
TensorFI: A Flexible Fault Injection Framework for
TensorFlow Applications

Zitao Chen*†, Niranjhana Narayanan*†, Bo Fang†, Guanpeng Li‡ Karthik Pattabiraman†, Nathan DeBardeleben§
†University of British Columbia, ‡University of Iowa, §Los Alamos National Laboratory

{zitaoc, nniranjhana, bof, karthikp}@ece.ubc.ca, guanpeng-li@uiowa.edu, ndebard@lanl.gov

Abstract—As machine learning (ML) has seen increasing
adoption in safety-critical domains (e.g., autonomous vehicles),
the reliability of ML systems has also grown in importance.
While prior studies have proposed techniques to enable efficient
error-resilience (e.g., selective instruction duplication), a funda-
mental requirement for realizing these techniques is a detailed
understanding of the application’s resilience. In this work, we
present TensorFI, a high-level fault injection (FI) framework for
TensorFlow-based applications. TensorFI is able to inject both
hardware and software faults in general TensorFlow programs.
TensorFI is a configurable FI tool that is flexible, easy to use, and
portable. It can be integrated into existing TensorFlow programs
to assess their resilience for different fault types (e.g., faults in
particular operators). We use TensorFI to evaluate the resilience
of 12 ML programs, including DNNs used in the autonomous
vehicle domain. The results give us insights into why some of
the models are more resilient. We also present two case studies
to demonstrate the usefulness of the tool. TensorFI is publicly
available at https://github.com/DependableSystemsLab/TensorFI.

Index Terms—Fault Injection, Machine Learning, Resilience

I. INTRODUCTION

In the past decade, Machine Learning (ML) has become
ubiquitous in many applications. ML is also being increasingly
deployed in safety-critical applications such as Autonomous
Vehicles (AVs) [1] and aircraft control [2]. In these domains,
it is critical to ensure the reliability of the ML algorithm and its
implementation as faults can lead to loss of life and property.
Moreover, there are often safety standards in these domains
that prescribe the allowable failure rate. For example, in the
AV domain, the ISO 26262 standard mandates that the FIT
rate (Failures in Time) of the system be no more than 10,
i.e., at most 10 failures in a billion hours of operation [3],
in order to achieve ASIL-D levels of certification. Therefore,
there is a compelling need to build efficient tools to (1) test
and improve the reliability of ML systems, and (2) evaluate
their failure rates in the presence of different fault types.

The traditional way to experimentally assess the reliability
of a system is fault injection (FI). FI can be implemented
at the hardware or software level. Software-Implemented FI
(also known as SWiFI) has lower costs, is more controllable,
and easier for developers to deploy [4]. Therefore, SWiFI has
become the dominant method to assess a system’s resilience
to both hardware and software faults.

⇤Both authors contributed equally to this work.

There has been a plethora of SWiFI tools such as NF-
Tape [5], Xception [6], GOOFI [7], LFI [8], LLFI [9],
PINFI [10]. These tools operate at different levels of the
system stack, from the assembly code level to the application’s
source code level. In general, the higher the level of abstraction
of the FI tool, the easier it is for developers to work with, and
use the results from the FI experiments in practice [4].

Due to the increase in popularity of ML applications, there
have been many frameworks developed for writing them. An
example is TensorFlow [11], which was released by Google
in 2017. Other examples are PyTorch [12] and Keras [13].
These frameworks allow the developer to “compose” their
application as a sequence of operators, which are connected
together in the form of a graph. The connections represent
the data-flow and control dependencies among the operators.
While the underlying implementation of these frameworks is in
C++ or assembly code for performance reasons, the developer
writes their code using high-level languages (e.g., Python).

In this paper, we introduce a SWiFI tool called TensorFI⇤,
which injects faults into the data-flow graph used in Tensor-
Flow applications. TensorFI performs interface-level FI [15],
[16]. We focus on TensorFlow as it is the most popular
framework used today for ML applications [17], though our
technique is not restricted to TensorFlow. TensorFI can be used
to inject both hardware and software faults in the outputs of
TensorFlow operators, and study the effects of the faults on
the ML application. The main advantage of TensorFI over
traditional SWiFI frameworks is that it directly operates on
the TensorFlow operators and graph, and hence its results are
readily accessible to developers.

