
1

Improving the Accuracy of IR-level Fault Injection
Lucas Palazzi, Member, IEEE, Guanpeng Li, Member, IEEE, Bo Fang, Member, IEEE,

and Karthik Pattabiraman, Senior Member, IEEE

Abstract—Fault injection (FI) is a commonly used experimental technique to evaluate the resilience of software techniques for
tolerating hardware faults. Software-implemented FI can be performed at different levels of abstraction in the system stack; FI
performed at the compiler’s intermediate representation (IR) level has the advantage that it is closer to the program being evaluated
and is hence easier to derive insights from for the design of software fault-tolerance mechanisms. Unfortunately, it is not clear how
accurate IR-level FI is vis-a-vis FI performed at the assembly code level, and prior work has presented contradictory findings. In this
paper, we perform a comprehensive evaluation of the accuracy of IR-level FI across a range of benchmark programs and compiler
optimization levels. Our results show that IR-level FI is as accurate as assembly-level FI for silent data corruption (SDC) probability
estimation across different benchmarks and optimization levels. Further, we present a machine-learning-based technique for improving
the accuracy of crash probability measurements made by IR-level FI, which takes advantage of an observed correlation between
program crash probabilities and instructions that operate on memory address values. We find that the machine learning technique
provides comparable accuracy for IR-level FI as assembly code level FI for program crashes.

Index Terms—Resilience, fault injection, IR-level fault injection, intermediate representation, machine learning, LLVM, PIN

F

1 INTRODUCTION

Hardware faults are becoming more common in commodity
computer systems due to the effects of process scaling and
manufacturing variations [1], [2], [3]. This has led to a
concomitant increase in the rates of hardware faults that
are exposed to the software running on these systems. This
is because techniques to mask all hardware faults from
software, such as full duplication in hardware, consume too
much energy, making their use challenging in commodity
systems. Therefore, researchers have proposed various soft-
ware techniques to detect and recover from hardware faults
exposed to the software, with low performance and energy
overheads [4], [5], [6].

An important consideration for deploying any software
technique is a quantitative evaluation of its coverage, i.e.,
the technique’s ability to detect (or recover from) hardware
faults. When proposing such a technique, researchers typi-
cally use fault injection tools to evaluate its coverage. Fault
injection (FI)1 is the process of systematically introducing
errors into the program and observing the outcome. Because
the injection space is very large, many FI tools use the Monte
Carlo method to sample the space of potential injection
targets to obtain a statistical estimate of the techniques’
coverage (other space reduction strategies are also possible).

A key design consideration in a FI tool is the level of
abstraction at which it operates. The higher the level of
abstraction, the easier it is to draw meaningful insights from
the tool, as the findings can be directly translated to the
design of software mechanisms. However, raising the level
of abstraction often comes with a cost in the accuracy of
the FI process, as hardware faults occur in the lower levels
of the system stack, and modeling them at higher levels is
challenging.

1. We refer primarily to Software Implemented Fault Injection
(SWiFI) techniques when we say FI in this paper.

To alleviate this difficulty, researchers have proposed
implementing FI tools at the intermediate representation
(IR) of modern compilers such as LLVM/Clang [7], [8]. The
main advantages of this approach are (1) many software
protection techniques are implemented at the IR level, and
it is straightforward to use the results of the evaluation to
improve the coverage of these techniques, and (2) IR-level
injections typically abstract the effects of the machine archi-
tecture such as instruction encodings and register file sizes,
thereby making the results applicable to a wide variety of
hardware platforms. Further, the IR of LLVM includes IR-
level program type information, which is useful in guiding
the software techniques towards more vulnerable parts of
the program. Consequently, a wide range of software fault-
tolerance techniques use IR-level injections to validate their
results [9], [10], [11].

However, there has been little work on validating the
results of IR-level FI with respect to FI performed at the
assembly code level, which is arguably more accurate as it
is closer to the hardware. This is concerning, as many of
the insights used in software fault-tolerance techniques are
derived from IR-level fault injections, and inaccuracies in
the latter call into question the efficacy of these techniques.
Further, the dominant platform for IR-level studies, LLVM,
has significant differences with x86-64 assembly language
on which many of these studies are based, so it is not clear
how well the results of FI performed at the IR-level match
those of FI performed at the assembly language level.

In the conference version of this paper [12], we pre-
sented an analysis of the contradictory prior work [13],
[14] that has examined the accuracy of IR-level FI with
respect to assembly-level FI, showing that IR-level FI is in
fact as accurate as assembly-level FI with respect to SDC
probability measurements. We further supported this result
by conducting a thorough comparison study between IR-
and assembly-level FI, which we include in this paper (Sec-
tion 4). We showed empirically that IR-level FI is as accurate



2

as assembly-level FI when measuring the SDC probability
of a program; however, the accuracy of crash probability
measurements depends on the amount of optimizations
used to compile the program.

This paper then expands on these findings by discussing
memory address instructions, which we define as assembly
or IR instructions that operate on register values that are
eventually used as the address operand in a memory load or
store instruction. The dominant cause of application crashes
is errors propagating to memory operations [15], [16], i.e.,
a load or store instruction attempting to read or write to
a memory location that is “out of bounds”. We find that
the program crash probabilities measured by IR-level and
assembly level FI are correlated with the program’s memory
address instruction percentage, supporting this intuition.
Because back end optimizations typically affect an appli-
cation’s memory operations, a program’s IR code can be
different from its assembly code with respect to memory
address instructions. We present a machine-learning-based
technique that takes advantage of the correlations between
crash probability measurements and memory address in-
struction percentages to improve the accuracy of crash prob-
ability measurements made using IR-level FI. The technique
allows accurate crash probability estimates for a program
using only IR-level FI experiments, offering both the benefits
of IR-level FI and the accuracy of assembly-level FI.

Our contributions are as follows:
• By conducting an empirical study using rigorous sta-

tistical tests, we find that IR-level FI is as accurate as
assembly-level FI for emulating hardware errors that
cause SDCs, as well as in measuring the relative ranking
of program SDC probabilities, at all optimization levels
(Section 4.2.1).

• We find that for crash-causing errors, IR-level FI is only
comparable to assembly-level FI at the lowest optimiza-
tion level, -O0, but not at higher optimization levels, -O1
to -O3, suggesting that IR-level FI becomes less accurate
with respect to crashes when (more) compiler optimiza-
tions are applied (Section 4.2.2).

• Based on the observed correlation between the crash prob-
abilities and the amounts of instructions executed that
operate on memory address values, we present a machine-
learning-based approach to obtain crash probability mea-
surements that are as accurate as those when measured
using assembly-level FI, while only requiring IR-level FI
experiments to be conducted, thus improving the accu-
racy of IR-level FI crash probability measurements.

2 BACKGROUND

In this section, we provide some relevant definitions and
describe the general notions of code compilation, fault in-
jection, and machine learning as they pertain to this study.

2.1 Definitions
• Fault injection (FI): The process of systematically in-

troducing faults/errors2 into a program to observe pro-
gram behaviour under fault/error conditions, e.g., to test

2. We use the Laprie et al. [17] terminology to distinguish faults from
errors. Though we are injecting errors, we refer to the process as fault
injection for historical reasons, unless otherwise specified.

a program’s robustness and error-handling capabilities.
Though FI has many uses, we use it to assess error
coverage/resilience in this paper.

• Intermediate representation (IR): A code representation
of a program typically used internally by a compiler (e.g.,
LLVM) between the source code and target language (e.g.,
assembly), independent of both the source language and
target architecture.

• Compiler optimization: A code transformation applied
by the compiler with the goal of improving the program
in some way (e.g., decrease runtime, reduce memory
accesses, etc.). Many mainstream compilers will often
package multiple individual optimizations together in one
pass for convenience (e.g., the -O# flags used in LLVM and
GCC).

• Fault: A defect in the computer system that may or may
not end up being read by the program.

• Error: A fault that has been activated (i.e., read by the
program) and has resulted in some deviation of system
behaviour from a fault-free run. This may or may not be
observable as the error may only affect inconsequential
system states, or be corrected by fault-tolerance mecha-
nisms.

• Benign error: An error that does not cause an observable
deviation from the expected system behaviour (i.e., the
error was either masked or handled by the program).

• Failure: An error has resulted in an observable deviation
from expected system behaviour (e.g., crash, SDC).

• Silent data corruption (SDC): A failure that causes the
program to produce an incorrect output, but with no
indication that the failure has occurred.

• Crash: A failure that causes the program to throw an
exception or execute an exit statement (e.g., due to an
incorrect branch), and as a result the program terminates
before completing its expected execution.

• Hang: A failure causes an infinite loop or a longer-than-
usual execution that triggers termination based on a set
timeout. See Section 2.3 for how hangs are handled in our
experiments.

• Program SDC/crash probability: The probability of an
error causing an SDC/crash for a given program and
input (other work uses a similar definition [13], [18], [19],
[20], [21], [22], [23]).

• Error Resilience: The error resilience of an application
is its ability to withstand hardware faults if they occur,
without leading to an SDC or crash.

2.2 Code Compilation
In the context of this paper, we consider the compilation of a
program in the structure shown in Figure 1; this is the struc-
ture that is pertinent to the LLVM/Clang compiler [24]. The
front end processes the program’s source code (e.g., C/C++
code) and generates an intermediate representation (IR) of
the program, while the middle and back ends perform
platform-independent and platform-specific optimizations
on the code, respectively.

