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Abstract—Anomaly detection in distributed systems has been
a fertile research area, and a range of anomaly detectors have
been proposed for distributed systems. Unfortunately, there is
no systematic quantitative study of the efficacy of different
anomaly detectors, which is of great importance to reveal the
deficiencies of existing anomaly detectors and shed light on future
research directions. In this paper, we investigate how various
anomaly detectors behave on anomalies of different types and
the reasons for the same, by extensively injecting software faults
into three widely-used distributed systems. We use a statement-
level fault injection method to observe the anomalies, characterize
these anomalies, and analyze the detection results from anomaly
detectors of three categories. We find that: (1) the distributed
systems’ own error reporting mechanisms are able to report
most of the anomalies (from 82.1% to 92.8%) but they incur
a high false alarm rate of 26.6%. (2) State-of-the-art anomaly
detectors are able to detect the existence of anomalies with
99.08% precision and 90.60% recall, but there is still a long way
to go to pinpoint the accurate location of the detected anomalies,
and (3) Log-based anomaly detection techniques outperform
other anomaly detection techniques, but not for all anomaly types.

Index Terms—anomaly detection, distributed systems, fault
injection, dependability

I. INTRODUCTION

Computer systems suffer from software faults (i.e., bugs).
These faults result in severe system failures, and cost $1.25
billion to $2.5 billion per year [1]. Tellme Networks estimated
that 75% of the time in recovering from system failures is
spent in just detecting the failures [2]. This situation is getting
more severe in modern distributed systems, e.g., Hadoop,
Spark, Openstack. The increasing scale and the intrinsic com-
plexity of distributed systems makes it challenging to detect
failures and identify their root causes. Prior work [3] has
shown that the early detection of the symptoms of failures,
i.e. anomalies, can mitigate or even prevent severe failures by
taking early action on these detected anomalies. Therefore,
there is a compelling need to detect anomalies promptly and
precisely in distributed systems.

ICorresponding Authors. Part of this work was done when Yong Yang
visited UBC in 2019.

There has been significant effort to design smarter anomaly
detection approaches for distributed systems. Existing anomaly
detection methods can be grouped into three categories: (1)
metrics-based [4]-[6], (2) log-based [7]-[9], and (3) trace-
based [10], [11]. Various detectors of each category have been
proposed and evaluated with different datasets. Unfortunately,
these anomaly datasets are either collected by injecting simple
failures into the system, which produces unrealistic anomalies,
or by collecting real anomalies in a production environment,
which comprises anomalies of limited amounts and types.
Thus, there is a gap in terms of systematically evaluating
anomaly detection systems, and understanding the advantages
and disadvantages of the anomaly detectors.

In this paper, we propose a systematic approach to evaluate
the efficacy of anomaly detectors. With the proposed approach,
we empirically study the merits and limitations of the state-
of-the-art anomaly detectors, and explore the reasons behind
them, in order to provide guidelines for improving anomaly
detection methods. The approach consists of two steps.

In the first step, faults are injected into popular distributed
systems with a realistic fault injection (FI) method to obtain
a wide variety of anomalies for comprehensively evaluat-
ing anomaly detectors. To achieve this, we propose SSFI
(Statement-level Software FI), a FI method to emulate real
software faults at the program statement level. Because all
programs can be regarded as a sequence of statements, and
software bugs arise at the statement level, SSFI is able to
inject a wide variety of faults comprising both single and
multiple statements. For the software faults involving only a
single statement, we analyze the elements for each statement
to determine the possible fault types that developers can in-
troduce. For the software faults involving multiple statements,
we analyze the possible combinations of statements based on
the real bug types in a recent study of distributed systems [12].

In the second step, a data analysis process is conducted on
the anomalies gathered from the FI process. The characteristics
of anomalies in distributed systems are analyzed and state-
of-the-art anomaly detection approaches are evaluated with
these anomalies. These anomalies are analyzed from two
aspects: 1) the anomaly distribution patterns for distributed



systems, and 2) the ability of the chosen distributed systems
to report these anomalies by themselves. The detection results
of anomaly detectors in three categories are compared and
dissected in detail in terms of detection precision/recall/F1-
measure, detection latency, and the ability to locate the root
cause(s) of detected anomalies.

The main findings from the data analysis process include:

o Distributed systems exhibit more frequent Silent Early
Exit anomalies (i.e., distributed systems failed to finish
processing the requests, and did not emit any observ-
able alarms). These anomalies, whose root causes are
challenging for administrators to determine, are mainly
caused by incomplete error-handling mechanisms.

e Most anomalies (82.1% - 95.8%) are reported by dis-
tributed systems’ own error reporting mechanisms, but
26.6% reported anomalies are false alarms. Further, the
error reporting mechanisms are able to correctly localize
the root causes of more than 90% detected anomalies to
the software components. However, when it comes to lo-
calizing the root causes to the source code file (e.g., .class
file, .cpp file), which is essential for understanding and
solving the problems quickly, less than 20% anomalies
are localized correctly.

« Existing anomaly detectors perform well when judging
whether there are anomalies (with an Fl-measure score
of 94.65%), but are weak in locating the root causes
of the detected anomalies. Only 29.34% of the detected
anomalies are able to localize the root causes to the
correct class (i.e., the source code file).

o Log-based anomaly detection methods have better over-
all detection Fl-measure scores than trace-based and
metrics-based anomaly detection methods. However, for
anomalies of some types, such as Silent Early Exit,
trace-based anomaly detection methods have higher recall
scores. Further, trace-based anomaly detection methods
have the smallest detection latency among the detection
methods, which leaves more time for the system to avoid
error propagation and further escalation.

