ML framework - TensorFlow

• TensorFlow: framework for 
executing dataflow graphs 

• ML algorithms expressed as 
dataflow graphs

• Others: 

8Image source: https://www.easy-tensorflow.com/tf-tutorials/basics/graph-and-session

https://www.easy-tensorflow.com/tf-tutorials/basics/graph-and-session


Fault model
• Focus on inference phase
• Faults at processor’s datapath (e.g. ALUs)
• Interface-level fault injection (i.e. TensorFlow Operators) [2]
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[2] Li et al. TensorFI: A Configurable Fault Injector for TensorFlow Applications. ISSREW’18).
Image source: https://medium.com/@d3lm/understand-tensorflow-by-mimicking-its-api-from-
scratch-faa55787170d

Bit-flip

https://medium.com/@d3lm/understand-tensorflow-by-mimicking-its-api-from-scratch-faa55787170d


How to cause an SDC in ML
• In ML, fault usually results in numerical change in the data.
• Output by ML is usually determined by numerical magnitude. 

• To cause SDC: large deviation at the output
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Individual EP function

• Error propagation (EP): from the fault occurrence to the output.

• Each EP function: large response to Large input, i.e., monotone

• Convolution function: ! ∗# = ∑&'('
• Larger Input deviation: A > B

• Larger Output deviation: )(' ≥ +('

1 0 0 1 0 1 1 1

Bit-flip A Bit-flip B

VGG16



Individual EP function

• Common computations in DNNs, satisfy monotone property

• Why: ML tends generate large responses to ``target’’ class/feature
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Error propagation example
• One fault propagates into multiple faults.

13Image source: http://worldcomp-proceedings.com/proc/p2014/ABD3492.pdf
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http://worldcomp-proceedings.com/proc/p2014/ABD3492.pdf


All EP functions 
• Composite EP function:

• Break of monotonicity:

• We call it approximate monotone.

EP function 1 EP function N…

Composite function
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All EP functions (cont.)
• Approximate the EP behavior as an approximate monotonic function.
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Characteristic of critical faults

If a fault at high-order bits does not lead to SDC (by FI), faults 
at lower-order bits would not lead to SDC (without FI), i.e, SDC 

boundary
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To cause an SDC Large output dev. Large Input dev. Fault at high-
order bit

Approximate 
monotone



Binary fault injection (BinFI)
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• Consider the effects of different faults as a sorted array.

0 0 0 0 0 0 0 64 32 16 8 4 2 1

Input Output deviation
+

Search within a 
sorted array

64 32 16 8 4 2 1

Not result in SDC
Move to higher-order bit

1Result in SDC
Move to lower-order bit

2 3



Experimental setup 

• SDC: Image misclassification; degree 

of deviation. 

• Fault injection tool: TensorFI

• 3 FI approaches: BinFI vs Random FI 

vs Exhaustive FI
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FI tool: https://github.com/DependableSystemsLab/TensorFI

Dataset Dataset 
Description ML model

MNist Hand-written 
digits

Neural Network
LeNet

Survive Prediction of 
patient surivval kNN

Cifar-10 General images AlexNet

ImageNet General images VGG16

Traffic sign Real-world traffic 
signs VGG11

Driving Real-world 
driving frames

Nvidia Dave
Comma.ai



Effects of SDCs 
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Single bit-flip can 

cause undesirable 

output in ML



Identification of critical bits
• Recall: 99.56% (average)
• Precision: 99.63% (average) 

1. BinFI can identify most of 

the critical bits.

2. Random FI is not desirable 

for identifying critical bits.
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5x more overhead 
than BinFI

Same overhead as 
BinFI
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Overhead of BinFI is ~20% of that by exhaustive FI

Overhead

• Data-width: 16, 32, 64 bits.
• 99.5+% recall and precision

1. Overhead of BinFI grows linearly with the data width.

2. BinFI is agnostic to data width in identifying critical bits.



Summary
• Common ML functions exhibit monotonicity, which constrains the 

fault propagation behaviors.

• Critical faults in ML programs tend to be clustered: If a fault at high-

order bit does not lead to SDC (by FI), faults at lower-order bits would 

not lead to SDC (without FI)

Zitao Chen, Graduate student at University of British Columbia
zitaoc@ece.ubc.ca

Artifact: https://github.com/DependableSystemsLab/TensorFI-BinaryFI
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https://github.com/DependableSystemsLab/TensorFI-BinaryFI