2.3 Fault Injection (FI) and Fault Model
Fault injection (FI) is a software testing technique used to
evaluate a program’s error coverage. A typical FI exper-
iment will consist of many individual FI runs (typically



3

Fig. 1: LLVM/Clang code compilation flow

hundreds), each run being a single execution of the program
with an error introduced. Once an error is introduced in
the program, it can result in a failure, which is either an
SDC, crash, or benign output. In this paper, we consider
program hangs as part of the crash category; we set the
execution timeout for each benchmark to be sufficiently
long so as to allow the program to complete most longer-
than-usual executions. As a result, we observe a negligible
percentage of hang outcomes in our experiments (less than
0.5% of all fault injection outcomes). Once the FI runs have
completed, we obtain a statistical estimate of the SDC/crash
probabilities.

In this paper, we are interested in emulating transient
hardware errors (i.e., soft errors) caused by cosmic ray or
alpha particle strikes affecting flip flops and logic elements.
These errors typically manifest in the form of bit-flips, and
thus in our FI experiments, a single bit-flip is injected per
FI run. We consider errors that occur in the processor’s
computation units, e.g., arithmetic operations and address
computations for load and store instructions. However,
errors in memory components such as caches are not con-
sidered, since these components are usually protected at the
architectural level using ECC or parity. We do not consider
errors in the control logic of the processor as this is a small
portion of the processor area, nor do we consider errors in
the instruction encoding, as these can be handled through
control-flow checking techniques [25]. Related work has
made similar assumptions [9], [26], [27], [28], [29].

2.3.1 Instruction sampling
In each FI run, a dynamic instruction needs to be determined
as the FI target. Since soft errors occur randomly, we choose
a dynamic instruction at random among the total executed
sequence of instructions in the program with a uniform
distribution. Thus, if the program has N total dynamic
instructions in the execution, each dynamic instruction has
1/N probability to be sampled in each FI run. This sam-
pling methodology makes an implicit assumption that each
instruction takes approximately the same amount of time
to execute. This is because we are performing the injection
at the program level, where we do not have detailed in-
formation about the microarchitectural or cache state of the
instruction. This is a common assumption in program-level
FI techniques.

2.3.2 Bit sampling
Once a dynamic instruction is chosen as the FI target, a
single bit within the destination register of that instruction
needs to be selected as the target of injection. As in the
instruction sampling, a register bit is randomly selected
to be the target. Since we are interested in the program
behaviour given that an error has occurred (as our goal is to

measure error resilience), we only consider activated faults
(i.e., errors). Thus, we only sample from bits in the destina-
tion register that are used by the program. For example, if
an instruction writes a 64-bit value to a 128-bit destination
register, only the 64 bits corresponding to the written value
are sampled from, with each bit having a probability of 1/64
to be sampled.

2.3.3 Assembly-level FI

FI can be conducted at different levels of abstraction, in-
cluding at the IR and assembly code levels. Assembly-level
FI tools utilize dynamic binary instrumentation (e.g., PIN,
DynamoRIO and Valgrind) to access the assembly code
for FI. They are considered to be accurate for studying
hardware faults, such as soft errors, since assembly code is
close to hardware [14], [30]. Common assembly-level fault
injectors include BIFIT [31], PINFI [13], FITgrind [32] and
others [33], [34]. The main drawbacks of assembly-level FI
are that (1) it has limited portability because it operates
at the platform-specific assembly code level, and (2) it is
difficult to obtain insights for software design, since IR-
level code abstractions (e.g., loops and data structures) are
not available at the assembly level. Therefore, it is difficult
to map FI locations back to the source code for further
investigation. In this paper, we use PINFI to implement
assembly-level FI experiments.

2.3.4 IR-level FI

IR-level FI uses compiler techniques to inject errors into the
compiler’s intermediate representation (IR) code. Popular
IR-level fault injectors are LLFI [8], KULFI [29], VULFI [35],
and FlipIt [7]. In addition to its high platform portability, the
IR level preserves the information of the program source
code. Hence, it is easier to map the FI locations back to
the source code. It also allows the injection of errors into
specific code structures (e.g., loops and data structures).
Moreover, the IR level is where significant program anal-
ysis tools are available. Therefore, IR-level FI makes the
post-analysis much easier compared to assembly-level FI.
However, the main concern is accuracy, as there are various
back end optimizations performed on the code that are not
available to the IR. For example, since the IR is platform-
independent and assumes an infinite number of available
registers, register allocation is not performed until the back
end compilation stage, and hence there can be a mismatch
between the number of memory operations in the IR and
assembly code. In this paper, we use LLFI to implement IR-
level FI experiments.

2.4 Machine Learning

In this study, we use supervised machine learning (ML) to
make predictions on the data collected in our experiments.
We provide some definitions of relevant terminology below.
Features: The inputs of the ML model. Each data example

in the data set has a feature vector containing the values
of each feature for that given data example.

Labels: The outputs of the ML model. When given a set of
features, the model will give a prediction/estimate of
the label for that set of feature values.



4

Training: The process of fitting a model to a set of data;
this is the stage where the model “learns” the patterns
in input-output relationships that exist in the training
data set.

Training data set: A set of data examples that are used to
train the ML model. In supervised machine learning,
the training data is labeled with the expected outputs
of each data example.

Test data set: A separate set of labeled data examples that
are used to test how well the model performs on data
it has not seen before. The test data set is never used to
train the model.

3 RELATED WORK

3.1 Fault Injection for Measuring Error Resilience

There is a large body of work on using fault injection to
measure the error resilience of computer programs, using
both hardware and software techniques.

The injection of software faults is a common use case for
software-implemented fault injection, and has been done
at the assembly/binary level in prior research [36], [37],
[38], [39]. For example, Cotroneo et al. address the accurate
mutation of binary code for injecting software errors when
the source code of the target is unavailable [36]. While such
papers address fault injections at the binary/assembly level,
we are instead concerned with emulating transient hardware
faults (i.e., soft errors), albeit at the software level.

Initially, most studies that investigated error resilience
to transient hardware errors relied on hardware FI, which
involves injecting faults through the hardware layer either
with or without physical contact [40]. On the other hand, the
use of software techniques to emulate transient hardware
errors has seen increased interest over the last decade, as it
does not require expensive hardware and is more flexible
[41]. It is important to note however that, while software
techniques offer improvements in cost, flexibility, and porta-
bility, it is often difficult or impossible to inject faults into
locations that are inaccessible to software [41]. For example,
a paper by Cho et al. found that assembly-level FI can only
capture a subset of system-level behaviour caused by soft
errors [42]. However, our focus is on the subset of errors
that make their way to the application and can therefore be
modeled using higher-level FI techniques.

IR-level FI techniques that operate at the compiler level
have become especially popular in recent years, as they
are portable and allow injections into IR-level source code
abstractions. Many studies have adopted such techniques to
study transient hardware faults that cause SDCs. Thomas
and Pattabiraman used LLFI to evaluate their technique
for detecting SDC-causing errors [9]. Calhoun et al. used
FlipIt [7], an LLVM-based FI tool, to investigate how SDCs
propagate through a specific HPC computation kernel [10].
Chen et al. introduced LADR, an application-level SDC
detector that was evaluated using IR-level FI experiments
[43]. Finally, Li et al. used LLFI to estimate program SDC
probabilities [11]. Studies such as these use IR-level FI under
the implicit assumption that it is as accurate as assembly-
level FI in measuring SDCs.

3.2 Comparison of IR-level and Assembly-level FI

Two prior papers directly compare the accuracy of IR-level
FI with that of assembly-level FI [13], [14]. Wei et al. compare
the accuracy of IR-level FI with that of assembly-level FI for
emulating hardware errors, and find that “LLFI is accurate
for emulating hardware errors that cause Silent Data Corruption
(SDCs), but not crashes” [13]. Georgakoudis et al. also inves-
tigates the accuracy of IR-level FI with respect to assembly-
level FI for emulating hardware errors, however they find
that IR-level FI is significantly less accurate than assembly-
level FI, claiming the inaccuracies are due to assembly-
level dynamic binary instructions and back end compiler
optimizations that are not available at the IR level [14].

Clearly, these two studies have come to contradictory
conclusions, and it is unclear to a reader whether FI per-
formed at the IR level is as accurate as assembly-level
injection for evaluating SDC-causing hardware errors. Wei
et al. [13] claim that IR-level FI is accurate for emulating
SDC-causing hardware errors, while Georgakoudis et al.
claim otherwise [14]. This contradiction is especially pecu-
liar considering both papers claim to use the same FI tools
(i.e., LLFI and PINFI) and similar experimental setups.

In the conference version of this paper, published in [12],
we perform an analysis of these two studies to find the root
cause of the inconsistent findings. Our findings show that
a modification made by Georgakoudis et al. [14] to the bit-
sampling model used in PINFI caused a disparity in the
types of faults that were injected by the two tools (i.e.,
only activated faults vs. unactivated faults), which we found
significantly alters the SDC probability measurements made
by PINFI. Since the modified PINFI bit selection method
used in Georgakoudis et al. [14] is inconsistent with the
bit selection method used by LLFI, the paper’s comparison
between LLFI and PINFI is invalid. Thus, our prior work
in [12] shows that IR-level FI is indeed as accurate as
assembly-level FI, with respect to SDC errors.