The rest of the paper is organized as follows. Section II
clarifies the concepts and the motivation of this paper. The
FI method is elaborated in Section III. Section IV gives an
overview of the evaluation approach. In Section V, the anoma-
lies generated by the FI experiments on targeting systems are
analyzed and three anomaly detectors are evaluated. Related
work in FI and anomaly detection are discussed in Section VI.
Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION
A. Background

A fault is the adjudged or hypothesized cause of an error,
including software faults and hardware faults [13]. An error
is the part of the total state of the system that may lead
to its subsequent failures. A failure is an event that occurs
when the delivered service deviates from the correct service
[13]. A fault causes an error if it is activated. Otherwise it

stays dormant. An error can be tolerated by the systems’ error
resilience mechanisms. If an error is tolerated, then it goes
latent. Otherwise it induces a failure.

Anomalies are the unusual behaviors of the system after a
fault is activated. The goal of anomaly detection is to detect
anomalies in the system as early as possible after an anomaly
appears, and locate the root cause of the detected anomalies.

While many anomaly detection methods have been pro-
posed, the way to evaluate anomaly detectors remains prim-
itive. The anomalies used for evaluation are either obtained
by injecting simple failures, or from collecting real anomalies
from the production environment. The former results in unre-
alistic anomalies. The latter contains anomalies of a limited
amount and type due to the low occurrence rate of anomalies.
Furthermore, the evaluation often does not distinguish between
anomalies of different types, which may lead to biased de-
tection results, and fail to reveal the blind-spots of anomaly
detection methods.

Thus, it is challenging to comprehensively evaluate different
anomaly detectors. To address this challenge, there are mainly
two requirements. First, the anomaly detectors should be
applied to the same platform and datasets. Only in this way,
can the difference between different anomaly detectors be
shown in an unbiased manner. Second, the anomaly datasets
must contain anomalies of diverse types. Only with anomalies
of diverse types, can the merits and limitations of different
anomaly detectors be comprehensively analyzed.

public class NonAggregatinglLogHandler {
public void handle(LogHandlerEvent event) {
switch (event.getType()) {

case APPLICATION_STARTED:

this.dispatcher.getEventHandler().handle(
new ApplicationEvent(appStartedEvent.getApplicationId(),
ApplicationEventType.APPLICATION_LOG_HANDLING_INITED));

break;

case CONTAINER_FINISHED:
break;

case APPLICATION_FINISHED:
LogDeleterRunnable logDeleter =

new LogDeleterRunnable(appOwners.remove(appFinishedEvent
.getApplicationId()), appFinishedEvent.getApplicationId());
logDeleter.runQ);

break;

default:
H

}
}

Fig. 1. Injecting a fault preserves the process of faults evolving into failures

B. Motivation

FI techniques have been the predominant way to obtain the
evaluation datasets for anomaly detection techniques. Unfor-
tunately, most of the existing work on evaluating anomaly
detectors injects rather simple failures, which often do not
represent the manifestation of software bugs. We illustrate why
failure injection is inadequate to evaluate anomaly detectors
using two real examples below.

1) The process of a fault evolving into a failure is missing,
which is a critical time window for anomaly detectors to
detect anomalies promptly. An FI example is shown in Fig.



1 from org.apache.hadoop.yarn.server.nodemanager. contain-
ermanager.loghandler.NonAggregatingLogHandler in Hadoop.
When a failure is injected into the process (a NodeManager
process) running this code snippet by directly Kkilling it,
the running job will hang there immediately. On the other
hand, when a software fault (e.g., mistakenly missing a break
between the second and the third switch branch) is injected,
it takes around 15 seconds for the NodeManager to exit
after the fault is activated, and then the running job starts
to hang. During this time, a ClassCastException is thrown
and some container clean-up actions are taken. This would
be a golden time window for anomaly detectors to detect the
anomaly before the irreversible failure (i.e., the job hangs).
Thus, directly injecting the failure short-circuits this process,
and prevents the anomaly detection technique from detecting
failures.

private static class DeprecatedKeyInfo {
private final String[] newKeys;
private final String getWarningMessage(String key) {
String warningMessage;
if(customMessage == null) {
StringBuilder message = new StringBuilder(key);
message . append(deprecatedKeySuffix);
for (int i = @; i < newKeys.length; i++) {
message .append(newKeys[i]);

}

warningMessage = message.toStringQ);
}
return warningMessage;

}
3

Fig. 2. Injecting failures/faults results in different job execution results

2) Limited coarse-grained failures cannot represent the
diversity of anomalies. For example, consider the code
snippet in Fig. 2 from org.apache.hadoop.conf.Configuration$
DeprecatedKeylInfo in Hadoop. If the task(YarnChild process)
running this code snippet is crashed by directly killing it, the
ApplicationMaster will restart another YarnChild process suc-
cessfully. However, if a software fault (e.g., mistakenly using
<= instead of using < when comparing i and newKeys.length)
is injected, the ApplicationMaster tries several times to restart
this task, but none of the attempts are successful as they all
raise exceptions. In this case, injecting a software fault results
in the failure of the job execution, while directly injecting
the failure does not reveal this failure mode. Thus, injecting
failures directly may present an overly optimistic view of
system failures detected by the anomaly detection method.