Building a FI tool for TensorFlow applications is challeng-
ing due to three reasons. First, because TensorFlow operators
are implemented in C++ or assembly code and optimized for
different platforms (i.e., different processors and operating
systems), it is not practical to modify the implementation
of these operators as doing so will hurt both portability and
performance. However, in order to inject faults at the level of
TensorFlow operators and the graph, one needs to intercept
the operators at runtime to modify their execution results.
Unfortunately, TensorFlow does not expose the operators once
the graph has been constructed, and most of the execution

⇤A preliminary version of this work was published in a workshop [14].
This work extends the workshop version to support more complex ML
programs, as well as a richer set of fault injection configurations.



occurs “behind the scenes” in the low-level code. Therefore,
it is not possible to intercept these operators. Secondly, the
speed of execution of the TensorFlow graph should not be
adversely affected when no faults are injected, as otherwise
developers will avoid using the framework. Finally, there are
many external libraries that are used by TensorFlow develop-
ers. These often rely on the structure and semantics of the
TensorFlow graph, and hence these should not be modified.

TensorFI addresses the above challenges by first duplicating
the TensorFlow graph and creating a FI graph that parallels
the original one. The operators in the FI graph mirror the func-
tionality of the original TensorFlow operators, except that they
have the capability to inject faults based on the configuration
parameters specified. These operators are implemented by us
in Python, thereby ensuring their portability. Moreover, the FI
graph is only invoked during fault injection, and hence the
performance of the original TensorFlow graph is not affected
(when faults are not injected). Finally, because we do not
modify the TensorFlow graph other than to add the FI graph,
external libraries that depend on the graph’s structure and
semantics can continue to work.

While prior studies have studied the error resilience of ML
models by building customized fault injection tools [18]–[21],
these tools are usually tailored for a specific set of programs
and might not be applicable to general ML programs. In
contrast, TensorFI is a generic and configurable fault injection
tool that is able to inject faults in a wide range of ML programs
written using TensorFlow.

We make the following contributions in this paper.
• Propose a generic FI technique to inject faults at the level

of the TensorFlow graph, without hurting portability,
• Implement the FI technique in TensorFI, a flexible tool,

which allows easy configuration of FI parameters.
• Evaluate TensorFI on 12 ML applications in TensorFlow,

including deep neural network (DNN) applications used
in AVs, across a wide range of FI configurations (e.g.,
fault types, error rates). We find that there are significant
differences due to both individual ML applications, as well
as due to different configurations. We also measure the
performance and memory overhead of TensorFI.

• Conduct two case studies to: (1) evaluate how different
hyper-parameters (e.g., number of neurons, layers) affect
the resilience of ML models; (2) identify the subset of
computations that are most susceptible to faults. Both of
these can be used to improve the models’ resilience.

II. BACKGROUND AND FAULT MODEL

We start by explaining the general structure of ML applica-
tions, followed by related work in the area of ML reliability.
We then introduce the fault model we assume in this paper.

A. Machine Learning Applications
An ML model takes an input that contains specific features

to make a prediction. Prediction tasks can be divided into
classification and regression. The former is used to classify the
input into categorical outputs (e.g., image classification). The

latter is used to predict dependent variable values based on the
input. ML models can be either supervised or unsupervised. In
the supervised setting, the training samples are assigned with
known labels (e.g., linear regression, neural network), while
in an unsupervised setting there are no known labels for the
training data (e.g., k-means, kernel density estimation).

An ML model typically goes through two phases: 1) training
phase where the model is trained to learn a particular task;
2) inference phase where the model is used for making
predictions on test data. The parameters of the ML model are
learned from the training data, and the trained model will be
evaluated on the test data, which represents the unseen data.

B. Related Work

Several studies have attempted to evaluate the error re-
silience of ML applications through fault injections [22],
[23]. However, such FI techniques are limited to the specific
application being studied, unlike TensorFI that is able to
perform FI on generic ML applications.