3.3 Machine Learning for Fault Outcome Estimation

Numerous studies have been published at the intersection
of program error resilience and machine learning. In this
section, we focus on studies that use machine learning for
evaluating program resilience and/or vulnerability.

Many studies use machine learning or statistical mod-
els to estimate the resilience and/or vulnerability of soft-
ware components, identifying those with high-risk prop-
erties [44], [45], [46], [47], [48]. These studies are largely
focused on identifying high-risk components within specific
computing systems and do not directly apply to general
computing applications. Further these approaches do not
estimate resilience or crash probability within the context of
IR-level fault injection as is the case in our work.

Farahani et al. propose a learning-based reliability pre-
diction technique to estimate resilience to transient faults,
using features at both the architecture and microarchitecture
levels [49]. Our work differs from this in that we focus on
predicting program-level tolerance to transient faults. A pa-
per by Lu et al. uses machine-learning-based techniques to
detect SDC-causing errors in programs [50]. However, this
work uses machine learning to quantify the SDC proneness



5

of individual program variables while our work attempts to
evaluate the overall fault coverage of a program.

More recently, a paper by Kalra et al. [51] investigates the
use of machine learning and statistical methods for predict-
ing the resiliency of GPU applications. Their tool, PRISM,
extracts features that characterize program resiliency allow-
ing them to predict error outcomes without running fault
injection campaigns. While similar to our work in this study,
their work is limited to GPU applications and focused on
predicting SDC outcomes while our work applies to the
crash probabilities of CPU applications.

4 END-TO-END COMPARISON: IR-LEVEL VS.
ASSEMBLY-LEVEL FI
In this section, we conduct an extensive set of FI experi-
ments to evaluate the accuracy of IR-level FI with respect to
assembly-level FI. We first describe the experimental setup
in terms of the benchmarks, FI tools, platforms, and mea-
surement metrics used for our experiments. We then present
our results for both SDC and crash outcomes, finishing the
section with a discussion of our findings.

4.1 Experimental Setup

4.1.1 Overview
The experiments presented in this section are conducted
according to the following process:

• We choose 25 benchmark programs on which to per-
form fault injection experiments using both IR-level
(LLFI) and assembly-level (PINFI) FI respectively.

• Four separate sets of fault injections are performed
for each benchmark, each one with the benchmark
compiled using a different compiler optimization level
(-O0, -O1, -O2, and -O3).

• We measure the SDC and crash probabilities for each
set of FI experiment outcomes (i.e., each benchmark-
optimization pair).

• We apply a variety of statistical tests and analyses to
compare the results, and use these to draw conclusions
on the accuracy of IR-level FI measurements compared
to assembly-level FI.

4.1.2 Benchmarks
In our experiments, we choose a total of 25 different bench-
marks from 7 publicly available benchmark suites. Their
details are shown in Table 1. We choose these benchmarks
because they are (1) from a broad selection of application
domains, (2) open source and compatible with both fault
injection tools, and (3) used in the two related FI studies [13],
[14] discussed in Section 3.2. The benchmarks that were
included in [13], [14] are indicated as such in Table 1, as
well as whether the program is the CPU or memory-bound
(if such information was available ) [52], [53], [54], [55], [56].

We include all of the benchmarks used in Wei et al. [13],
and all but three of the benchmarks used in Georgakoudis et
al. [14]; AMG2013, lulesh, and miniFE are not used because
they are either (1) not compatible with the platform used
for our experiments, or (2) not compatible with LLFI when
compiled using some of the pertinent optimization levels.

TABLE 1: Benchmark Details (Section 4)

Benchmark Suite Input

blackscholes1 PARSEC 1 in_16K.txt output.txt
fluidanimate1 PARSEC 1 10 in_5K.fluid out.fluid
lud1 Rodinia -v -i 512.dat
backprop1 Rodinia 65536
kmeans2 Rodinia -i 819200.txt -k 1
bfs Rodinia 1 graph1MW_6.txt
bzip22† SPEC -1kvv image.jpg
libquantum2† SPEC 33 5
hmmer1† SPEC --seed 10000000 ig.hmm
mcf2† SPEC inp.in
ocean1† SPLASH-2 -p1 -o
raytrace1† SPLASH-2 -p1 -m64 inputs/car.env
CoMD‡ Mantevo -x 10 -y 10 -z 10 -N 50
HPCCG‡ Mantevo 64 64 64
XSBench1‡ CESAR -s small
BT1‡ NPB S
CG2‡ NPB S
DC2‡ NPB 10000000 ADC.par
EP1‡ NPB W
FT2‡ NPB W
IS2 NPB S
LU2‡ NPB W
MG2 NPB S
SP1‡ NPB W
UA2‡ NPB W
†Benchmark used in Wei et al. [13]
‡Benchmark used in Georgakoudis et al. [14]
1CPU bound program
2Memory bound program

In addition to those taken from [13], [14], we also include
several benchmarks not used in the two prior studies.

We use the default inputs included in the benchmark
suites, or example inputs where the former are not available.
Finally, each benchmark is compiled four times, each one
using a different compiler optimization level (-O0, -O1, -O2,
and -O3); separate FI experiments are conducted for each of
the four optimization levels.

4.1.3 Fault injection tools and platform
To conduct our FI experiments, we again use LLFI3 and
PINFI4 as our IR-level and assembly-level FI tools, respec-
tively. This is to be consistent with the studies discussed
in Section 3.2. In addition, these FI tools are (1) flexible: LLFI
and PINFI are fully open source and configurable to conduct
FI experiments with customized setups, and (2) popular: both
tools have wide adoption in both industry and academia.

All experiments are conducted on 64-bit Intel x86-64
machines, and the benchmarks are all executed on single
threads. LLVM/Clang 3.4 is used to compile from the bench-
marks’ C/C++ source code to their respective LLVM IR (.ll)
files and executables. PINFI uses Intel PIN 3.5 to access and
instrument the compiled machine code of the benchmarks.

For each set of FI experiments (i.e., each benchmark at
each optimization level), we randomly perform 1,000 fault
injection runs using both LLFI and PINFI respectively. Thus,
we perform a total of 100, 000 fault injection runs (= 25 * 4 *
1000) for each tool.

4.1.4 Measurements of accuracy
To evaluate the accuracy of the SDC and crash probabilities
measured using IR-level and assembly-level FI, we apply

3. https://github.com/DependableSystemsLab/LLFI
4. https://github.com/DependableSystemsLab/pinfi



6

a multitude of visual and statistical tests. We first show a
graphical overview of the results for each benchmark to vi-
sually compare the outcomes of FI execution for each FI tool,
with calculated errors bars representing a 95% confidence
interval for 1,000 FI runs. We then apply three different types
of statistical analyses to quantify the difference between
IR-level and assembly-level FI: (1) least squares regression
analysis; (2) paired sample t-test; and (3) Spearman’s rank
correlation test. We describe the details of these tests below.

Least squares regression analysis: The first statistical
analysis we apply is based on a least squares regression
model [57]. The analysis is performed for each optimization
level across the set of benchmarks. The method of least
squares is a standard approach in regression analysis to
obtain the line of best fit for a set of data points. The reason
for using this approach is to measure the linear relation-
ship between the respective SDC and crash probabilities
obtained using LLFI and those using PINFI. The model
plots the PINFI probabilities (y-axis) against those of LLFI
(x-axis). We have verified that our datasets meet all the
assumptions needed for applying a linear regression model
i.e., (1) normality of residuals (verified manually), (2) little
to no auto-correlation (using Durbin-Watson test), and (3)
homoscedasticity (visual test).

In the ideal situation where LLFI produces the exact
same measurements as PINFI (i.e., LLFI is exactly as accu-
rate as PINFI), these data points would form a straight line
with a slope of 1 and y-intercept of 0 (i.e., having a linear
equation of y = x). For example, if for a given benchmark
and optimization level the SDC probability measurements
obtained from LLFI and PINFI fall on the line y = x,
it indicates that LLFI and PINFI measure the same SDC
probability (for that benchmark and optimization level).

Thus, the linear equation and the corresponding R2

value obtained from this analysis provide an indication of
how close the data points are to the ideal situation. Note that
R2 values close to 1 indicate a high correlation. We estimate
the slope and y-intercept parameters with a 95% confidence
interval.

Paired sample t-test: We use a paired sample t-test
to compare the SDC and crash probability measurements
made by LLFI and PINFI. The paired sample t-test is used
to determine whether the mean difference between two sets
of measurements is zero. We verified that our dataset meets
all the t-test assumptions.

Our null hypothesis states that the mean difference
between the probabilities measured using LLFI and those
measured using PINFI is zero. In other words, if the null
hypothesis were to hold true, all observable differences
would be explained by random variation, thus implying
that the measurements made by LLFI and PINFI are not
significantly different. We use a two-tailed alternative hy-
pothesis that assumes the mean difference is not equal to
zero, which would imply that there is non-random variation
in the measurements.