Challenge: Thus, we see that injecting failures directly
instead of faults can present a misleading view of the system
as far as anomaly detection techniques are concerned. As
software faults are a leading cause of distributed system
failures [3], FI techniques for software faults are gaining
momentum. Existing software FI methods are only able to
inject few types of software faults (e.g., removing a function
call [14], modifying the value of a variable [15], [16]), which
fails to generate anomalies of diverse types. Therefore, we

need an FI technique for systematically and comprehensively
evaluating anomaly detectors, under realistic software faults.

IIT. FAULT INJECTION METHODOLOGY

In this section, we first introduce the fault model used by
our FI tool, SSFI (Statement-level Software Fault Injection),
and then describe the design and implementation of SSFI.

A. Fault Model

Each program can be regarded as a sequence of statements.
Software faults are mistakes made by developers on a sin-
gle statement or a combination of multiple statements. By
enumerating the possible mistakes on a single statement and
those involving multiple statements, we can emulate all code-
level software faults for a system. To determine mistakes that
are commonly made by developers on a single statement and
a combination of multiple statements, we propose the fault
model used in SSFI.

Because statements of different programming languages in
the source-code level are different, we adopt the well-known
three-address code model [17] to unify the statements of
different programming languages. Each statement in three-
address code has at most three operands, and statements are
not nested. There are 6 different types of statements in three-
address code [17] as follows:

o AssignStmt, contains a left operand, at most two right
operands and at most one binary arithmetic or logical
operation. This statement is used to assign the value from
the right side to the operand on the left side.

o GotoStmt, contains a destination label/address to jump to.
This statement is used to change the sequential execution
order of statements.

o [fStmt, contains at most two operands and at most one
logical operation. It is used to check whether a condition
is true.

o InvokeStmt, contains at most one left operand, a function
address and a list of operands as the parameters of the
function. It is used to call another function and get the
results.

e ReturnStmt, contains at most one operand. It is used to
return the result to the function caller.

o SwitchStmt, contains one operand. While it can be trans-
lated and represented with other statements, many three-
address codes like Jimple [18] still use it for convenience.

Nowadays, most programming languages provide exception
handling and synchronization mechanisms. Therefore, we de-
cided to include two more statements in our analysis:

o ThrowStmt, contains an operand(exception). It is used to
raise an exception and transfer the control to correspond-
ing exception handlers.

o SyncStmt, contains two labels/addresses denote the state-
ment range of synchronization.

We determine the fault model in SSFI by enumerating and

then summarizing the possible mistakes that developers may
make on a single or multiple statements introduced above.



TABLE I

FAULT MODEL OF SSFI

Fault Type Fault Source Statements Description Corresponding Bugs in Openstack [12]
VALUE_CHANGE left/right operand AssignStmt Add/subtract/zero/negative/change a vari- ~ Wrong SQL Value, Wrong Parameter
able to a certain value Value, Wrong SQL Where, Wrong SQL
Column, Wrong Value, Missing Parame-
ters, Wrong Parameter Order, Wrong Ta-
ble, HOG
NULLIFY left/right operand AssignStmt Set an object/pointer to NULL Missing Key Value Pair, Missing Dict
Value
EXCEPTION_SHORTCIRCUIT the only operand ThrowStmt Directly throw one of the declared excep-  Wrong Return Value
tions or the exceptions in try-catch block
INVOKE_REMOVAL - InvokeStmt Remove a method invoking statement  Missing Function Call, Missing Method
without return values Call
ATTRIBUTE_SHADOWED the left operand AssignStmt Exchange the field and the local variable = Wrong Variable Value
( with same name and type)
CONDITION_INVERSED binary logical operation IfStmt Inverse the if-else block Wrong API use
CONDITION_BORDER binary logical operation IfStmt Replace the logical operation with one  Wrong Access Method
arithmetic operation including/excluding
the border value
SWITCH_FALLTHROUGH destination label/address GotoStmt Add/Remove a break between two cases  Wrong SQL Column
of the switch structure
SWITCH_MISS_DEFAULT destination label/address SwitchStmt Remove the default case process block of ~ Wrong Acess Key
the switch structure
SYNCHRONIZATION - SyncStmt Delete the synchronization modifier for a ~ Missing Sync Annotation
method/block
EXCEPTION_UNCAUGHT bugs in Openstack ThrowStmt Directly throw an undeclared exception for ~ Missing Exception Handlers
GotoStmt a method or a try-catch block
EXCEPTION_UNHANDLED bugs in Openstack AssignStmt Remove all the statements in the catch  Inject Resource Leak
ThrowStmt block
GoToStmt

For example, in an [fStmt, programmers may use other logical
operations instead of the correct one (such as misusing <=
when < is expected, i.e., CONDITION_BORDER fault type).
Our fault model is actually based on a recent study of
software bugs in Openstack [12]. Table I presents the fault
types that SSFI is able to inject. The last column in the
table illustrates the mappings of our fault types to the bug
types in the study [12], which shows that the majority of
software faults in distributed systems are due to minor code
problems. In that study, the bugs were classified into 23 minor
code problems. Although the bugs are classified at a different
level with our work, 21 of the 23 minor code problems can
be mapped to our fault model. Only the Wrong Parameter
Type and Missing Import are not covered by the proposed
fault model as they will likely be detected at the compilation
stage for many programming languages. In these 23 bug
types, most of them are caused by minor problems on a
single statement. Only Missing exception handlers, which can
be further classified into two categories, involves multiple
statements: (1) the program throws undeclared exceptions,
and (2) the program catches the exceptions but simply ne-
glects them. The former (EXCEPTION_UNCAUGHT in Table
I) involves a combination of ThrowStmt and GotoStmt and
the latter(EXCEPTION_UNHANDLED in Table I) involves a
combination of AssignStmt, ThrowStmt and GotoStmt.