More recent studies investigate the resilience of deep neural
networks (DNN) to hardware faults by building fault injec-
tors [18]–[21]. Li et al. build a fault injector by using the
tiny-CNN framework [18]. Reagen et al. design a generic
framework for quantifying the error resilience of ML appli-
cations [19]. Sabbagh et. al develop a framework to study the
fault resilience of compressed DNNs [21]. Chen et al. intro-
duce a technique to efficiently prune the hardware FI space
by analyzing the underlying property of ML models [20].

In the software faults space, researchers have employed
mutation testing in ML applications. DeepMutation [24] is one
such framework specialized for DL systems which involves
source, program or model level mutations. Their goal is to
improve the quality of the test data through testing with the
mutated models. PyTorchFI [25] is a very recent runtime
perturbation tool developed for DNNs, used to mutate the
weights or neurons in PyTorch applications. In contrast to
the above studies, TensorFI targets a broader range of ML
applications, and can be used to inject both software and
hardware faults in the ML application.

C. TensorFlow

TensorFlow is an open-source framework for modeling large
data-flow graphs and is widely used for building ML programs.
TensorFlow allows programmers to represent the program in
the form of a TensorFlow graph (see below). TensorFlow is
flexible and can be better optimized as it exposes the underly-
ing graph to the developer. Thus, TensorFlow is considered a
low level framework. Many high level frameworks like Keras
use TensorFlow as their backend for implementation.

To use TensorFlow, programmers use the built-in operators
to construct the data-flow graph of the ML algorithm during
the training phase. Once the graph is built, it is not allowed to
be modified. During the inference phase, data is fed into the
graph through the use of placeholder operators, and the outputs
of the graph correspond to the outputs of the ML algorithm.



In this phase, the graph is typically executed directly in the
optimized form on the target platform using custom libraries.

TensorFlow also provides a convenient Python language in-
terface for programmers to construct and manipulate the data-
flow graphs. Though other languages are also supported, the
dominant use of TensorFlow is through its Python interface.
Note however that the majority of the ML operators and algo-
rithms are implemented as C/C++ code, and have optimized
versions for different platforms. The Python interface simply
provides a wrapper around these C/C++ implementations.

D. Fault Model

In this work, we consider two types of faults, hardware
faults and software faults that occur during the execution of
the TensorFlow program. As TensorFI operates at the level of
TensorFlow operators, we abstract the faults to the operators’
interfaces. Thus, we assume that a hardware or software
fault that arises within the TensorFlow operators, ends up
corrupting (only) the outputs of the operators. We do not
make assumptions on the nature of the output’s corruption.
For example, we consider that the output corruption could
be manifested as either a random value replacement (e.g.,
mutation testing [24]) or as a single bit-flip [18]–[21]. We
also assume that the faults do not modify the structure of
the TensorFlow graph (since TensorFlow assumes a static
computational graph) and that the inputs provided into the
program are correct, because such faults are extraneous to
TensorFlow. Other work has considered errors in inputs [26],
[27]. Finally, we assume that the faults occur neither in the
ML algorithms, nor in the model parameters. This allows us
to compare the output of the FI runs with the golden runs, to
determine if a Silent Data Corruption (SDC) has occurred.

We only consider faults during the inference phase of the
ML program. Because training is usually a one-time process
and the results of the trained model can be checked. Inference,
however, is executed repeatedly with different inputs, and is
hence much more likely to experience faults. This fault model
is in line with other work in this area [18]–[21].

III. METHODOLOGY

We start this section by articulating the design constraints of
TensorFI. We then present the design of TensorFI, and an ex-
ample of its operators. Finally, we present its implementation
and explain how to configure it.

A. Design Constraints

We follow 3 constraints in the design of TensorFI.
• Ease of Use and Compatibility: The injector should be

easy-to-use and require minimal modifications to the appli-
cation code. We also need to ensure compatibility with third-
party libraries that may construct the TensorFlow graph.

