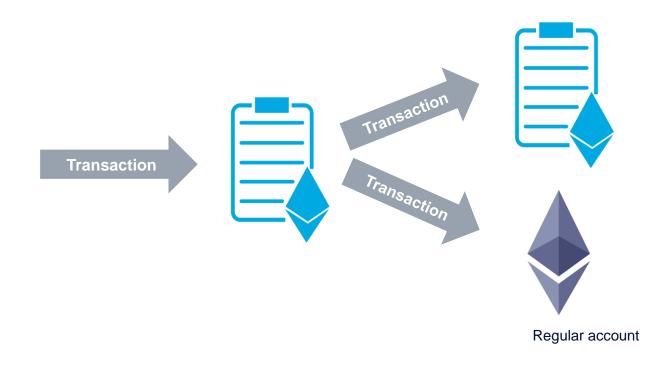
How Effective Are Smart Contract Analysis Tools? Evaluating Smart Contract Analysis Tools using Bug Injection


Asem Ghaleb and Karthik Pattabiraman

July 22nd, 2020

Smart contracts

Motivation: Smart contracts

- Cannot be updated
- Transactions are immutable
- Financial nature (incentive for attackers)

(2017) Yes, this kid really just deleted \$300 MILLION by messing around with Ethereum's smart contracts

(2019) Ethereum Classic's '51% Attack,' \$1 Million Loss, Raise Concerns About Security

- Code vulnerabilities are still reported frequently [1]
- No evaluation methodology of static analyzers

A systemetic approach for evaluating efficacy of smart contract static analysis tools on detecting bugs

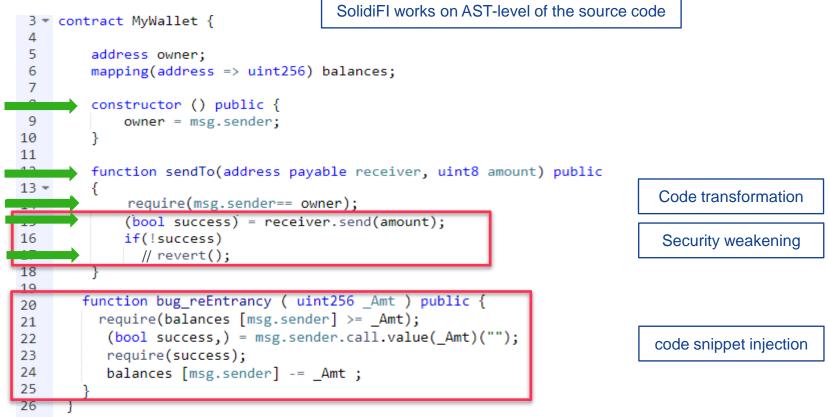
4

[1] S. Hwang and S. Ryu. 2020. Gap between Theory and Practice : An Empirical Study of Security Patches in Solidity. 2020. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE).

Contributions

- Systematic approach: SolidiFl
- Evaluated 6 static analyzers
- Analysis of the analyzers' false negatives and false positives

Tools failed to detect several bugs and reported high false positives


Research challenges

- Solidity; different from traditional languages
- Injecting bugs into all potential locations
- Injecting exploitable vulnerabilities

Bug model

- Code snippets which lead to vulnerabilities
- Injecting bugs claimed to be detected
- Playing the role of developers rather attackers
- Injecting distinct bugs as possible

Bug injection

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

SolidiFI evaluation

• 6 static analysis tools

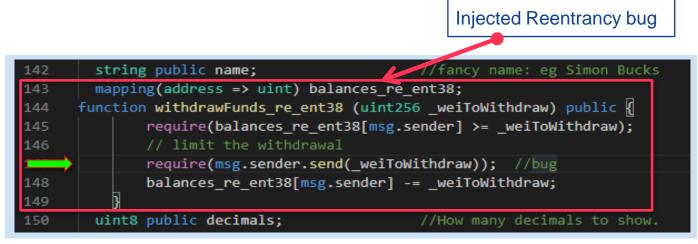
(Oyente, Securify, Mythril, Smartcheck, Manticore, Slither)

- 50 Smart Contracts representative of Etherscan (39-741 loc) ~ Most Etherscan contracts size <1000 loc
- Different functionalities and syntactic elements

RQ1: False negatives of the evaluated tools?RQ2: False positives of the evaluated tools?RQ3: Injected bugs can be activated?