B. SSFI

SSFI is able to inject 12 different types of software faults in
Table I into software systems that can be compiled into Java
Bytecode. Note that SSFI is customizable to other fault types
as well. We have also made SSFI publicly available [19].

SSFI
I%x‘ect'nables Bytecode Jimple IR
(*.jar *.class) Parser
N . " . Executables
Configuration| Config Fault type, Jimple IR Ny
file * location, etc. with a fault Converter Y‘f':i:‘,a(:flz‘;z

Fig. 3. An overview of SSFI’s operation

Software faults can be permanent or transient [20]. Thus
SSFI provides two different fault activation modes for each
type of fault, namely always activation mode and random
activation mode. In the always mode, the injected fault is
activated every time the code snippet is run. In the random
mode, the injected fault is activated when the code snippet is
run for the n*” time (n is chosen at random if not specified) to
simulate transient software faults. SSFI is highly configurable
with a simple configuration file specifying which type of fault
will be injected to which package/class/method/variables/code
blocks with which activation mode. By default, SSFI randomly
chooses a combination of the fault type, fault location, and
activation mode for the fault.

Fig. 3 shows an overview of SSFI’s structure, consisting of
4 components: Bytecode Parser, Config Parser, Fault Weaver
and Converter. SSFI takes a bytecode-based runnable file and a
configuration file as inputs, and outputs the modified bytecode-
based runnable file with the fault specified in the configuration
file. Bytecode Parser leverages Soot [18] framework to parse
the bytecode into a Jimple intermediate representation (IR),
which is a type of three-address code. The Config Parser
interprets the configuration file and determines the fault type,



Before fault injection

public long calculate(int)

public long calculate(int);

Code WorkBench this;

* iconst_0 long $stack5;

°
1: istore_2
for(int i=0;i<5;iss) { 2: goto
‘testNumber=testNumber+1; e
) 8: iinc
11: iload_2
12: iconst_5

public long calculate(int testNumber)
{

int testNumber, i;
this := @this: WorkBench;

=

i=0;

NP R
e

goto label2;
labell:
testNumber = testNumber + 1;
i=1i4+1;
label2:
if 1 < 5 goto labell;
$stacks = (long) testNumber;
return $stack5;

return testNumber;

13: if_icmplt 5
16: iload_1

17: i21

18: lreturn

(a) source code (b) Bytecode (c) Jimple code

testNumber := @parameter@: int;

After fault injection

public long calculate(int)
{ public long calculate(int);

WorkBench this; Code:
long $stacks; 0: iconst_0@
int testNumber, i; 1: istore_0 public long calculate(int testNumber)
this := @this: WorkBench; 2: goto 1
testNumber := @parameter@: int; 5: iinc 1, 1 for(int i=0;i<=5;i++) {
i=0; 8: iinc 0,1 testNumber=testNumber+1;
goto label2; 11: iload_0@
labell: 12: iconst_5 return testNumber;
testNumber = testNumber + 1; 13: if_icmple 5 }
: if_icmp

t=1+1 16: Tload_1
label2: 17: 121

if i <=5 goto labell; 18:

$stack5 = (long) testNumber;

return $stackS;

lreturn

(d) Jimple code (e) Bytecode (f) source code

Fig. 4. An example fault injected using SSFI

fault location and fault activation mode for the fault to be
injected. The Fault Weaver contains transformation rules for
each fault type in Table I, and makes the corresponding
changes to the Jimple IR based on the fault type, fault location
and fault activation mode. It outputs the Jimple IR with the
specified fault being injected. Fault Weaver also scans the
program’s code automatically to decide which types of faults
can be injected (i.e., are valid) into each program statement.
Finally, the modified Jimple IR is converted by the Converter,
which utilizes Soot to convert Jimple IR to bytecode, into a
bytecode-based runnable file with the fault injected.

Fig. 4 presents an example of how SSFI injects a CONDI-
TION_BORDER fault into calculate method. First, the byte-
code snippet shown in Fig. 4(b) is parsed by the Bytecode
Parser into the Jimple IR in Fig. 4(c). For ease of under-
standing, the equivalent source code of Fig. 4(b) is shown
in Fig. 4(a) (this is not required by SSFI). Then, the Fault
Weaver makes changes to the Jimple IR based on the trans-
formation rules for CONDITION_BORDER fault(replacing the
< operation with <= operation) and generates the modified
Jimple IR with the CONDITION_BORDER fault injected in
Fig. 4(d). Finally, the Converter employs Soot to convert the
modified Jimple IR back into bytecode in Fig. 4(e) with a
CONDITION_BORDER fault. The equivalent source code of
Fig. 4(e) after injection is shown in Fig. 4(f) for ease of
understanding (again, this is not required by SSFI).

IV. EVALUATION APPROACH

Fig. 5 shows an overview of the proposed evaluation ap-
proach. First, emulated software faults are injected into the
targeted systems. The injection information, such as the fault
type and the fault location, is recorded. Then the application
injected with faults, starts to run, and a workload generator
sends service requests to the running application. Meanwhile,
a resource monitor and a distributed tracer are set to separately
generate the resource usage data and the request execution
path of the system processing the requests. The service request
output/result and log messages are recorded as well.