We perform the paired sample t-test for each optimiza-
tion level using the whole set of 25 benchmarks, so that
we can compare the significance of the results at each
optimization. The p-values calculated using the test give us
the probability of observing the experiment results under
the null hypothesis (i.e., a high p-value indicates increased

support for the null hypothesis). We use a significance level
of 0.05, which corresponds to a 95% confidence level. If
the p-value is less than 0.05, we reject the null hypothesis and
conclude that the measurements made using LLFI and PINFI are
(statistically) significantly different. Otherwise, we do not reject
the null hypothesis.

Spearman’s rank correlation test: Program SDC and
crash probabilities are application-specific. This is because
different programs have different characteristics of prop-
agating SDC- and crash-causing errors. Often developers
need to use FI to find which applications produce higher
SDC probabilities than others to make design choices among
them (these include different versions of the same appli-
cation protected with different fault tolerance techniques).
Therefore, a fault injection technique needs to be sensitive
to the relative rankings of the SDC probabilities.

To examine the sensitivity of the measurements made
using both injectors, we conduct a Spearman’s rank correla-
tion test. This test is used to assess whether the relationship
between two variables is monotonic, i.e., if one value in-
creases or decreases, the other does the same. A Spearman’s
rank correlation coefficient close to 1 indicates a strong
monotonic relationship. In our case, this would mean that
LLFI and PINFI are equally sensitive in distinguishing the
ranking of program SDC/crash probabilities. Note that the
Spearman’s rank correlation test does not assume normality
of the measurement errors unlike the above two tests, and
is hence more robust to non-normal variations.

4.1.5 Research Questions
In this study, we are interested in comparing the accuracies
of IR-level FI and assembly-level FI, and further measuring
how this accuracy differs when different compiler opti-
mizations are applied. We focus on measuring both SDC
and crash probabilities. By injecting faults into a set of
benchmarks compiled with different optimization levels,
we get a complete analysis of the accuracies of IR-level
and assembly-level FI, and can thereby determine if any
inaccuracies in the SDC or crash measurements can be
attributed to the applied compiler optimizations.

We therefore ask the following two research questions:
RQ1 Does IR-level FI provide significantly different mea-

surements of program SDC probability as assembly-
level FI, across compiler optimizations?

RQ2 Does IR-level FI provide significantly different mea-
surements of program crash probability as assembly-
level FI, across compiler optimizations?

4.2 Results and Findings
In this section, we present our experimental results based on
fault injection experiments conducted on the 25 benchmarks
listed in Table 1, separating the results based on optimiza-
tion level.

4.2.1 Program SDC probabilities
Figure 2 shows the SDC probabilities obtained using LLFI
and PINFI for each benchmark. We present the numerical
results using bar graphs with error bars (95% confidence
interval for 1,000 runs) for visual comparison. The least
squares regression analysis results are shown in Table 2,



7

(a) With -O0 Optimization

(b) With -O1 Optimization

(c) With -O2 Optimization

(d) With -O3 Optimization

Fig. 2: Program SDC probabilities measured by LLFI and PINFI

TABLE 2: Least Squares Regression Analysis Results

slope, m y-intercept, b R2

SDC -O0 0.9948± 0.0689 0.0060± 0.0188 0.9732
-O1 1.1197± 0.1426 −0.0177± 0.0445 0.9147
-O2 1.0381± 0.1463 −0.0024± 0.0495 0.8975
-O3 1.0472± 0.1431 −0.0084± 0.0485 0.9030

Crash -O0 0.8129± 0.2264 0.0398± 0.0956 0.6915
-O1 0.5216± 0.3562 0.0842± 0.1179 0.2716
-O2 0.5191± 0.2565 0.0619± 0.0823 0.4160
-O3 0.4867± 0.2436 0.0637± 0.0796 0.4099

while the t-test and Spearman’s rank test results are shown
in Table 3.

Visual comparison: Figure 2 shows that the SDC proba-
bilities measured by PINFI and LLFI are close to each other,

TABLE 3: Statistical Test Results

-O0 -O1 -O2 -O3

p-value† SDC 0.4210 0.3920 0.6208 0.7834
Crash 0.0217 0.0215 0.0031 0.0016

Correlation coeff.‡ SDC 0.9636 0.9400 0.9285 0.9354
Crash 0.8398 0.6154 0.6672 0.6659

†Measured using paired sample t-test (Section 4.1.4)
‡Measured using Spearman’s rank test (Section 4.1.4)

with the error bars overlapping between the two for the
majority of the benchmarks. This observation is consistent
across all four optimization levels. The mean absolute errors
between the SDC probability measurements from LLFI and
PINFI are 2.192%, 4.988%, 4.796%, and 4.428% for -O0 to



8

(a) With -O0 Optimization (b) With -O1 Optimization

(c) With -O2 Optimization (d) With -O3 Optimization

Fig. 3: Program SDC probabilities measured by PINFI plot-
ted against those measured by LLFI at each optimization
level, with least squares regression line. The ideal line of
best fit is a line with slope of 1 and y-intercept of 0.

-O3, respectively, indicating that for most benchmarks, the
SDC probabilities measured using LLFI are almost indistin-
guishable from those measured by PINFI.

Least squares regression analysis: The results from the
least squares linear regression analysis (shown in Table 2)
show that the data follows a strong linear relationship. At
every optimization level, the slope, m, is close to 1 and the
y-intercept, b, is almost 0, with little variance. Furthermore,
the values of 1 and 0 are within the confidence ranges
for the slope and intercept values, respectively, at each
optimization level. The R2 values are also high, with three
out of four values measuring above 0.9. This shows that
the data fits very closely with the line given by the slope
and y-intercept values. This regression analysis is visually
illustrated in Figure 3 using the plotted data points; we
can see here how closely the data points fit the regression
line for the SDC probabilities for each optimization. We can
therefore conclude that, at all four optimization levels, the
SDC probabilities obtained using LLFI and those obtained
using PINFI follow a strong linear relationship.

Paired sample t-test: Table 3 shows the p-values ob-
tained from the paired sample t-test performed on the SDC
probabilities measured using LLFI and PINFI. As all of the
p-values are well above 0.05, the results from this test are
not sufficient to reject the null hypothesis. Therefore, there
is no evidence that suggests the SDC probabilities measured
using the tools are significantly different from each other.

Spearkman’s rank correlation test: Finally, the results
from the Spearman’s rank correlation test (Table 3) in-
dicate a strong monotonic relationship between the SDC

probabilities measured using LLFI and those from PINFI.
The correlation coefficients measured are all above 0.9 and
close to 1. We therefore conclude that LLFI is as sensitive
to distinguishing the ranking of individual program SDC
probabilities as PINFI.

Conclusion: Based on the above analyses, we address
RQ1 by concluding that there is no evidence to suggest that
LLFI and PINFI give significantly different measurements
of the SDC probability of a program.

4.2.2 Program crash probabilities
We now conduct the same analysis on the crash probability
measurements as we did for SDCs. Figure 4 shows the crash
probabilities obtained using LLFI and PINFI for each bench-
mark. As in SDCs, the least squares regression analysis is
shown in Table 2, and the t-test and Spearman’s rank test
results are shown in Table 3.

Visual comparison: Figure 4 shows that unlike SDC
probabilities, the crash probabilities do not consistently
match between LLFI and PINFI for all optimizations. Fur-
ther examination reveals that at -O0 the crash probabilities
tend to be similar with overlapping error bars for most of
the benchmarks, while at -O1, -O2, and -O3 this is not the
case. In addition, the mean absolute error between the crash
probability measurements from LLFI and PINFI are 6.428%,
11.232%, 11.412%, and 11.664% for -O0 to -O3, respectively.
This indicates that the crash probabilities of LLFI and PINFI
are similar at the lowest optimization level -O0, but not at
the other optimizations -O1 to -O3.

Least squares regression analysis: The results from the
least squares linear regression analysis (Table 2) follow the
same pattern. At -O0, the slope of the line of best fit is
0.8129, with a slope of 1 falling within the confidence
interval. However, at -O1, -O2, and -O3 the slopes are only
0.5216, 0.5191, and 0.4867 respectively. The R2 values also
follow this trend, dropping from 0.6915 at -O0 to 0.2716
at -O1. At all optimization levels, the y-intercept is close
to 0, with 0 falling within the confidence interval. While
the linear relationship at -O0 is not as strong as those for
the SDC probabilities, we find that as the optimization level
increases, the less accurate the crash probabilities measured
by LLFI become compared to PINFI.

Paired sample t-test: Table 3 shows the p-values ob-
tained from the paired sample t-test performed on the crash
probabilities measured using LLFI and PINFI. As all of the
p-values are below 0.05, we reject the null hypothesis that
the mean difference between the probabilities measured
using LLFI and those measured using PINFI is zero. This
suggests that there is a statistically significant variation in
the crash probability measurements using LLFI and PINFI.

Spearman’s rank correlation test: As shown in Ta-
ble 3, the results from the Spearman’s rank test indicate
a moderate-to-strong monotonic relationship between the
crash probabilities measured using LLFI and that of PINFI.
At -O0, the correlation coefficient is 0.8398, indicating a
strong monotonic relationship. At -O1, -O2, and -O3 how-
ever, this number drops to between 0.6 and 0.7. Thus, LLFI
is sensitive to distinguishing the ranking of program crash
probabilities at -O0, but not at -O1, -O2, and -O3.

