

Out of Control: Stealthy Attacks on Robotic Vehicles Protected by Control-Based Techniques

<u>Pritam Dash</u>, Mehdi Karimi, and Karthik Pattabiraman University of British Columbia, Vancouver, Canada

Robotic Vehicle (RV) in Industrial Sector

- Autonomous UAVs and Rovers.
 - Delivery
 - Warehouse Management
 - Surveillance
 - Cinematography

Autonomous RVs are increasingly becoming popular. RV missions are time critical.

Motivation

- GPS spoofing [ION GNSS'12], Optical spoofing [CCS'11]
- Acoustic noise injection in MEMS gyroscope [Usenix'15], MEMS accelerometer [Euro S&P'17]

Major Saudi Arabia oil facilities hit by drone strikes Sep 2019

Gatwick drone attack theories - who is behind the airport sabotage?

Can an attacker remain stealthy and trigger adversarial actions?

- Cyber component
- Physical component

Autonomous Control in RVs

- Control algorithms
 - Position Controller
 - Attitude Controller

- Modes of Operation
 - A typical drone mission → at least 3 modes.

Control-based Attack Detection Techniques

- Control Invariants (CI) [CCS'18]
 - State Space Model to predict target angles.
- Extended Kalman Filter (EKF)
 - Residual analysis → sensor or actuator attacks

Limitations in Control-based Detection

• Fixed threshold

- Large threshold to reduce False Positives (FP).
 - Environmental factors friction, wind
 - Sensor faults.
- Fixed Monito
 Often fail to

 Takeoff
 Waypoin

 Waypoin
 Waypoin
 Kithode Attack

Attack Model

• Cannot tamper with the firmware.

137.49, -139.22

- Cannot have root access to the RV system.
- Does not know the physical properties and detailed specifications of the RV.

137.50, -140.40

137.50, -139.40

Attack 1: False Data Injection Attack

- Tampering sensor measurements
 - Inject false data \rightarrow sensor
 - Acoustic noise

- False Data Injection
 - Delivery at a wrong location
 - Misplacements in warehouse

• [Usenix'15] Son et. al. Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

Attack 2: Artificial Delay Attack

- Delay system operations
 - Mode changes
 - Motor commands
- Artificial delay attack
 - Delay receiving commands
 - Delays RV mission

Attack 3: Switch Mode Attack

- Initiated when a mode change is triggered.
 - Steady-state flight \rightarrow Land
 - Takeoff \rightarrow Waypoint
- Switch mode attack
 - Gain elevation instead of landing
 - Potential crash

Our Approach to Stealthy Attacks

- Challenges
 - Deriving the Detection threshold employed by CI and EKF.
 - Stealthy sensor tampering attacks FDI, SM
 - Deriving the Monitoring window employed by control based IDS.
 - Artificial delays in control flow.

State Estimation Model

- Collect mission profile data either from real RVs or simulations.
 - RVs autonomous flight control
 - Various mission trajectories.

Triggering Stealthy Attacks at Runtime

- Controlled acoustic noise.
- Malicious libraries and wrapp
 - Exploiting dynamic linking feat
- Tampering gyroscopic sensor
- Running resource intensive or
- Tampering motor thrust outp

Results and Evaluation

- RQ1 How much effort does the attacker need to expend to derive the state estimation model?
- RQ2 What are the impacts of the stealthy attacks on the subject RVs?
- RQ3 How effective are the attacks in achieving the attacker's objectives?

- ArduPilot http://ardupilot.org/
- Pixhawk https://pixhawk.org/
- Aion R1 Rover https://www.aionrobotics.com/r1

RQ1: Attacker's Effort

- Attacker's effort in deriving the state estimation model.
- Two Phases
 - Model extraction phase
 - 15 missions each subject RV.
 - Model testing phase
 - 5 missions each subject RV.
- Convergence
 - 5-7 missions for all the subject RVs.

R2Q: Impacts of Stealthy Attacks

- False data injection attack
 - Deviates RV from its trajectory.
- Artificial delay attacks
 - Delays mission time
 - Drones \rightarrow At least 25%
 - Rovers \rightarrow At least 30%
- Switch mode attack (applicable to drone
 - Crash landing
 - Land at wrong locations.

RQ3: Stealthy Attacks in Industrial Scenarios

- Delivery drones
 - Typical mission duration 30 mins.
 - Distance covered 1 20 KM
- False data injection
 - deviation more than 100 meters.
- Artificial delay
 - increase mission time by 25-30%.
- Switch mode
 - Ignore commands.
 - crash landing.

How to Detect Stealthy Attacks?

- Large detection threshold enables stealthy attacks.
 - Improved system modelling \rightarrow accurate estimations.
 - Smaller Thresholds, smaller monitoring windows.
- Inability to model the mode change states.
 - Modelling the Non-linear and Dynamic behavior during RV mission.
- Improved noise filtering techniques
 - Prevent sensor manipulation
 - Increase the production cost

Summary

- Vulnerabilities in control theory based attack detection techniques.
- Demonstrate three types of stealthy attacks on RV simulator and real RV systems.
 - Attacks deviate a RVs by more than 100 meters, increases duration of RV mission by 25-30%, even result in crashes.
- Demonstrate techniques to automate the attacks on a class of RVs.

Pritam Dash

pdash@ece.ubc.ca

Artifacts: https://github.com/DependableSystemsLab/stealthy-attacks