The injected fault may or may not be activated to cause an
error. The fault activation information (such as the activation
time and the component) is also recorded. The error may be
reported or ignored by systems’ error reporting mechanisms.

The error may also propagate to other components and cause
anomalies. The anomalies of different systems are classified
and characterized based on the recorded injection information,
service output and log messages.

Finally, three state-of-the-art anomaly detectors are applied
to these anomalies based on the resource usage data, log mes-
sages and request execution path for each service request. The
detection results are analyzed. By characterizing anomalies
and analyzing the detection results from different anomaly
detectors, this paper asks three research questions (RQs).

RQ1: What’s the pattern of anomalies in distributed
systems? By answering this question, we aim to understand
whether there is a common pattern for the anomalies in
distributed systems, and what the pattern is (if it exists). The
answer will help researchers and system administrators obtain
an overview of anomalies and comprehend the types of anoma-
lies that are commonly seen in distributed systems. To answer
this question, the anomaly patterns of both distributed systems
and non-distributed systems are compared and analyzed. The
correlation between faults and anomalies is also dissected.

RQ2: To what extent do distributed systems, by them-
selves, report the anomalies? Distributed systems have their
own error reporting mechanism to report the anomalies. By
answering this research question, we aim to evaluate the
efficacy of these error reporting mechanisms. In this way, we
try to figure out why an external anomaly detector is required
instead of directly relying on these mechanisms, and what
types of anomalies really need an external anomaly detector.
These error reporting mechanisms are evaluated in terms of
recall, false alarm rate, reporting latency and locating accuracy.

RQ3: To what extent do state-of-the-art anomaly de-
tectors detect anomalies of different types? Three state-of-
the-art anomaly detectors, each belonging to one of the three
categories, are applied to the anomalies of different types, and
evaluated in terms of detection precision/recall/F1-measure,
detection latency and locating accuracy. The detection results
for each type of anomaly, are compared and analyzed to
gain insights into the strengths and drawbacks of the chosen
anomaly detectors. By answering this research question, we
aim to understand the current pain spots (if any), and shed light
on the future directions of improvement in detecting anomalies
in distributed systems.
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V. EXPERIMENTAL EVALUATION

We first describe the experimental setup, and the types of
anomalies observed. We then present our results organized by
research question (RQ), followed by the threats to the validity.

A. Experimental Setup

TABLE I
SYSTEMS USED FOR EVALUATION AND THEIR WORKLOAD

Systems Workload Descrition

Hadoop Wordcount A data processing system with MapRe-
duce programming model and HDFS

HaloDB CRUD A key-value store written in Java

Weka Bayes Classifica- A program that implements a collection of

tion machine learning algorithms

Spark Wordcount A cluster-computing framework with
HDFS

Flink Wordcount A stream-processing framework

We use three principles to choose the systems to evaluate:
(1) whether it is available as open-source or upon request,
(2) whether it is widely used (e.g., based on the stars of the
project in Github), and (3) whether it increases the diversity
of all chosen systems. Table II lists the chosen systems and
their workloads (service requests) in the experiments. We
choose both distributed systems and non-distributed systems in
order to understand if there are any differences between them.
Hadoop, Spark and Flink are the selected distributed systems,
and Weka and HaloDB are the non-distributed systems.

For each service request, SSFI randomly chose a combina-
tion of fault type, fault location and activation mode to inject
a fault into the targeting system. To eliminate the influence
from other injected faults, 1) for each service request, only one
fault is injected; 2) after a service request finishes, systems are
restarted and all the temporary and persistent data are cleaned.

We used Docker Stats as the resource monitor, and REP-
Trace [21] the distributed tracer in Fig. 5. To determine the
timeout threshold for each service request, we ran each request
for 100 times without injecting any faults, and chose double
the average running time of these requests as the timeout
threshold for service requests of this type.

We chose three detectors to be applied to detect anomalies,
each in a different category, as follows. We chose the three
detectors in our studies because they are state-of-the-art in
each of the categories considered, and their source code was
available to us (either open source or available upon request).

e Deeplog [9] is a log-based anomaly detector. It takes
anomaly detection as a prediction problem which pre-
dicts the next log key/template based on the previous n
log keys. The prediction model is a Long Short-Term
Memory (LSTM) neural network, learning the log key
transition probability from the log messages of normal
service requests for each component. If the next log key is
not in the predicted log key candidates list, an anomaly is
detected. We obtained the open-sourced implementation
of Deeplog from its authors [22].

¢« MRD is a metrics-based anomaly detector. MRD lever-
ages a Gated Recurrent Unit (GRU) neural network
to train a model to predict the resource consumption
sequence of a service request. It takes the resource con-
sumption sequences from normal service requests as the
training data. If the similarity between the real resource
consumption sequence and the predicted resource con-
sumption sequence is lower than a threshold, an anomaly
is detected. MRD is publicly available [23].

o READ is a trace-based anomaly detector. READ builds a
core finite state automaton (FSA) and a full FSA for each
type of service request from the request execution paths
generated by REPTrace [21]. The core FSA represents the
states and transitions that a normal service request must
go through, while the full FSA represents the states and
transitions that a normal service request can go through.
In the detection stage, an anomaly is detected either if a
state or transition in the core FSA does not appear, or a
state or transition that is not in the full FSA appears.