Conclusion: Based on the above analysis, for RQ2 we
conclude that the crash probabilities do not consistently



9

(a) With -O0 Optimization

(b) With -O1 Optimization

(c) With -O2 Optimization

(d) With -O3 Optimization

Fig. 4: Program crash probabilities measured by LLFI and PINFI

match between LLFI and PINFI for all optimization levels.
Further, the accuracy of the crash probability measurements
is influenced by the compiler optimizations applied to the
program, especially going from -O0 to -O1.

4.3 Discussion
When a program is compiled using a specified optimization
level, optimization passes are applied to the code at both
the IR level and in the compiler back end. As a result,
the compiled IR of a program only has some of the opti-
mizations applied, while the corresponding executable of
the program will have the rest of the optimizations as well
(those applied in the compiler back end). While IR-level
optimization passes typically apply platform-independent
code transformations that affect the data flow of the pro-
gram, back end optimizations often target platform-specific

transformations such as those involving register allocation
and memory operations.

We observed that the SDC probabilities are measured
accurately by IR-level FI when compared with assembly-
level FI. This observation makes sense, considering SDCs
(i.e., incorrect outputs) can be mostly attributed to errors
in a program’s data flow, which is relatively unaffected by
back end optimizations. On the other hand, we found that
the accuracy of crash probability measurements noticeably
suffers when more optimizations are applied to the pro-
gram. A program’s IR and assembly code share common
front and middle end compilations, but have differing back
end compilations due to optimizations not visible at the IR
level. Thus, the accuracy of crash probability measurements
seem to be affected by back end optimizations (Section 5).



10

5 EFFECTS OF MEMORY ADDRESS INSTRUCTIONS

Section 4 presents us with some useful insights into the
accuracy of IR-level FI with respect to assembly-level FI.
We observed that while IR-level FI can provide SDC proba-
bility measurements as accurately as assembly-level FI even
with all of the standard optimizations applied, it does not
provide the same level of accuracy in its crash probability
measurements when those optimizations are applied.

In this section, we expand on our insights as to why
this might be the case by introducing the concept of memory
address instructions. We then illustrate how the patterns
observed in the crash probability measurements in Section 4
are correlated with a program’s percentage of memory
address instructions. This section provides the basis for our
machine-learning-based prediction technique in Section 6.

5.1 Overview of Memory Address Instructions

We begin this section with an introduction to what we
call memory address instructions. In short, a memory address
instruction is an instruction whose output (i.e., the value in
its destination register) is a memory address value that is
eventually used by a load or store instruction that reads or
writes to memory.

A major cause for crashes is segmentation faults [15],
[16], which occur when a memory load or store instruction
tries to read from or write to an “illegal” memory location.
This can happen when an error propagates to the memory
instruction operand, such as the address of load or store
instructions. The fault that may cause such an error can
occur in the memory instruction itself, or any previous
instruction that operates on the stored value of the memory
address used.

Many back end optimizations operate on a program’s
interactions with memory; for example, a register allocation
optimization pass (typically applied in the compiler back
end) determines how the compiler assigns program vari-
ables to the target architecture’s limited number of registers,
and when it is necessary to spill the excess data to memory.
Thus, it is likely that the inaccuracies in crash probability
measurements at higher optimization levels are correlated
with how the optimizations influence the amount of these
memory address instructions.

To illustrate this concept, consider the x86-64 assembly
code segment in Figure 5, which is taken from the backprop
benchmark compiled at -O3 optimization. The instructions
in lines (1) and (2) add 0x4 to the values in registers rsi
and rdx, respectively. Several instructions later, in lines (8)
and (9), the values in each of the respective registers are
used as memory addresses for load operations. We therefore
consider the instructions in lines (1) and (2) to be memory
address instructions; if an error were injected into the des-
tination register of one of these instructions, the error will
propagate to the address of a memory instruction. Note that
we only consider errors that occur in an instruction’s desti-
nation register, as per our fault model. Thus, instructions (8)
and (9) are not considered memory address instructions as
an injection into one of these instructions would not affect
any memory address values.

Fig. 5: x86-64 assembly code segment from the backprop
benchmark; instructions 1 and 2 are considered memory
address instructions

5.2 Measuring Memory Address Instruction Percent-
ages

We develop a tool that, given a set of programs compiled
to both IR and assembly, measures the amount of memory
address instructions executed dynamically at both the IR
and assembly level. Our tool profiles memory address in-
structions from the dynamic execution of the program, but
only counts instructions whose return values are used as
addresses in subsequent load or store instructions within the
same basic block as the instruction in question.

This is because tracing memory dependencies across
basic blocks through the entire execution of the program
incurs very high overhead, and for large programs (such
as the types of applications typically tested using fault
injection) the time required to perform this analysis would
be much too high. That being said, while limiting the
profiling to only memory dependencies within basic blocks
exclude instructions that propagate memory dependencies
between basic blocks, it does capture most of the crash-
causing errors; most crashes occur within the same basic
block as the faulty instruction [20], [58].

We use the standard definition of a basic block: a set
of consecutive instructions with no branches/jumps in or
out of the middle of the block. At the IR level, identifying
the boundaries of the basic blocks is trivial as LLVM IR
code is already structured in basic blocks [24]. For assembly
code, we determine this programmatically as part of our
profiling tool; we parse the compiled assembly code and
identify the boundaries of the blocks based on branch/jump
instructions. Note that there may be some corner cases that
are not covered by our tool at the assembly code level
(e.g., indirect branches that jump to the middle of a basic
block). However, these cases are rare in practice, and can be
addressed by using a more sophisticated disassembler [59].

Our tool follows the following process at both the IR and
assembly levels:

1) We first obtain a sampling of the instructions executed.
Sampling, as opposed to using the entire set of executed
instructions, provides us with a low-overhead method
of obtaining a statistical estimate of the frequency of
instruction execution. For example, sampling took at
most a few hours on each of the benchmarks, while
analyzing the entire set of instructions took several
days even for our smallest benchmark. Furthemore, the
sampling methodology is consistent with that used for
selecting fault injection targets.
• IR-level: We use the FI logs produced by LLFI to pro-



11

vide us with a sampling of the dynamically executed
instructions.

• Assembly-level: We use a PIN-based instruction
sampling tool to sample instructions as they are
executed dynamically. Further, our tool borrows code
from PINFI to limit the selection of the instruction
sampling to only those instructions that are relevant
to the chosen fault model (i.e., the chosen PINFI
configuration). This is to keep our tool’s analysis
consistent with the IR-level analysis and with the
fault model in question.

2) Using the static IR and disassembled x86-64 assembly
code respectively, we parse the sets of static instructions
and record which instructions are memory address
instructions with respect to their basic blocks.

3) We obtain the total amounts of memory address in-
structions executed dynamically by counting the fre-
quency of each recorded instruction in the sampling.

We peform this analysis across the set of benchmarks and
optimization levels, obtaining the amounts of both IR- and
assembly-level memory address instructions as percentages
of the total number of instructions sampled. For each bench-
mark and optimization level, we show the corresponding
percentages measured by our tool in Table 4.

5.3 Correlation with Crash Probabilities
Table 4 shows the measured percentages of memory ad-
dress instructions for each benchmark, at both the IR and
assembly level. At -O0, we observe that at the IR and
assembly level the values change little compared to the
other optimization levels; however, at -O0 the average ratio
between the two values (x86-64/IR) is 0.7914 compared to
0.3479, 0.2806, 0.2573 at -O1, -O2, and -O3 respectively. In
Section 4.2.2, we observe a similar pattern in the measured
crash probabilities. Thus, in this section we investigate how
these ratios correlate with those of the crash probability
measurements.

To investigate this, we first calculate (1) the ratio of crash
probabilities measured by PINFI over that of LLFI, and (2)
the ratio of percentage of memory address instructions for
assembly code over that of IR. In effect, these ratios are the
“gain” applied by the compiler back end optimizations for
each respective metric, i.e., the factor by which the compiler
back end increases (or decreases) either the crash probability
or the percentage of memory-depenent instructions when
back end optimizations are applied.

Next, we ask the question: is the gain in the memory
address instruction percentage correlated with the gain in the
crash probability measurement? To answer this question, we
calculate the correlation coefficient of the set of ratios at each
optimization level. A strong correlation (i.e., close to ±1)
would indicate that any change we see from IR to assembly
in the measured crash probability is correlated with the
change in percentage of memory address instructions.

We find that at -O0 the correlation coefficient is −0.01296
while at -O1, -O2, and -O3 the coefficients are 0.41205,
0.71066, and 0.64522 respectively. A correlation coefficient
above 0.5 typically indicates a moderately strong correla-
tion. The dramatic change in the correlation from -O0 to the
higher levels of optimization suggests that the inaccuracies

in the crash rate can be explained by the relative percentages
of memory address instructions at -O1 to -O3, but not at -O0
()as there is no optimization applied to the program).

6 CRASH PROBABILITY ESTIMATION USING ML
In Section 4, we observed that IR-level FI is not as accurate
as assembly-level FI for measuring the crash probability
of programs due to transient hardware faults. Given the
significant advantages of IR-level FI over assembly-level FI
highlighted in Section 2.3, e.g., easier analysis with respect
to the source code and portability, a more accurate measure-
ment using IR-level FI would prove useful.