• Portability: Because TensorFlow may be pre-installed on
the system, and each individual system may have its own
installation of TensorFlow, we should not assume the pro-
grammer is able to make any modifications to TensorFlow.

• Minimal Interference: First, the injection process should
not interfere with the normal execution of the TensorFlow
graph when no faults are injected. Further, it should not
make the main graph incapable of being executed on GPUs
or parallelized due to the modifications it makes. Finally,
the fault injection process should be reasonably fast.
We also make two assumptions in TensorFI. First, we

assume that faults occur only during the execution of the
TensorFlow operators, and that the faults are transient in
nature. In other words, if we reexecute the same operator, the
fault will not reappear. This is because studies have shown
that the kinds of faults that are prevalent in mature software
are often transient faults [28]. Second, we assume that the
effect of a fault propagates to the outputs of the TensorFlow
operators only, and not to any other state. In other words,
there is no error propagation to the permanent state (since we
assume faults in the inference phase), which is not visible at
the TensorFlow graph level. Again, this is due to the structure
of TensorFlow graphs, and our fault model (Section II).

B. Design of TensorFI
To satisfy the design constraints outlined earlier, TensorFI

operates directly on TensorFlow graphs. The main idea is to
create a replica of the original TensorFlow graph but with
new operators. The new operators are capable of injecting
faults during the execution of the operators and can be
controlled by an external configuration file. Further, when no
faults are being injected, the operators emulate the behavior
of the original TensorFlow operators they replace. Because
TensorFlow does not allow the dataflow graph to be modified
once it is constructed, we need to create a copy of the entire
graph, and not just the operators we aim to inject faults into.
The new graph mirrors the original one, and takes the same
inputs as it. However, it does not directly modify any of the
nodes or edges of the original graph and hence does not affect
its operator. At runtime, a decision is made as to whether to
invoke the original TensorFlow graph or the duplicated one
for each invocation of the ML algorithm. Once the graph is
chosen, it is executed to completion at runtime.

TensorFI works in two phases. The first phase instruments
the graph, and creates a duplicate of each node for fault
injection purposes. The second phase executes the graph to
inject faults at runtime, and returns the corresponding output.
Note that the first phase is performed only once for the entire
graph, while the second phase is performed each time the
graph is executed (and faults are injected). We explain below
how this satisfies the design constraints.
• Ease of Use and Compatibility: To use TensorFI, the

programmer changes a single line in the Python code.
Everything else is automatic, namely the graph copying and
duplication. Because we duplicate the TensorFlow graph,
our method is compatible with external libraries.

• Portability: We do not make any modifications to the
TensorFlow code or the internal C++ implementation of the
TensorFlow operators, which are platform specific. There-
fore our implementation is portable across platforms.



Fig. 1: Example of TensorFlow graph and how TensorFI modifies it. The
nodes in blue represent the original nodes in the graph, while the nodes in
red are those added by TensorFI for fault injection purposes.

• Minimal Interference: TensorFI does not interfere with
the operation of the main TensorFlow graph. Further, the
original TensorFlow operators are not modified in any way,
and hence they can be optimized or parallelized for specific
platforms. The only overhead introduced by TensorFI (when
no faults are injected) is the check at runtime on whether
to call the original graph or the duplicated graph, but this
incurs modest performance overhead (Section IV).

C. Example of TensorFI’s operation
We consider an example of TensorFI’s operation on a small

TensorFlow program. Because our goal is to illustrate the
workflow of TensorFI, we consider a simple computation
rather than a real ML algorithm. The example is shown in
Figure 1. The nodes in blue represent the original TensorFlow
graph, while those in red represent the duplicated nodes
created by TensorFI.

In the original TensorFlow graph, there are two operators,
an ADD operator which adds two constant node “a” and “b”,
and a MUL operator, which multiplies the resulting value
with that from a place-holder node. A place-holder node is
used to feed data from an external source such as a file into
a TensorFlow graph, and as such represents an input to the
system. A constant node represents a constant value. TensorFI
duplicates both the ADD and MUL operators in parallel to the
main TensorFlow graph, and feeds them with the values of the
constant nodes as well as the place-holder node. Note however
that there is no flow of values back from the duplicated graph
to the original graph, and hence the fault injection nodes do
not interfere with the original computation performed by the
graph. The outputs orig and faulty represent the original and
fault-injected values respectively.