Fig. 6 presents the number of faults injected in each
system, and the activated faults. The inactivated faults and
corresponding service requests are used as the training data for
anomaly detectors to learn a detection model (Section V-E).
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B. Anomaly Model

As discussed in section II, an activated fault may cause
a failure or just a latent error. Based on the final result of
the anomaly, anomalies are classified into 4 types: Benign,
Early Exit, Data Corruption, Hang. For Benign anomalies, the
activated faults cause latent errors instead of failures. Based
on whether the system’s own error reporting mechanisms can
report these anomalies, each anomaly type can be further
classified into Detected and Silent. In our experiments, the
systems report errors when stack traces are printed or there
is at least one log message whose level is above WARN,
such as ERROR and FATAL. Because we observed that even
during the normal execution of service requests, there are a
few log messages with WARN level, we exclude the WARN
level. Therefore, there are 8 types of anomalies in total, namely
Detected Benign (DBE), Silent Benign (SBE), Detected Early
Exit (DEE), Silent Early Exit, Detected Hang (DHANG),
Silent Hang (SHANG), Detected Data Corruption (DDC), and
Silent Data Corruption (SDC). These are shown in Fig. 7.

Fig. 7. Different types of anomalies

C. RQI: What’s the pattern of anomalies in distributed sys-
tems?

The anomaly distribution of each system is shown in Fig.
8. The Detected Early Exit anomaly is common for all the
systems. As can be observed, compared to non-distributed
systems, distributed systems are more error-resilient. This is
because the proportion of Benign anomalies (including SBE

and DBE) are much bigger in distributed systems. Further,
the error-resilience mechanisms in distributed systems exhibit
higher percentages of Silent Early Exit anomalies, which
indicates that the error resilience mechanisms attempted to
tolerate the errors (without reporting any problems), but failed.

An example is shown in Fig. 9. The Speculator mechanism
shown in org.apache.hadoop.mapreduce.v2.app.speculate. De-
faultSpeculator is an optimization mechanism to replace the
tasks that execute much slower than others. The serviceStart
method declares an Exception. However, after injecting an EX-
CEPTION_SHORTCIRCUIT into serviceStart, which directly
throws an EXCEPTION at the beginning of the method, the
job execution failed silently in the end. The error handling
mechanism caught the declared exception, but neither did it
explicitly report that an exception was raised nor did it recover
from the injected fault, which results in a Silent Early Exit
anomaly in the end. This kind of anomaly is difficult for
anomaly detection techniques to determine the root cause, as
there is little useful information available in the corresponding
eIror messages.

Therefore, we advocate that developers should explicitly
record the error messages when designing the error-handling
mechanisms, regardless of whether the error is believed to be
tolerated. Further, distributed applications are unlikely to suffer
from Data Corruption anomalies (both Detected Data Corrup-
tion and Silent Data Corruption) under software faults, which
is quite different from other non-distributed applications.
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Fig. 8. Anomaly distribution of each system

public class DefaultSpeculator extends AbstractService
implements Speculator {
protected void serviceStart() throws Exception {
Runnable speculationBackgroundCore
= new Runnable() {
@0verride
public void runQ) {

}
b
speculationBackgroundThread = new Thread
(speculationBackgroundCore, "processing");
speculationBackgroundThread.start();
super.serviceStart();

}
Fig. 9. Program fails to tolerate a fault without reporting it

We also analyzed the correlation between faults and anoma-
lies. The results show that there is not a strong correlation



between faults and anomalies, which means that each fault
type can result in anomalies of different types. For example,
Fig. 10 presents the correlation analysis result in Hadoop. The
upper x-axis denotes the total number of faults of each type,
and each bar denotes the number of each type of anomalies
caused by one type of faults. Silent Benign, Detected Early
Exit and Detected Benign are the most common anomalies
caused by each type of faults. Other types of anomalies are
relatively evenly distributed to different types of faults. Note
that we do not consider the correlations between faults of type
EXCEPTION_UNHANDLED and anomalies, as there are very
few cases of activated EXCEPTION_UNHANDLED faults.
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Fig. 10. The correlation between faults and anomalies in Hadoop

D. RQ2: To what extent do distributed systems report the
anomalies by themselves?

Fig. 11 demonstrates the ability of distributed systems’
error reporting mechanisms to report anomalies. Generally
speaking, the error reporting mechanisms are able to report
the majority of the anomalies (recall ranging from 82.1% to
92.8%). This explains why simple ways to detect anomalies
such as monitoring the key words in logs are still widely
used in industry. However, among all the reported anomalies,
26.6% are false alarms. An error report or a detection result
is counted as a false alarm if the injected fault is not activated
or manifested but an anomaly is reported by either the error
reporting mechanisms or anomaly detectors.

The high false alarm rate is a cause for concern for the
error reporting mechanisms. Further, a large portion (ranging
from 10.8% to 31.2%) of the reported anomalies are reported
by JVM’s stderr and stdout instead of by logging tools,
such as Log4J. This indicates that diverse log sources should
be considered when applying log-based anomaly detection
methods, which make the log parsing problem more difficult
with more heterogeneous log sources.