In Section 5, we found that when optimizations are
applied, there is a correlation between the change in the
amount of memory address instructions, and the change in
measured crash probabilities from a program’s IR to as-
sembly level code. In other words, there appears to be
a correlation between how compiler optimizations affect
measured crash probabilities (at the respective levels), and
how they affect the percentages of memory address instruc-
tions. Further, it is clear from Table 4 that the application
of back end optimizations (i.e., not at -O0) have a much
more significant effect on memory address instructions than
when no optimization (i.e., -O0) is applied. This is in line
with our intuition since we have observed in Section 4 that
crash probability measurements are also affected by back
end optimizations.

These are useful insights as measuring a program’s per-
centage of memory address instructions at both the IR-level
and assembly-level is fairly straightforward. Even more
importantly however, is that the process is much quicker
than performing thousands of fault injections in order to
obtain both the IR- and assembly-level crash probabilities.
Therefore, it is worthwhile to pursue the implementation of
a technique that uses memory address instruction percent-
ages to supplement IR-level fault injection experiments to
provide a program’s crash probability estimations that are
closer to that of assembly-level FI (without performing any
assembly-level FI experiments).

In this section, we present a ML-based crash probabil-
ity prediction technique that effectively “closes the gap”
between IR- and assembly-level FI with respect to crash-
causing errors. We evaluate several different ML algorithms
on the data gathered in prior sections (i.e., FI experiment
results and memory address instruction percentages) and
compare the resulting estimations against the original IR-
level crash probability measurements.

6.1 Experimental Setup

We evaluate a variety of supervised ML models to deter-
mine which would best fit the data. The types of ML models
we evaluate are limited to regression, as we want to map our
inputs to a continuous-valued output. Our goal is to find
a model, or a handful of models, that can predict a given
program’s crash probability as accurately as with assembly-
level FI within a reasonable degree of confidence.

Our desired model takes three inputs, with the output
being the crash probability measured using assembly-level
FI experiments as outlined in Figure 6. In practice, such



12

TABLE 4: Percentages of Memory Address Instructions

Memory Address Instructions (% of total instructions)

-O0 -O1 -O2 -O3
Benchmark IR x86-64 IR x86-64 IR x86-64 IR x86-64

backprop 54.2 % 41.3 % 32.8 % 16.4 % 28.5 % 14.5 % 25.5 % 13.6 %
bfs 45.2 % 25.8 % 20.0 % 7.7% 18.9 % 3.3% 18.4 % 3.0%
blackscholes 16.0 % 9.9% 9.9% 5.6% 10.9 % 6.8% 10.0 % 5.0%
BT 68.2 % 67.9 % 18.5 % 0.8% 22.2 % 0.0% 20.0 % 0.1%
bzip2 33.6 % 11.1 % 30.7 % 10.7 % 29.5 % 2.9% 30.0 % 2.7%
CG 59.3 % 0.6% 34.3 % 0.1% 33.8 % 0.7% 30.4 % 0.7%
comd 61.6 % 45.4 % 28.2 % 13.6 % 26.9 % 8.4% 28.4 % 13.9 %
DC 51.4 % 35.9 % 21.0 % 1.4% 19.5 % 2.5% 23.7 % 2.1%
EP 16.4 % 12.5 % 8.4% 0.0% 9.9% 0.0% 7.0% 0.0%
fluidanimate 42.2 % 15.2 % 32.7 % 1.8% 11.3 % 5.1% 11.8 % 3.0%
FT 29.2 % 64.9 % 20.4 % 4.9% 21.5 % 6.2% 18.7 % 3.4%
hmmer 68.4 % 45.8 % 29.6 % 14.0 % 28.3 % 13.3 % 31.5 % 2.9%
hpccg 54.4 % 37.3 % 34.8 % 0.9% 33.6 % 2.1% 35.2 % 0.8%
IS 38.2 % 33.6 % 39.0 % 31.6 % 39.2 % 30.1 % 40.7 % 38.6 %
kmeans 53.6 % 36.3 % 16.2 % 0.9% 16.6 % 1.9% 18.6 % 2.8%
libquantum 47.1 % 32.2 % 9.8% 0.9% 10.7 % 0.7% 11.6 % 0.4%
LU 71.6 % 86.2 % 24.0 % 1.6% 22.8 % 0.8% 23.3 % 1.2%
lud 58.0 % 28.7 % 48.8 % 0.3% 44.7 % 0.3% 46.8 % 0.0%
mcf 41.7 % 39.2 % 33.9 % 57.7 % 31.7 % 16.9 % 34.1 % 14.6 %
MG 80.8 % 68.8 % 24.1 % 5.7% 36.3 % 5.2% 36.1 % 5.3%
ocean 67.0 % 74.6 % 26.9 % 0.0% 29.6 % 0.1% 30.7 % 0.2%
raytrace 46.6 % 27.5 % 27.4 % 3.3% 30.6 % 4.4% 31.5 % 4.4%
SP 76.6 % 75.0 % 24.7 % 1.8% 27.3 % 0.0% 28.0 % 0.3%
UA 72.1 % 65.6 % 25.8 % 9.5% 40.0 % 7.3% 38.0 % 5.7%
xsbench 41.9 % 43.5 % 31.1 % 61.4 % 30.9 % 58.1 % 30.5 % 58.5 %

x1 = estimate of crash probability as measured by IR-level FI
x2 = percentage of memory address instructions in IR code
x3 = percentage of memory address instructions in assembly code
y = estimate of crash probability as measured by assembly-level FI

Fig. 6: Inputs (features) and output (label) of our ML-based
predictor

a predictor could be integrated in a IR-level FI tool (such
as LLFI), allowing users to measure a program’s crash
probability at the IR level with comparable accuracy to that
of assembly-level FI, thus closing the gap between IR-level
and assembly-level FI as far as crashes are concerned.

As this is a relatively small data set, we are not concerned
with the computational cost to train the models. We evaluate
many different models, each with different sets of available
hyper-parameters, to find the ‘best’ model. Table 5 provides
an overview of the models selected for training in our
experiments.

Our data set has a total of 100 examples (25 benchmarks
× 4 optimization levels) that we split randomly into a
training set of size 80 and a test set of size 20 (i.e., an 80-
20 split). Each data sample has three features and one label
(Figure 6). We use 5-fold cross-validation to tune the hyper-
parameters for each model. We use mean squared error
(MSE) as the score function, and thus we choose the set
of hyper-parameters that result in the best MSE from cross-
validation. We then compare the MSE of each of the models
based on the test set predictions, after re-training them on

TABLE 5: Overview of Machine Leaning Models

Model type Description

Linear regression Ordinary least squares linear regression
Huber regression Linear regression model that is robust to

outliers
Lasso regression Linear model with L1 regularization
Ridge regression Linear model with L2 regularization
Support vector regression Support vector machine algorithm for

regression
Kernel ridge regression combines ridge regression with the ker-

nel trick
Bayesian ridge regression ridge regression model defined in prob-

abilistic terms, with explicit priors on
the parameters

Random forest regression meta estimator that fits a number of
decision trees on various sub-samples of
the dataset

Multi-layer perceptron Artificial neural network

the entire training set.

6.2 Results

Table 6 shows an overview of the results. For each model,
we report the MSE of the predictions on the training set, the
coefficient of determination (R2) between the predictions
and true labels of the test set, and the MSE of the predictions
on the test set. The table is sorted in order of test set error
(MSE); the model with the lowest test set error (i.e., the best
performing model) is a random forest regression model,
and is listed first in the table. In the absence of a ML
model, “current practice” would be to simply use the crash
probability obtained using IR-level FI as the estimate of the
crash probability. Thus, we also compare the MSE values
obtained using our ML predictions against those from a



13

“current practice” model that predicts ŷ = x1, shown in
Table 6.

In addition to reporting the MSE and R2 values for each
trained model, we provide the predicted crash probabilities
and perform the same statistical analyses on the predictions,
as was done in Section 4, for the “best” model (i.e., the
random forest regression model). The crash probability pre-
dictions are plotted for each benchmark and optimization
level in Figure 8, alongside the measurements made by
PINFI for comparison.

The least squares regression analysis results are shown
in Table 7, and the t-test p-values and Spearman’s rank
correlation coefficients are shown in Table 8. Plots of the
measurements with least squares regression lines are shown
in Figure 7.

TABLE 6: ML Model Results

Training MSE Test MSE Test R2

Random Forest Model1 0.000876 0.001824 0.8754
Neural Net Model 0.001522 0.003803 0.7597
SVR Model 0.009554 0.007247 0.5421
Lasso Model 0.008206 0.007309 0.5381
Bayesian Ridge Model 0.008168 0.007404 0.5322
Huber Model 0.008468 0.007486 0.5270
Ridge Model 0.008153 0.007644 0.5170
LR Model 0.008152 0.007682 0.5146
Kernel Model 0.002118 0.022943 -0.4497

Current practice2 0.01595 0.01651 0.41144

Models are sorted in order of increasing test set MSE
(i.e., the best performing models are listed first)

1 Model with lowest test MSE
2 Using model that simply predicts ŷ = x1

(a) LLFI estimations (b) ML estimations

Fig. 7: Program Crash probabilities measured by PINFI
plotted against those measured by LLFI (a) and those pre-
dicted using a random forest regression model (b), with least
squares regression line. The ideal line of best fit is a line with
slope of 1 and y-intercept of 0.

