
Error Propagation Analysis for
Multi-Threaded Programs

Habib Saissi, Stefan Winter, Oliver Schwahn,
Karthik Pattabiraman, Neeraj Suri

Fault Injection
Evaluate the robustness of software

2

Motivation: Error Propagation Analysis (EPA)
Compare FI run with golden run (fault free run)

Any deviation indicates error propagation

Trace
Comparison

Golden run

Faulty run

Deviation?Error Propagation
Analysis

What about Multi-threaded programs ?

Differences due
to inherent
non-determinism

 Differences due to
 the injected fault

?

Is the difference due to the
non-determinism of multi-threading

OR error propagation ?

Example: Single-Threaded EPA

5

Program Fault-free Run Fault Injection

A[0] = 2;
A[1] = 19;
A[0]++;
A[1]++;
return A[0] + A[1];

A[0] = 2;
A[1] = 19;
A[0] = 3;
A[1] = 20;
return 23;

A[0] = 2;
A[1] = 91;
A[0] = 3;
A[1] = 92;
return 94;

6/30/2019

Injection

Propagation

Propagation

Program Thread 1
(Fault Free)

Thread 2
(Fault Free)

A[0] = 2;
A[1] = 19;
A[0]++;
A[1]++;
return A[0] + A[1];

A[0] = 2;
A[0] = 3;

A[1] = 19;
A[1] = 20;

Example: Multi-threaded EPA

6

Program Thread 1
(Fault Free)

Thread 2
(Fault Free)

Thread 1
(Fault Injection)

Thread 2
(Fault Injection)

A[0] = 2;
A[1] = 19;
A[0]++;
A[1]++;
return A[0] + A[1];

A[0] = 2;
A[0] = 3;

A[1] = 19;
A[1] = 20;

A[0] = 2;
A[0] = 3;

A[1] = 91;
A[1] = 92;

6/30/2019

Injection

Propagation

Deviation

Deviation

Our Work: TraceSanitizer

First sound technique to
disambiguate error propagation in

multi-threaded programs from
non-determinism (without needing

any programmer annotations)

76/30/2019

Intuition: Pseudo-deterministic condition

•An execution trace is pseudo-deterministic:
• No dependent instructions that can occur in reversed order

•Pseudo-deterministic condition guarantees soundness

•Example: Map Reduce

8

TraceSanitizer: WorkFlow

Reversibility
Check

Trace
Sanitizing

Trace
Sanitizing

Trace
Comparison

Deviation

AbortGolden
run

Faulty
run

Reversibility Check

10

Order constraints

Reversibility constraints

6/30/2019

Original Trace Sanitized Trace

0 call-pthread_create 0
 → 7ffcfe3282e8 0 400ae0 0
0 call-pthread_create 0
 → 7ffcfe3282e0 0 4012c0 0
1 call-inc 0
1 alloca 7f0ccbc55d58 8
1 alloca 7f0ccbc55d50 8
1 store 0 7f0ccbc55d50
2 call-inc 0
2 alloca 7f0ccb454d58 8

Example: TraceSanitizer Operation

11

Original Trace Sanitized Trace

0 call-pthread_create 0
 → 7ffcfe3282e8 0 400ae0 0
0 call-pthread_create 0
 → 7ffcfe3282e0 0 4012c0 0
1 call-inc 0
1 alloca 7f0ccbc55d58 8
1 alloca 7f0ccbc55d50 8
1 store 0 7f0ccbc55d50
2 call-inc 0
2 alloca 7f0ccb454d58 8

T_0 call-pthread_create-u 0
 → o4 0 400ae0 0

Original Trace Sanitized Trace

0 call-pthread_create 0
 → 7ffcfe3282e8 0 400ae0 0
0 call-pthread_create 0
 → 7ffcfe3282e0 0 4012c0 0
1 call-inc 0
1 alloca 7f0ccbc55d58 8
1 alloca 7f0ccbc55d50 8
1 store 0 7f0ccbc55d50
2 call-inc 0
2 alloca 7f0ccb454d58 8

T_0 call-pthread_create-u 0
 → o4 0 400ae0 0
T_0 call-pthread_create-u 0
 → o5 0 4012c0 0

Original Trace Sanitized Trace

0 call-pthread_create 0
 → 7ffcfe3282e8 0 400ae0 0
0 call-pthread_create 0
 → 7ffcfe3282e0 0 4012c0 0
1 call-inc 0
1 alloca 7f0ccbc55d58 8
1 alloca 7f0ccbc55d50 8
1 store 0 7f0ccbc55d50
2 call-inc 0
2 alloca 7f0ccb454d58 8

T_0 call-pthread_create-u 0
 → o4 0 400ae0 0
T_0 call-pthread_create-u 0
 → o5 0 4012c0 0
T_0_0 call-inc 0

Original Trace Sanitized Trace

0 call-pthread_create 0
 → 7ffcfe3282e8 0 400ae0 0
0 call-pthread_create 0
 → 7ffcfe3282e0 0 4012c0 0
1 call-inc 0
1 alloca 7f0ccbc55d58 8
1 alloca 7f0ccbc55d50 8
1 store 0 7f0ccbc55d50
2 call-inc 0
2 alloca 7f0ccb454d58 8

T_0 call-pthread_create-u 0
 → o4 0 400ae0 0
T_0 call-pthread_create-u 0
 → o5 0 4012c0 0
T_0_0 call-inc 0
T_0_0 alloca o6 1 8
T_0_0 alloca o7 1 8
T_0_0 store 0 o7
T_0_1 call-inc 0
T_0_1 alloca o8 1 8

Evaluation
• Implemented as a pass in the LLVM compiler

• C/C++ programs from the PARSEC and Phoenix benchmarks

• Reversibility check with the Z3 SMT solver

• Injected 5 different types of software faults (5000 injections each)

12

False positives and Time Taken

13

Program # Threads False Positives
Reversibility
Check Time

quicksort 72 0 30 min

pca 17 0 150 min

kmeans 65 0 82 min

blackscholes 3 0 1 min

swaptions 4 0 145 min

Fault Model
Residual software bugs that are hard to detect through
regression or unit tests

Faults Considered:

• Bit Flip

• File I/O Buffer Overflow

• Buffer Overflow Malloc

• Function Call Corruption

• Invalid Pointer

14

Fault Injection Results

Summary

Non-Determinism in multi-threaded programs is bad for EPA

TraceSanitizer (TS): First Sound technique to perform EPA for a
class of Multi-threaded programs (pseudo-deterministic)

- Condition encoded as reversibility check - SMT solvers
- Completely automated; no program annotations needed

Evaluation shows TS has 0% false-positives, incurs reasonable
overheads and provides high fault coverage

https://github.com/DEEDS-TUD/TraceSanitizer