The reporting latency and locating accuracy of error report-
ing mechanisms are summarized in Table III. At a component-
level, error reporting mechanisms can accurately localize the
root cause (i.e., the injected fault) of the anomalies with 94.2%
accuracy in Hadoop and 93.6% accuracy in Spark. However,
when it comes to localizing the faults to the source code file
(i.e., class-level), the mechanisms have low accuracy.
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Fig. 11. Anomalies reported by distributed systems’ error reporting macha-
nisms
TABLE III
REPORTING LATENCY AND LOCATING ACCURACY OF ERROR REPORTING
MECHANISMS
Systems Reporting  Locating Accuracy in ~ Locating Accuracy in
Latency class-level component-level

Hadoop 5.22s 10.2% 94.2%

Spark 6.34s 12.4% 93.6%

Flink 2.12s 18.2% -

E. RQ3: To what extent do state-of-the-art anomaly detectors
detect anomalies of different types?

In this RQ, we evaluate three anomaly detectors in terms of
precision, recall, F1-measure, detection latency, and their fault
localization accuracy at class and component levels We first
adjusted the hyperparameters and the sizes of training datasets
of the MRD and Deeplog detectors to get the best F-measure
value. Then we calculate the other evaluation metrics using
the values obtained. For READ, we adjusted the parameters
and the sizes of training datasets to get the best F1-measure.

To evaluate these anomaly detectors, we first built 7
anomaly datasets of Hadoop from the service requests with the
injected faults, including the 6 test datasets in Table IV, and a
training dataset consisting of 16,125 normal service requests.
In these datasets, each service request has the corresponding
information of the injected fault, the log messages, and log
keys generated by the system, the request execution path
generated by REPtrace, and the resource consumption of the
system during the processing of the request. Table IV lists the
number of normal service requests (with inactivated faults), the
number of anomalous service requests (with activated faults)
and the corresponding anomaly types observed.

As shown in Table V, in terms of overall F1-measure (on
the ALL dataset), Deeplog outperforms the other two anomaly
detection methods. MRD has significantly lower precision and
recall values compared to the Deeplog and READ because the
anomalous service requests do not necessarily have anomalous
resource consumption. Fig. 12 shows the detection results of
Deeplog and READ on each type of anomaly. As shown in Fig.
12, Deeplog’s detection precision outperforms READ on every
anomaly type. However, Deeplog’s detection recall is lower



TABLE IV
THE PUBLIC DATASET OF HADOOP

dataset name anomaly # of normal ser- # of anomalous
type vice requests service requests

DEE_DB DEE 693 693

SEE_DB SEE 68 68

DBE_DB DBE 299 299

DHANG_DB DHANG 249 249

SHANG_DB SHANG 5 5

ALL - 1314 1314

than READ on the Detected Early Exit (DEE) and Silent Early
Exit (SEE) anomaly types. We manually analyzed the service
requests with DEE anomalies detected as well as normal
service requests to determine why. We determined that there
are no wrong messages in the logs generated by the Log4J, and
the error messages reported by JVM fail to be converted to a
log template with the current log template extraction method.
Thus, Deeplog considers the log key sequence as normal.
The service requests with SEE anomalies may not contain
any log key sequences that Deeplog has never seen in the
training stage. Therefore, Deeplog fails to detect these anoma-
lies, which decreases its recall. On the other hand, READ
detects anomalies based on the request execution paths i.e.,
Directed Acyclic Graphs (DAGs) that are composed of system
call events and their relationships generated by REPTrace,
which only depends on whether its execution behavior deviates
from the normal at the system-call level. Therefore, READ has
higher recall values on these types of anomalies than others.

TABLE V
THE DETECTION RESULTS OF THREE ANOMALY DETECTORS

detector  precision recall fl1-measure
Deeplog 99.08% 90.60% 94.65%
MRD 68.85% 79.52% 71.77%
READ 87.13% 90.10% 88.59%
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Fig. 12. The detection precision and recall for each anomaly type

Table VI shows the anomaly detection results of Deeplog
and READ in terms of detection latency and localization accu-

racy. MRD is not listed as it is not able to detect anomalies in
real time or identify the location of the root cause. If multiple
anomalies are detected by Deeplog, the timestamp of the log
message with the smallest timestamp is used to calculate
the detection latency. i) Compared to Hadoop’s own error
reporting mechanisms, both Deeplog and READ can detect
anomalies with shorter detection latency. READ reduces the
detection latency by 59.6%, while Deeplog only reduces it by
34.5%. Thus, READ can detect anomalies much earlier than
Deeplog, which allows administrators to take prompt actions
to avoid propagation. ii) READ also outperforms Deeplog in
accurately localizing the root cause to the correct component.
However, READ is not able to localize the root cause to the
correct class as it lacks application-level information.

TABLE VI
THE DETECTION LATENCY AND LOCATING ACCURACY OF DEEPLOG AND
READ
detector detection  locating accuracy at locating accuracy at
latency class-level component-level
Deeplog 3.42% 29.34% 71.23%
READ 2.11% - 78.32%

FE. Threats to validity

We use source-code based FI, which has been used in many
state-of-the-art FI tools such as SAFE [?], LLFI [25], G-
SWEFIT [33], etc., in our study. Many studies (e.g., [29]) have
found that this method can emulate realistic faults, which justi-
fies the validity of applying FI to mimic real-world anomalies.
Table I shows that SSFI is able to cover most of the software
faults found in a recent bug study [12]. Our experiments
also demonstrate that SSFI generates comprehensive types of
anomalies in distributed systems.

The choice of the FI target systems and the anomaly
detectors may also affect the experimental results. To mitigate
their influence, we chose widely used systems and state-of-
the-art detectors in different categories. The source code of
both the systems and anomaly detectors is publicly available
enabling reproducibility.

