
1 © Nokia 2016

How Effective Are Smart Contract Analysis

Tools? Evaluating Smart Contract Analysis

Tools using Bug Injection

Asem Ghaleb and Karthik Pattabiraman

July 22nd, 2020

2

Smart contracts

Transaction

Regular account

3

● Cannot be updated

● Transactions are immutable

● Financial nature (incentive for attackers)

Motivation: Smart contracts

(2016) The DAO
Attacked: Code
Issue Leads to $60
Million Ether Theft

(2019) Ethereum
Classic's '51%
Attack,' $1 Million
Loss, Raise
Concerns About
Security

(2017) Yes, this kid
really just deleted
$300 MILLION by
messing around
with Ethereum’s
smart contracts

4

● Code vulnerabilities are still reported frequently [1]

● No evaluation methodology of static analyzers

Our goal

A systemetic approach for evaluating efficacy of smart contract static

analysis tools on detecting bugs

[1] S. Hwang and S. Ryu. 2020. Gap between Theory and Practice : An Empirical Study of Security Patches in Solidity. 2020. In

Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE).

5

● Systematic approach: SolidiFI

● Evaluated 6 static analyzers

● Analysis of the analyzers’ false negatives and false positives

Contributions

Tools failed to detect several bugs and reported high false positives

6

● Solidity; different from traditional languages

● Injecting bugs into all potential locations

● Injecting exploitable vulnerabilities

Research challenges

7

● Code snippets which lead to vulnerabilities

● Injecting bugs claimed to be detected

● Playing the role of developers rather attackers

● Injecting distinct bugs as possible

Bug model

1

2

8

Bug injection

Code transformation

Security weakening

code snippet injection

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

//

SolidiFI works on AST-level of the source code

9

● 6 static analysis tools

 (Oyente, Securify, Mythril, Smartcheck, Manticore, Slither)

● 50 Smart Contracts representative of Etherscan (39-741 loc) ~ Most Etherscan

contracts size <1000 loc

● Different functionalities and syntactic elements

SolidiFI evaluation

RQ1: False negatives of the evaluated tools?

RQ2: False positives of the evaluated tools?

RQ3: Injected bugs can be activated?

10

● 7 common bug classes

considered by the tools

● 9,369 distinct bugs

● Timeout: 15 minutes per

smart contract

Experimental setup

Bug Type

O
y
e

n
te

S
e

c
u

ri
fy

M
y
th

ri
l

S
m

a
rt

C
h

e
c

k

M
a

n
ti

c
o

re

S
li

th
e

r

Re-entrancy * * * * * *

Timestamp dependency * * * *

Unchecked send * *

Unhandled exceptions * * * * *

TOD * *

Integer over/underflow * * * *

Use of tx.origin * * *

11

RQ1: False negatives of the evaluated tools

● None of the tools

detect all bugs

● Many undetected

corner cases

● Misidentification is

high as well

100% detection Not supported by the tool Undetected bugs

12

Misidentification of bugs: Example

Buggy contract

Oyente Scan report

Injected Reentrancy bug

Reported as TOD bug

13

Challenges:

● Lack of ground truth

● Large number of bugs

Approach:

RQ2: False positives of the evaluated tools

Assuming a bug reported by the majority of the tools cannot be false positive

Risk: There might be false positives reported by the majority

Reported

Reentrancy

100

Reported

by majority

60

Filtered 40 Manually

inspected

20 Indeed

FPs

16

80%

FPs = Filtered X Indeed FPs

 FPs = 40 X 80% = 32

14

● All tools reported false positives (2 to 801)

● High false positives for tools with low false negatives (e.g., Slither)

● Some cases are truly bizarre

False positive results

string public symbol = "CRE";

Reported as

integer overflow

15

Goal: Checking exploitability of the undetected bugs

● Selected 5 undetected bugs for each bug type

● All bugs were exploitable

● No much effort to exploit bugs (within minutes)

RQ3: Activating the undetected bugs

Python

Client
JSON RPC

Ethereum

Network

16

● External:

● 50 smart contracts

● Internal:

● Evaluating 6 tools

● 7 bug types

● Results measurement:

● Unexploitable bugs in practice

● True bugs counted as false positives

Threats to validity

17

Goal: A systematic approach for evaluating static analyzers

● Introduced SolidiFI, for evaluating smart contract static analyzers

● Static analyzers suffer high false-negatives and false-positives

● Analyzers that detect bugs with low false positives are needed

 Source code: https://github.com/DependableSystemsLab/SolidiFI

 Artifact: https://github.com/DependableSystemsLab/SolidiFI-benchmark

Asem Ghaleb, PhD Candidate at University of British Columbia

aghaleb@ece.ubc.ca

Summary

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI-benchmark
https://github.com/DependableSystemsLab/SolidiFI-benchmark
https://github.com/DependableSystemsLab/SolidiFI-benchmark