TABLE 7: Least Squares Regression Analysis Comparison
(LLFI vs. ML Crash Probability Estimates)

slope, m y-intercept, b R2

LLFI estimates 0.7405± 0.1536 0.1313± 0.0447 0.4868
ML estimates 0.9022± 0.0442 0.0265± 0.0129 0.9446

We find that for all models apart from the kernel model,
both the training and test MSE of the supervised ML models

TABLE 8: Statistical Test Result Comparison (LLFI vs. ML
Crash Probability Estimates)

LLFI estimates ML estimates

p-value† 6.036e−8 0.70127

Correlation coeff.‡ 0.73321 0.97171

†Measured using paired sample t-test (Section 4.1.4)
‡Measured using Spearman’s rank test (Section 4.1.4)

are much lower than that of IR-level FI (i.e., current prac-
tice). The coefficient of determination R2 (taken between
the actual and predicted labels of the test set) ranges from
0.4497 to 0.8754, indicating a wide range of explanatory
power depending on the model; a R2 close to 1 indicates a
strong explanation of variability in the model, while a value
close to 0 indicates a weak explanation.

A better indicator of a good ML model than R2 is its
test error. The model that results in the best test error is
a random forest regression model with 16 decision trees and 3
maximum features per tree. This model offers a test MSE that is
much smaller than most other models at 0.001824, and over
9 times smaller than IR-level FI on its own (this is roughly
an order of magnitude better). Random forest regression is
an algorithm that produces a number of decision trees on
random subsets of the dataset, a very different process from
the other models that are mostly different versions of linear
regression models. Our results indicate that a decision tree-
based model is best suited to making predictions on this
type of dataset, with a multi-layer perceptron model (i.e., a
neural network) coming a close second.

Next, we compare the predictions made using the ran-
dom forest regression model with the LLFI crash probability
measurements using the least squares regression analysis
and paired sample t-test (Section 4). We notice a sizeable
improvement in the least squares regression analysis from
LLFI to the ML predictions (Figure 7). With respect to the
paired sample t-test, the p-value for the LLFI measurements
is notably smaller than the cutoff of 0.05 while the p-value
for the ML predictions is much higher at 0.70127. This
tells us that while we can reject the null hypothesis for
LLFI crash probability measurements (i.e., LLFI and PINFI
crash probability measurements are significantly different),
we cannot reject the null hypothesis for the ML predictions
(i.e., the ML predictions are not significantly different from
PINFI crash probability measurements).

The Spearman’s rank correlation test gives us similar
findings: the ranked correlation coefficient for the ML pre-
dictions is much closer to 1 than that of the LLFI measure-
ments. In fact, we see that the correlation coefficient for the
ML predictions is very nearly 1 with a value of 0.97171.
We therefore conclude that the predictions made using the
random forest regression model are extremely sensitive to
the relative rankings of program crash probabilities.

Based on these results, we conclude that supervised ML
is a reasonable approach to estimating a more accurate pro-
gram crash probability measurement with only IR-level FI
experiments. ML is able to take advantage of the correlations
between the percentage of memory address instructions in a
program and its crash probability, giving us a more accurate
estimate of the latter using only IR-level FI. This allows



14

(a) With -O0 Optimization

(b) With -O1 Optimization

(c) With -O2 Optimization

(d) With -O3 Optimization

Fig. 8: Program crash probabilities estimated by LLFI improved with the random-forest regression model vs. PINFI

practitioners to reap the benefits of performing FI at the
IR level while still obtaining comparable measurements of a
program’s crash probability as assembly-level FI.

7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

As random bit-flips caused by transient hardware errors are
becoming more common, researchers and software design-
ers are relying more on fault injection (FI) to evaluate the
resilience of software techniques in vulnerable systems. In
this study, we investigated the accuracy of IR-level FI, i.e.,
fault injection that is performed at the IR level of a program.
IR-level FI has benefits over assembly-level FI, including
easier portability and mapping to the original source code.

In this paper, we first performed an extensive com-
parison study to re-examine the accuracy of the statistical
estimates of coverage derived from FI studies at the IR level
with respect to FI performed at the assembly level. Specifi-
cally, we compared the results of FI performed at the LLVM

IR level with those at the x86-64 assembly level, as these are
the dominant platforms used by prior work in this area. Our
findings showed that IR-level FI provides measurements
of program SDC probabilities that are as accurate as those
measured using assembly-level FI, however the same is not
true for crash probability measurements.

Further, based on an observed correlation between mea-
sured crash probabilities and the amount of executed in-
structions that operate on memory address values, we pro-
posed a machine-learning-based approach to improving the
accuracy of crash probability measurements using IR-level
FI. We trained a variety of different algorithms, and find
that the “best” model (i.e., the one with the best test set
error) resulted in a test set error that is over 9 times smaller
than that of the raw IR-level FI measurements.

7.2 Future Work
There are two potential directions for future work.

1. Extending the comparison to other platforms: We
focused on evaluating the accuracy of LLVM IR-level FI



15

with respect to x86-64 assembly-level FI. While these two
platforms are popular and are commonly used in both
research and industry, it would be useful to conduct the
same comparisons on other common platforms.

2. Improving the machine learning study Our machine
learning study can be improved by (1) adding additional
features to improve prediction capabilities, (2) implement-
ing feature selection techniques to identify the most and
least important features, and (3) improving the size and
quality of the training data set.

All the data and tools in this paper are available at:
https://github.com/DependableSystemsLab/ISSRE19
We have also released the crash rate estimator tool at:
https://github.com/DependableSystemsLab/LLFI-
CrashRateEstimator

ACKNOWLEDGEMENT

This research was partially supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC) through the Discovery Grants and Strategic Project
Grants (SPG) Programmes. We thank the anonymous re-
viewers of TDSC for their insightful comments.

REFERENCES
[1] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve,

S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson,
A. A. Chien, P. Coteus, N. A. Debardeleben, P. C. Diniz,
C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson,
S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra, T. Munson,
R. Schreiber, J. Stearley, and E. V. Hensbergen, “Addressing
failures in exascale computing,” Int. J. High Perform. Comput.
Appl., vol. 28, no. 2, pp. 129–173, May 2014. [Online]. Available:
http://dx.doi.org/10.1177/1094342014522573

[2] S. Borkar, “Designing reliable systems from unreliable compo-
nents: the challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, Nov 2005.

[3] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” in 2008 Annual Reliability and Maintainability
Symposium, Jan 2008, pp. 370–374.

[4] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “A flex-
ible software-based framework for online detection of hardware
defects,” IEEE Transactions on Computers, vol. 58, no. 8, pp. 1063–
1079, Aug 2009.

[5] Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke,
and D. I. August, “Runtime asynchronous fault tolerance via
speculation,” in Proceedings of the Tenth International Symposium
on Code Generation and Optimization, ser. CGO ’12. New
York, NY, USA: ACM, 2012, pp. 145–154. [Online]. Available:
http://doi.acm.org/10.1145/2259016.2259035

[6] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt,
“Techniques to reduce the soft error rate of a high-
performance microprocessor,” SIGARCH Comput. Archit. News,
vol. 32, no. 2, pp. 264–, Mar. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1028176.1006723

[7] J. Calhoun, L. Olson, and M. Snir, “Flipit: An LLVM based fault
injector for HPC,” in Euro-Par 2014: Parallel Processing Workshops -
Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26,
2014, Revised Selected Papers, Part I, 2014, pp. 547–558.

[8] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman,
“Llfi: An intermediate code-level fault injection tool for hardware
faults,” in 2015 IEEE International Conference on Software Quality,
Reliability and Security, Aug 2015, pp. 11–16.

[9] A. Thomas and K. Pattabiraman, “Error detector placement
for soft computation,” in Proceedings of the 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), ser. DSN ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1109/DSN.2013.6575353

[10] J. Calhoun, M. Snir, L. Olson, and M. Garzaran, “Understanding
the propagation of error due to a silent data corruption in a sparse
matrix vector multiply,” in 2015 IEEE International Conference on
Cluster Computing, Sept 2015, pp. 541–542.

[11] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai,
“Modeling soft-error propagation in programs,” in 2018 48th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2018, pp. 27–38.

[12] L. Palazzi, G. Li, B. Fang, and K. Pattabiraman, “A tale of two
injectors: End-to-end comparison of IR-level and assembly-level
fault injection,” in 2019 IEEE 30th International Symposium on
Software Reliability Engineering (ISSRE), Oct 2019.

[13] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying
the accuracy of high-level fault injection techniques for hardware
faults,” in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), vol. 00, June 2014, pp.
375–382.

[14] G. Georgakoudis, I. Laguna, D. S. Nikolopoulos, and
M. Schulz, “Refine: Realistic fault injection via compiler-
based instrumentation for accuracy, portability and speed,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 29:1–29:14. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126972

[15] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“epvf: An enhanced program vulnerability factor methodology
for cross-layer resilience analysis,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2016, pp. 168–179.

[16] Weining Gu, Z. Kalbarczyk, and R. K. Iyer, “Error sensitivity of the
linux kernel executing on powerpc g4 and pentium 4 processors,”
in International Conference on Dependable Systems and Networks, 2004,
June 2004, pp. 887–896.

[17] J.-C. Laprie, “Dependable computing and fault tolerance: Con-
cepts and terminology,” in Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995,. IEEE, 1985, p. 2.