Prior to fault injection process, TensorFI instruments the
original TensorFlow graph to create a duplicate graph, which
will then be invoked during the injection process. At runtime,
a dynamic decision is made as to whether we want to compute
the orig output or the faulty output. If the orig output is
demanded, then the graph nodes corresponding to the original
TensorFlow graph are executed. Otherwise, the nodes inserted
by TensorFI are executed and these emulate the behavior of
the original nodes, except that they inject faults. For example,
assume that we want to inject a fault into the ADD operator.
Every other node inserted by TensorFI would behave exactly
like the original nodes in the TensorFlow graph, with the
exception of the ADD operator which would inject faults as
per the configuration (Section III-F).

D. Implementation
We have implemented TensorFI using the Python language

as TensorFlow primarily exposes a Python interface. Our
implementation consists of about 2500 lines of heavily com-
mented Python code, and is split into 5 modules. We have
made TensorFI publicly available under a MIT license on
Github (https://github.com/DependableSystemsLab/TensorFI),
along with extensive documentation on its use and internals.
We have also released all the benchmarks and scripts used in
this paper. We currently support TensorFlow version 1.0.

TensorFI supports the following features:
• Comparing each FI result with the golden run
• Launching multiple FI runs in parallel (multi-threading)
• Support for visualizing the modified TensorFlow graphs
• Ability to specify how (i.e., fault type) and where (i.e.,

operators) to inject faults in a configuration file
• Automated logging of fault injection runs
• Support for statistics collection and analysis

E. Example
Figure 2 shows an example of how TensorFI is used.

We consider a simple TensorFlow program that models a
Perceptron neural network. For brevity, we omit the construc-
tion of the original TensorFlow graph via training as that is
not relevant to TensorFI. The first line (line 104) initializes
TensorFI on the TensorFlow graph with the current session. It
also sets the debugging log level, and initially disables fault
injections for obtaining the golden run (i.e., correct output).
We then run the original TensorFlow graph with a set of test
images and store the result in correctResult (line 107).

After performing a number of initializations (lines 111-120),
we then launch fault injections using TensorFI in parallel using
the launch function (lines 123-124). We set the total number
of injections to 100, the number of threads to 5 (for parallel
injections), and collect statistics for each thread in a list called
myStats. We also use the correctResult to compare with the
result of each fault injected run - this is done through the
difffunc function, which is declared as an anonymous function
(i.e., lambda function) in Python, and computes the difference
between each fault injected run’s result and the correctResult.
If the difference is greater than 0, the FI run is classified as
a Silent Data Corruption (SDC), i.e., incorrect output. Finally,
we collate the statistics collected by each thread.

F. Configurations
TensorFI allows the user to configure it through a YAML in-

terface. Figure 3 shows a sample file for configuring TensorFI
in YAML format. This is loaded at program initialization, and
is fixed for the entire fault injection campaign. The config file
consists of the following fields:
• Seed: The random seed used in the fault injection experi-

ments, for reproducibility purposes (this is optional).
• ScalarFaultType: The fault type to inject for scalar values

(full list of types in Table I). We set this to bitFlip-element.
• TensorFaultType: The fault type to inject for tensor values

(full list of types in Table I). We set this to bitFlip-element.