Experimental setup

- 7 common bug classes considered by the tools
- 9,369 distinct bugs
- Timeout: 15 minutes per smart contract


Bug Type	Oyente	Securify	Mythril	SmartCheck	Manticore	Slither
Re-entrancy	*	*	*	*	*	*
Timestamp dependency	*		*	*		*
Unchecked send		*	*			
Unhandled exceptions	*	*	*	*		*
TOD	*	*				
Integer over/underflow	*		*	*	*	
Use of tx.origin			*	*		*

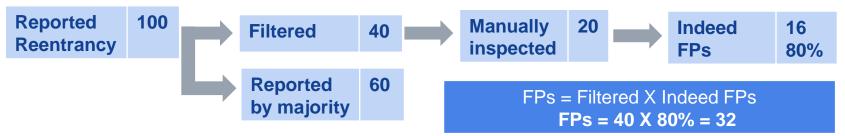
RQ1: False negatives of the evaluated tools

	~									
	Not supported by the tool			Unde	etected b	100% detection				
		Injected bugs	Oyente	Securify	Mythril	SmartCheck	Manticore	Slither	•	No
Security	bug	In	-					Sli		de
Re-entrar	ıсу	1343	$ \begin{array}{c} 1008 \\ (844) \end{array} $	$232 \\ (232)$	$ \begin{array}{r} 1085 \\ (805) \end{array} $	$1343 \\ (106)$	$ \begin{array}{r} 1250 \\ (1108) \end{array} $	• 🗸		N /
Timestamp dep	endency	1381	$ \begin{array}{c} 1381 \\ (886) \end{array} $	NA		$902 \\ (341)$	NA	$537 \\ (1)$	•	M
Unchecked	send	1266	NA	$499 \\ (449)$	389 (389)	NA	NA	NA		CC
Unhandled exc		1374	$ \begin{array}{c} 1052 \\ (918) \end{array} $	673 (571)	$756 \\ (756)$	$ \begin{array}{r} 1325 \\ (1170) \end{array} $	NA	$ \begin{array}{c} 457 \\ (128) \end{array} $	•	M
TOD		1336	1199 (1199)	$263 \\ (263)$	NA	NA	NA	NA		hi
Integer over/u	nderflow	1333	898 (898)	NA	$ \begin{array}{c} 1069 \\ (932) \end{array} $	$ \begin{array}{c} 1072 \\ (1072) \end{array} $	$ \begin{array}{r} 1196 \\ (1127) \end{array} $	NA		
Use of tx.or	rigin	1336	NA	NA	445 (445)	1239 (1120)	NA	1		

- None of the tools detect all bugs
- Many undetected corner cases
- Misidentification is high as well

Misidentification of bugs: Example

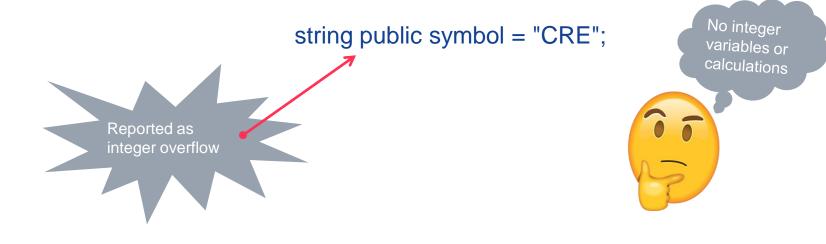
Buggy contract


RQ2: False positives of the evaluated tools

Challenges:

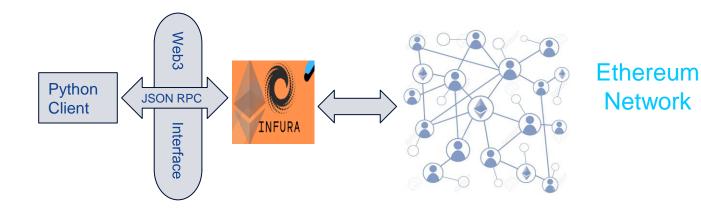
- Lack of ground truth
- Large number of bugs

Approach:


Assuming a bug reported by the majority of the tools cannot be false positive

Risk: There might be false positives reported by the majority

False positive results


- All tools reported false positives (2 to 801)
- High false positives for tools with low false negatives (e.g., Slither)
- Some cases are truly bizarre

RQ3: Activating the undetected bugs

Goal: Checking exploitability of the undetected bugs

- Selected 5 undetected bugs for each bug type
- All bugs were exploitable
- No much effort to exploit bugs (within minutes)

Threats to validity

- External:
 - 50 smart contracts
- Internal:
 - Evaluating 6 tools
 - 7 bug types
- Results measurement:
 - Unexploitable bugs in practice
 - True bugs counted as false positives

Summary

Goal: A systematic approach for evaluating static analyzers

- Introduced SolidiFI, for evaluating smart contract static analyzers
- Static analyzers suffer high false-negatives and false-positives
- Analyzers that detect bugs with low false positives are needed

Source code: <u>https://github.com/DependableSystemsLab/SolidiFI</u> Artifact: <u>https://github.com/DependableSystemsLab/SolidiFI-benchmark</u>

Asem Ghaleb, PhD Candidate at University of British Columbia aghaleb@ece.ubc.ca