VI. RELATED WORK
A. Fault Injection (FI)

FI has been an effective way of software testing and
assessing the dependability of software systems [24]. Faults
can be coarsely grouped into hardware faults and software
faults (also called bugs). Previous research mainly focuses on
injecting hardware faults into systems with physical means like
heavy-ion radiation [26] or with Software Implemented Fault
Injection (SWIFI) techniques [25], [27], [28]. However, with
the increasing complexity of software systems, software faults
have been recognized as one of the major reasons causing fatal
system failures [3]. SWIFI methods can also be used to inject
software faults by corrupting states of software systems and
the inputs/outputs of software component interfaces. However,



the faults produced by SWIFI methods can emulate software
faults only to a limited extent [29].

The most representative way to inject software faults is to
directly inject code changes to the systems [30], [31]. The
early FI methods inject code changes with orthogonal defect
classification (SDC) schema by defining few code change pat-
terns on each fundamental program statement [32]. However,
actual software faults are more complex than code changes
on single program statement. Duraes et al. [33] study bug
fixing data in open-source and commercial software systems,
and find that many software faults involve several program
statements. They also provide a fault model based on their
results. However, a recent study [12] of software bugs in
OpenStack finds that the fault model proposed by Duraes et
al. [33] cannot cover some frequent bug types in distributed
systems. Existing open-sourced FI tools for injecting code
changes in Java only cover a few types of faults. J-SWFIT [14]
is a FI framework for FI in Java programs, with two fault
types. JACA [16], [34] is another FI tool that can change the
values of parameters, attributes and returned variables. Byte-
monkey [15] is able to inject four types of faults.

B. Anomaly Detection in Distributed Systems

In a running distributed system, there are mainly three types
of data available for anomaly detection, namely metrics, log
and trace. According to the data that anomaly detectors are
based on, anomaly detection methods can be broadly classified
into three categories: metrics-based, log-based and trace-based.

Resource usage of systems includes multiple dimensions,
such as CPU, network usage recorded by monitoring tools.
Threshold-based methods require expertise to set the threshold
for each type of resource and cannot deal with cases where
there is a huge fluctuation of resource consumption. Machine
learning methods have been widely adopted in metrics-based
anomaly detectors. Jiang et al. [4] proposed a method to
learn the correlation between different metrics at the same
time point with an autoregressive model. In another work of
Jiang et al. [5], different metrics are grouped into clusters
and the entropy of each cluster is updated and monitored.
Anomalies are detected when the entropy of a cluster signif-
icantly changes. Malhotra et al. [6] employed Long Short
Term Memory (LSTM) networks to predict the metrics at
a time point based on the metrics values in the previous
time windows. If the similarity between the real metrics and
predicted metrics exceeds a threshold, an alarm is produced.

Log messages (also called log entries) generated by dis-
tributed systems are semi-structured data. Usually a log tem-
plate (also called a log key) extraction (also called log parsing)
method is required before applying log-based anomaly detec-
tion methods. Lim et al. [7] use individual message frequency
to model systems’ behavior and calculates the log templates
numbers, log template frequency and their distribution in each
time window. Anomalies are judged by users based on the
visualization of the individual message frequency. A Finite
State Automaton (FSA) is learned from the log sequence [8],
in which each state refers to a log template. In the detection

stage, an anomaly is found if the transition between two log
templates has never appeared before or its transition frequency
is under a threshold in the learned FSA. Deeplog [9] trains a
prediction model from the normal log key sequences with an
LSTM network, and predicts the next log key based on the
past log key sequence of a fixed window size. If the next log
key is not in the predicted log keys, an anomaly is detected.

Distributed tracing techniques [21], [35], [36] trace how
requests are processed in distributed systems, and generate the
request execution paths. Their potential for accurately model-
ing the behavior of distributed systems has led to anomaly
detectors based on these request execution paths. Chen et
al. [37] build a probabilistic context free grammar model for
each type of request from the request execution paths to detect
anomalies. Sun et al. [10] build an FSA for all the requests
to detect anomalies based on the request execution paths,
in which each state denotes a component in the distributed
system. Our previous work—READ [11] builds a core FSA and
a full FSA for each type of service request from the request
execution paths from the REPTrace [21] to detect anomalies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a realistic software fault injection
method at the program statement level (SSFI) to understand
the efficacy of anomaly detection techniques in distributed
systems. By answering three research questions with a sys-
tematic approach, we explore the pattern of anomalies in
distributed systems. We also analyzed the ability of distributed
systems’ own error reporting mechanisms to report anomalies
without extra anomaly detectors and comprehensively evalu-
ated anomaly detectors of three categories. Our experimental
evaluation finds that: 1) Silent Early Exit anomalies are
more frequent in distributed systems due to incomplete error-
resilience mechanisms; 2) Most anomalies (82.1% - 95.8%)
can be reported by distributed systems own error reporting
mechanisms. However, the false alarm rate is also high; 3)
Log-based anomaly detection methods have better overall de-
tection accuracy than trace-based and metrics-based anomaly
detection methods. Trace-based anomaly detectors are able to
detect anomalies faster than the other detectors; and (4) None
of the detector types is able to accurately localize the root
cause of the anomaly in terms of the source line or class.

As future work, we plan to consider a wider range of
distributed systems, and also evaluate more anomaly detectors.
We also plan to expand the range of faults considered by SSFI,
and apply preliminary coverage analysis of FI to improve
the SSFI's performance on a broader fault range. We also
want to study if a combination of the log analysis and the
trace/execution path analysis can better localize the root cause.
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