103 # Add t h e f a u l t i n j e c t i o n code h e r e t o i n s t r u m e n t
t h e g raph

104 f i = t i . TensorFlowFI ( s e s s , name=” P e r c e p t r o n ” ,
105 l o g L e v e l =50 , d i s a b l e I n j e c t i o n s =” True ” )
106

107 c o r r e c t R e s u l t s = s e s s . run ( accu racy , f e e d d i c t ={X:
m i n s t . t e s t . images , Y: m i n s t . t e s t . l a b e l s } )

108

109 p r i n t ( ” T e s t a c c u r a c y : ” , c o r r e c t R e s u l t s )
110

111 d i f f F u n c = lambda x : math . f a b s ( x � c o r r e c t R e s u l t s )
112

113 # I n i t i a l i z e t h e number o f t h r e a d s and i n j e c t i o n s
114 numThreads = 5
115 n u m I n j e c t i o n s = 100
116

117 # Now s t a r t p e r f o r m i n g f a u l t i n j e c t i o n s , and c o l l e c t
s t a t i s t i c s

118 mySta t s = [ ]
119 f o r i i n r a n g e ( numThreads ) :
120 mySta t s . append ( t i . F I S t a t ( ” P e r c e p t r o n ” ) )
121

122 # Launch t h e f a u l t i n j e c t i o n s i n p a r a l l e l
123 f i . Launch ( n u m b e r O f I n j e c t i o n s = n u m I n j e c t i o n s ,

numOfProcesses =numThreads ,
124 com pu teDi f f = d i f f F u n c , c o l l e c t S t a t s L i s t = mySta ts ,

t i m e o u t =100)
125

126 p r i n t ( t i . c o l l a t e S t a t s ( mySta t s ) . g e t S t a t s ( ) )

Fig. 2: Example of TensorFI usage in a single ML application

# Sample YAML for FI configuration

Seed: 1000

ScalarFaultType: bitFlip-element

TensorFaultType: bitFlip-element

Ops:

- ALL = 1.0

SkipCount: 1

InjectMode: "errorRate"

Fig. 3: Example configuration file in YAML format

• InjectMode: The mode of injection (list of modes in Ta-
ble II). We set this to errorRate.

• Ops: This is a list of the TensorFlow operators that need to
be injected, and the probability for injecting a fault into each
operator when the mode is errorRate. Probability values can
range from 0 (never inject) to 1 (always inject). We choose
ALL, which represents all operators in the graph.

• SkipCount: This is an optional parameter for skipping the
first ‘n’ invocations of an operator before injection.

IV. EVALUATION

Our goal is to study how resilient are different ML applica-
tions (and datasets) to fault configurations of TensorFI, thereby
demonstrating its utility. We first describe our experimental
setup, followed by the research questions we ask in this study.
We then present our experimental results†.

†All our experiments use TensorFI v2.0.0, which is available at
https://github.com/DependableSystemsLab/TensorFI/releases/tag/v2.0.0.

TABLE I: List of fault types supported by TensorFI

Type Explanation
None Do not inject a fault
Zero Change output of the target operator into all zeros
Rand Replace all data items in the output of the target

operator into random values
Rand-element Replace one data item in the output of the target

operator into a random value
bitFlip-element Single bit-flip in one data item in the output of the

target operator
bitFlip-tensor Single bit-flip in all data items in the output of the

target operator

TABLE II: List of injection modes supported by TensorFI

Mode Meaning
errorRate Specify the error rate for different operator instances

dynamicInstance Perform random injection on a randomly chosen
instance of each operation

oneFaultPerRun Choose a single instance among all the operators at
random so that only one fault is injected in the entire
execution

A. Experimental Setup
Hardware Our experiments were conducted on three dif-

ferent systems, namely (i) a Fedora 20 system, 2 GTX TITAN
GPUs, 16 CPUs with 256 GB memory; (ii) an Ubuntu 16.04
system with 6 CPUs, 1 GeForce GT610 GPU with 16 GB
memory and (iii) Nodes running Red Hat Enterprise Linux
Server 6.4, with 12 CPUs cores and 64GB memory.

ML applications: To evaluate TensorFI, we choose 11
supervised learning applications listed in Table III (e.g., deep
neural networks like ResNet, VGGNet) that are commonly
used in existing studies. We also choose an ML application
used in the AV domain, i.e., comma.ai driving model.

In addition to supervised models, TensorFI can be used
to inject faults into unsupervised models. We use one such
application, Generative Adversarial Networks (GAN) as our
12th ML application to show the effects of the injected faults
visually. Because GANs do not have an expected output label,
we exclude it from the other experiments.

