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Computer Systems are Everywhere

Dependability of computer systems is paramount
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Traditional Dependability Approaches

Hardware Redundancy

• IBM Mainframes, Tandem 
Non-stop – full duplication 

• Huge energy and performance 
overheads 

Formal Verification

• Space exploration (e.g., NASA 
Mars rover)

• Requires significant time and 
resources, as well as expertise

3



The “Good Enough” Revolution
Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough” over 
“costly and near-perfect”
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Can we build dependable systems with this principle ?



“Good Enough” Dependable Systems
• Just reliable enough to get the job done

• Do not provide the illusion of perfection to end user
• But do not fail catastrophically or cause severe errors
• Depends on the application and its context of use
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Low Reliability:
Entertainment Applications

High Reliability: 
Financial Services 
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Why does this approach work ?
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The Cost-Benefit Curve of Selective Duplication (Liquantum) 8

Impactful 
Errors

Device/Circuit Level

Architectural Level  

Operating System Level

Application Level

Soft 
Error

Software protection 
techniques are more flexible 

and cost-effective!

About 80% of SDCs can be mitigated by 20% 
overhead (80-20 rule)
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Good Enough Dependability: Approach
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Automated Techniques to 
identify important data

Selective protection 
to mitigate errors 

Rigorous validation 
through fault Injection



Step 1: Automated Identification

- Type System [ASPLOS’11][CSF’11]

- Heuristics [DSN’13][TECS][DSN’15]

- Machine Learning [CASES’14][TECS]

- Analytical Models [DSN’16][DSN’18]
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Corruption 
due to 
errors

Critical
Data

Application
Data

Critical Data is correlated 
with high-level static 

program characteristics



Step 2: Selective Protection
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Original Program Selective  Duplication

Instruction:
SDC Rate = X%
Overhead = Y%

A Knapsack 
Problem

Target
Program



Step 3: Fault Injection Validation

- LLFI [DSN’14][QRS’15]

- PINFI [DSN’14]

- GPU-Qin [ISPASS’14]

- LLFI-GPU [SC’16]
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Evaluation

Acceptable ? 

Program Source Code

Protection

Overall SDC rate of program

SDC rates of individual instructions

FI tool

Trident, vTrident 
[DSN’18A][DSN’18B] 
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Good Enough Dependability: Takeaways

• Errors and attacks are becoming common in commodity 
systems
• Cost is the all important factor in these systems

• But, most errors (attacks)  don’t matter much, in many cases !
 

• Important to focus on the few errors (attacks) that matter
• Provide targeted protection for the  important errors 

(attacks)
• Goal is not to achieve near 100% coverage, but keep costs 

low
• Automated techniques to trade-off coverage for cost



Thanks ...
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