[18] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Prob-
abilistic soft error reliability on the cheap,” in Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XV. New York, NY,
USA: ACM, 2010, pp. 385–396.

[19] S. K. S. Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi, “Ganges:
Gang error simulation for hardware resiliency evaluation,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), June 2014, pp. 61–72.

[20] G. Li, Q. Lu, and K. Pattabiraman, “Fine-grained characterization
of faults causing long latency crashes in programs,” in 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, June 2015, pp. 450–461.

[21] B. Fang, P. Wu, Q. Guan, N. DeBardeleben, L. Monroe, S. Blan-
chard, Z. Chen, K. Pattabiraman, and M. Ripeanu, “Sdc is in the
eye of the beholder: A survey and preliminary study,” in 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), June 2016, pp. 72–76.

[22] B. Fang, Q. Guan, N. Debardeleben, K. Pattabiraman, and
M. Ripeanu, “Letgo: A lightweight continuous framework for hpc
applications under failures,” in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’17. New York, NY, USA: ACM, 2017, pp. 117–130.
[Online]. Available: http://doi.acm.org/10.1145/3078597.3078609

[23] B. Fang, H. Halawa, K. Pattabiraman, M. Ripeanu, and
S. Krishnamoorthy, “Bonvoision: Leveraging spatial data
smoothness for recovery from memory soft errors,” in Proceedings
of the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: ACM, 2019, pp. 484–496. [Online]. Available:
http://doi.acm.org/10.1145/3330345.3330388

[24] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[25] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by du-
plicated instructions in super-scalar processors,” IEEE Transactions
on Reliability, vol. 51, pp. 63–75, 2002.

[26] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An archi-
tectural framework for software recovery of hardware faults,” in
Proceedings of the 37th Annual International Symposium on Computer



16

Architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp.
497–508.

[27] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level
detectors for reducing silent data corruptions,” in DSN, pp. 181–
188.

[28] J. Cong and K. Gururaj, “Assuring application-level correctness
against soft errors,” in IEEE International Conference on Computer-
Aided Design, 2011, pp. 150–157.

[29] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan,
“Towards formal approaches to system resilience,” in 2013 IEEE
19th Pacific Rim International Symposium on Dependable Computing,
Dec 2013, pp. 41–50.

[30] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari:
a flexible software-based fault and error injection system,” IEEE
Transactions on Computers, vol. 44, no. 2, pp. 248–260, Feb 1995.

[31] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vulnerabilities
in extreme-scale scientific applications using a binary instrumen-
tation tool,” in SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, Nov
2012, pp. 1–11.

[32] U. Schiffel and C. Fetzer, “Hardware fault injection using dynamic
binary instrumentation: Fitgrind,” in Proceedings Supplemental Vol-
ume of EDCC-6, 01 2006.

[33] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“A systematic methodology for evaluating the error resilience
of gpgpu applications,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 12, pp. 3397–3411, Dec. 2016. [Online]. Available:
https://doi.org/10.1109/TPDS.2016.2517633

[34] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-
qin: A methodology for evaluating the error resilience of gpgpu
applications,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), March 2014, pp. 221–230.

[35] S. K. Vishal Chandra Sharma, Ganesh Gopalakrishnan, “Towards
reseiliency evaluation of vector programs,” in 21st IEEE Work-
shop on Dependable Parallel, Distributed and Network-Centric Systems
(DPDNS), 2016.

[36] D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog: Testing the
accuracy of binary-level software fault injection,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 15, no. 1, pp. 40–53,
Jan 2018.

[37] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A
field data study and a practical approach,” IEEE Transactions on
Software Engineering, vol. 32, no. 11, pp. 849–867, Nov 2006.

[38] H. Madeira, D. Costa, and M. Vieira, “On the emulation of soft-
ware faults by software fault injection,” in Proceeding International
Conference on Dependable Systems and Networks. DSN 2000, June
2000, pp. 417–426.

[39] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experi-
mental analysis of binary-level software fault injection in complex
software,” in 2012 Ninth European Dependable Computing Conference,
May 2012, pp. 162–172.

[40] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H.
Leber, “Comparison of physical and software-implemented fault
injection techniques,” IEEE Transactions on Computers, vol. 52, no. 9,
pp. 1115–1133, Sept 2003.

[41] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, April 1997.

[42] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and
S. Mitra, “Quantitative evaluation of soft error injection
techniques for robust system design,” in Proceedings of
the 50th Annual Design Automation Conference. New York,
NY, USA: ACM, 2013, pp. 101:1–101:10. [Online]. Available:
http://doi.acm.org/10.1145/2463209.2488859

[43] C. Chen, G. Eisenhauer, M. Wolf, and S. Pande, “Ladr: Low-
cost application-level detector for reducing silent output corrup-
tions,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’18.
New York, NY, USA: ACM, 2018, pp. 156–167.

[44] A. A. Porter and R. W. Selby, “Empirically guided software de-
velopment using metric-based classification trees,” IEEE Software,
vol. 7, no. 2, pp. 46–54, March 1990.

[45] L. C. Briand, V. R. Brasili, and C. J. Hetmanski, “Developing
interpretable models with optimized set reduction for identifying
high-risk software components,” IEEE Transactions on Software
Engineering, vol. 19, no. 11, pp. 1028–1044, Nov 1993.

[46] F. Lanubile, A. Lonigro, and G. Vissagio, “Comparing models for

identifying fault-prone software components.” in SEKE, 1995, pp.
312–319.

[47] N. Ohlsson, M. Zhao, and M. Helander, “Application of multivari-
ate analysis for software fault prediction,” Software Quality Journal,
vol. 7, no. 1, pp. 51–66, Mar 1998.

[48] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert systems with applications, vol. 36, no. 4,
pp. 7346–7354, 2009.

[49] B. Farahani and S. Safari, “A cross-layer approach to online
adaptive reliability prediction of transient faults,” in 2015 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS). IEEE, 2015, pp. 215–220.

[50] Q. Lu, G. Li, K. Pattabiraman, M. S. Gupta, and J. A. Rivers,
“Configurable detection of sdc-causing errors in programs,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 3, pp. 88:1–88:25, Mar. 2017.

[51] C. Kalra, F. Previlon, X. Li, N. Rubin, and D. Kaeli, “Prism: Pre-
dicting resilience of gpu applications using statistical methods,” in
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis, ser. SC’18. Piscataway,
NJ, USA: IEEE, 2018, pp. 69:1–69:14.

[52] A. Merkel and F. Bellosa, “Memory-aware scheduling for energy
efficiency on multicore processors.” HotPower, vol. 8, pp. 123–130,
2008.

[53] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation,” Web Copy: http://www. glue.
umd. edu/ajaleel/workload, 2010.

[54] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber et al., “The nas parallel benchmarks summary and
preliminary results,” in Supercomputing’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing. IEEE, 1991, pp. 158–165.

[55] N. Gholkar, F. Mueller, and B. Rountree, “Uncore power
scavenger: A runtime for uncore power conservation on hpc
systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: ACM, 2019, pp. 27:1–27:23. [Online].
Available: http://doi.acm.org/10.1145/3295500.3356150

[56] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The splash-2 programs: Characterization and methodological
considerations,” in Proceedings of the 22Nd Annual International
Symposium on Computer Architecture, ser. ISCA ’95. New
York, NY, USA: ACM, 1995, pp. 24–36. [Online]. Available:
http://doi.acm.org/10.1145/223982.223990

[57] F. A. Morrison, “Obtaining uncertainty measures on slope
and intercept of a least squares fit with excel’s linest,” 2014.
[Online]. Available: http://pages.mtu.edu/∼fmorriso/cm3215/
UncertaintySlopeInterceptOfLeastSquaresFit.pdf

[58] G. Li, K. Pattabiraman, C. Cher, and P. Bose, “Experience report:
An application-specific checkpointing technique for minimizing
checkpoint corruption,” in 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), Nov 2015, pp. 141–152.

[59] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos,
“An in-depth analysis of disassembly on full-scale x86/x64 bina-
ries,” in 25th {USENIX} Security Symposium ({USENIX} Security
16), 2016, pp. 583–600.

Lucas Palazzi is a former MASc student at the University of British
Columbia (UBC), having graduated the program in 2019. He received
his BASc in Electrical Engineering at the University of Windsor in 2017.
Lucas’s research interests include fault tolerance and fault injection
techniques and methodologies.
Bo Fang received his bachelor’s from Wuhan University, China in 2006
and MASc and PhD from the University of British Columbia (UBC)
in 2014 and 2020 respectively. He is now a research associate at
Pacific Northwest National Laboratory. Bo’s research interests include
fault tolerance applications and systems, compilers, machine learning
accelerators, and quantum computing.
Guanpeng Li received his BASc (2014) and PhD (2019) degrees from
the University of British Columbia, and has recently joined the Depart-
ment of Computer Science at the University of Iowa as an assistant pro-
fessor. Guanpeng’s research interests include error resilient systems,
compilers, and software testing.
Karthik Pattabiraman received his MS and PhD degrees from the
University of Illinois at Urbana-Champaign (UIUC) in 2004 and 2009 re-
spectively. After a post-doctoral stint at Microsoft Research (Redmond),
Karthik joined the University of British Columbia (UBC) as an assistant
professor of electrical and computer engineering. Karthik’s research
interests include building error resilient software systems, software en-
gineering, and security.