ML datasets: We use 4 public ML datasets that are com-
monly used in ML studies. MNIST dataset is a hand-written
digits (with 10 different digits). GTSRB dataset is a dataset
consisting of 43 different types of traffic signs. ImageNet is a
large image dataset with more than 14 million images in 1000
classes. In addition, we use a real-world driving dataset that
is labeled with steering angles [29].

For models that use the ImageNet dataset (ResNet-18 and
SqueezeNet), we use the pre-trained models since it is time-
consuming to train the model from scratch. For the other
models, we train them using the corresponding datasets. The
datasets are summarized in Table III. The baseline accuracy of
each model (without faults) is also provided for comparison.

Metrics: We consider SDC rate as the metric for evaluating
the resilience of ML applications. An SDC is a wrong output
that deviates from the expected output of the program. SDC
rate is the fraction of the injected faults that result in SDCs.
For classifier applications, an SDC is any misclassification.



Input

Output 
(by fault)

Correct angle

Angle (by fault)

Fig. 4: Example of SDCs observed in different ML applications. Left box -
Steering Model. Right box - Image Misclassifications.

TABLE III: ML applications and datasets used for evaluation.
The baseline accuracy without faults is also provided.

ML model Dataset Accuracy
Neural Net MNIST 85.42%

Fully Connected Net MNIST 97.54%
LeNet MNIST 99%

AlexNet MNIST 94%
CNN MNIST 95.74%

Highway CNN MNIST 97.92%
Recurrent NN MNIST 98.40%

VGG11 GTSRB 99.74%
ResNet-18 ImageNet 62.66% (top-1)

84.61% (top-5)
SqueezeNet ImageNet 52.936% (top-1)

74.150% (top-5)
Comma.ai model [31] Driving frame 24.12 (RMSE)

12.64 (Avg. Dev.)

However, the steering model comma.ai produces a continuous
value as output. For this model, we use different threshold
values for the deviations of steering angles to identify SDCs:
15, 30, 60 and 120 degrees [20]. For the steering model, we
use RMSE (root mean square error) and average deviation per
frame as metrics to evaluate the model’s accuracy - these are
commonly used in ML studies in the AV domain [30].

Experiments: For each benchmark, we perform 1000 ran-
dom FI experiments per fault configuration and input. We
choose 10 inputs for each application, and hence perform a
total of 10, 000 fault injections per configuration and we use
14 different fault configurations. We also calculate the error
bars at the 95% confidence interval for each experiment.

Fig. 4 shows examples of some of the SDCs observed in
our experiments for both the steering model and classification
applications. These may result in safety violations in AVs if
they are not mitigated. With that said, we do not specifically
distinguish hazardous outcomes in SDCs.

Research Questions We use different configurations of
TensorFI (shown in Table I and Table II) for answering the
following Research Questions (RQs):

RQ1: What are the SDC rates of different applications
under the oneFaultPerRun and dynamicInstance error modes?

RQ2: For the errorRate mode, how do the SDC rates vary
for different error rates?

RQ3: How do the SDC rates vary for faults in different
TensorFlow operators in the same ML application?

RQ4: What are the overheads of TensorFI?

B. Results
We organize the results for the 11 ML models listed in Table

III by each RQ, and then show the results of the FI experiments

for GANs separately. For RQ1 and RQ2, we choose all the
operators in the data-flow graph during the inference phase,
which is a subset of operators in the TensorFlow graph. This
is because many of the operators in the TensorFlow graph are
used for training, and are not executed during the inference
phase (we do not inject faults into these operators). We also
do not inject faults into those operators that are related to
the input (e.g., reading the input, data preprocessing), as we
assume that the inputs are correct as per our fault model.

1) RQ1: Error resilience for different error modes: In this
RQ, we study the effects of two different fault modes, namely
oneFaultPerRun and dynamicInstance. We choose single bit
flip faults as the fault type for this experiment. Fig. 5 show
the SDC rates obtained across applications. We can see that
different ML applications exhibit different SDC rates, and
there is considerable variation across the applications.

