
Good Enough Dependability:
A Unified Paradigm for

Dependable Systems Design
Karthik Pattabiraman

http://blogs.ubc.ca/karthik

Computer Systems are Everywhere

Dependability of computer systems is paramount
2

Traditional Dependability Approaches

Hardware Redundancy

• IBM Mainframes, Tandem
Non-stop – full duplication

• Huge energy and performance
overheads

Formal Verification

• Space exploration (e.g., NASA
Mars rover)

• Requires significant time and
resources, as well as expertise

3

The “Good Enough” Revolution
Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough” over
“costly and near-perfect”

4

Can we build dependable systems with this principle ?

“Good Enough” Dependable Systems
• Just reliable enough to get the job done

• Do not provide the illusion of perfection to end user
• But do not fail catastrophically or cause severe errors
• Depends on the application and its context of use

5

Low Reliability:
Entertainment Applications

High Reliability:
Financial Services

Hardware Error
Resilience

Web Application
Reliability

Good Enough Dependability

Selective
Security

Protection

6

Hardware Error
Resilience

Web Application
Reliability

Good Enough Dependability

Selective
Security

Protection

7

Why does this approach work ?

SD
C

Co
ve

ra
g

e

Protection Overhead

The Cost-Benefit Curve of Selective Duplication (Liquantum) 8

Impactful
Errors

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Soft
Error

Software protection
techniques are more flexible

and cost-effective!

About 80% of SDCs can be mitigated by 20%
overhead (80-20 rule)

8

Good Enough Dependability: Approach

9

Automated Techniques to
identify important data

Selective protection
to mitigate errors

Rigorous validation
through fault Injection

Step 1: Automated Identification

- Type System [ASPLOS’11][CSF’11]

- Heuristics [DSN’13][TECS][DSN’15]

- Machine Learning [CASES’14][TECS]

- Analytical Models [DSN’16][DSN’18]

10

Corruption
due to
errors

Critical
Data

Application
Data

Critical Data is correlated
with high-level static

program characteristics

Step 2: Selective Protection

11

Original Program Selective Duplication

Instruction:
SDC Rate = X%
Overhead = Y%

A Knapsack
Problem

Target
Program

Step 3: Fault Injection Validation

- LLFI [DSN’14][QRS’15]

- PINFI [DSN’14]

- GPU-Qin [ISPASS’14]

- LLFI-GPU [SC’16]

12

Evaluation

Acceptable ?

Program Source Code

Protection

Overall SDC rate of program

SDC rates of individual instructions

FI tool

Trident, vTrident
[DSN’18A][DSN’18B]

Hardware Error
Resilience

Web Application
Reliability

Good Enough Dependability

Selective
Security

Protection

13

14

Hardware
Error

Resilience

Web
Application
Reliability

Good Enough
Dependability

Selective
Security

Protection

Internet of Things
(IoT) Dependability

Resilient
Operation

Programming
Models

Adaptive
Security

Good Enough Dependability: Takeaways

• Errors and attacks are becoming common in commodity
systems
• Cost is the all important factor in these systems

• But, most errors (attacks) don’t matter much, in many cases !

• Important to focus on the few errors (attacks) that matter
• Provide targeted protection for the important errors

(attacks)
• Goal is not to achieve near 100% coverage, but keep costs

low
• Automated techniques to trade-off coverage for cost

Thanks ...

16

Students (Current and Past) - 12 PhD, 20 MS, 30 Undergrad

http://blogs.ubc.ca/karthik