We can also observe that there are differences between the
two fault modes. For the dynamic instance injection mode,
the SDC rates for all the applications are higher than those in
the one fault per run mode. This is because in the dynamic
instance mode, each type of operator will be injected at least
once, while in the one fault per run mode, only one operator is
injected in the entire execution. Thus, the applications present
higher SDC rates for the former fault mode than the latter.

We also observe significant differences between applications
within the one fault per run mode. For example, the comma.ai
driving model has a higher SDC rate than the classifier appli-
cations. This is because the output of the classifier applications
are not dependent on the absolute values (instead classification
probability is used). Thus, the applications are still able to
generate correct output despite the fault occurrence, and hence
have higher resilience. However, the comma.ai model predicts
the steering angle, which is more sensitive to value deviations.
For example, a deviation of 30 due to fault in the classification
model will not cause an SDC as long as the predicted label
is correct; whereas the deviation would constitute an SDC in
the comma.ai model (when we use a threshold of 15 or 30).

In the one fault per run mode, we find that RNN exhibits
the highest resilience (less than 1% SDC rate). This is because
unlike feed-forward neural networks, RNN calculates the
output not only using the input from the previous layer, but
also the internal states from other cells. Under the single fault
mode, the other internal states remain intact when the fault
occurs at the output of the previous layer. Therefore, faults that
occur in the feed-forward NNs are more likely to cause SDCs
in this mode. However, under the dynamic instance injection
mode, more than one fault will be injected. As a result, some
of the internal states are also corrupted, thus making the results
prone to SDCs (e.g., RNN has around 38% SDC rate).

We also find that AlexNet exhibits the highest resilience
among all the models in both the one-fault-per-run and dy-
namic instance injection modes. This is because AlexNet has
many operators such as ADD, MUL, which are more resilient
to faults (see Fig. 8). Therefore, the proportion of operators
that are more prone to SDCs (e.g., convolution operators,
activation function) is not as high as that in other models.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNN Comma
(15)

Comma
(30)

Comma
(60)

Comma
(120)

Vgg11 SqNet
(top5)

SqNet
(top1)

ResNet
(top5)

ResNet
(top1)

NN CNN LeNet AlexNet FCN HCNN

SD
C 

ra
te

One fault per run Dynamic instance

Fig. 5: SDC rates under single bit-flip faults (from oneFaultPerRun and dynamicInstance injection modes). Error bars range from ±0.19% to ±2.45% at the
95% confidence interval.

Fig. 6: SDC rates for various error rates (under bit flip element FI). Error bars range from ±0.33% to ±1.68% at the 95% confidence interval.

Fig. 7: SDC rates for various error rates (under random value replacement FI). Error bars range from ±0.13% to ±1.59% at the 95% confidence interval.

2) RQ2: Error resilience under different error rates: In
this RQ, we explore the resilience of different models for
the errorRate injection mode. This mode allows us to vary
the probability of error injection on a per-operator basis. We
choose 2 different fault types for studying the effects of the
error rate, namely bitFlip-element and Rand-element.

Fig. 6 and Fig. 7 show the variation SDC rates with error
rates under both fault types. As expected, we can observe that
larger error rates result in higher SDC rates in all the ap-
plications, as more operators are injected. However, compared
with the results from the bit-flip FI, random value replacement
results in lower SDC rates. This is likely because the random
value causes lesser value deviation than the bit-flip fault type
(in our implementation, we use the random number generator
function from numpy library). Thus, a lower value deviation
in this mode leads to lower SDC rates [18], [20].

Fig. 6 shows the variations of SDC rates of different ML

applications with error rate under the bit-flip fault type. While
it shows that the SDC rates of all the applications grow
along with the increase of error rates ‡, we observe that
different applications have different rates of growth of SDCs.
In particular, we find that there are four outliers in the results
for the bit-flip fault model (Fig. 6), RNN, HCNN, ResNet
and FCN, which exhibit significantly higher SDC rates than
the rest. This is because these models have higher number of
operators, and hence have higher number of injections.

Likewise, in the case of the random replacement we find that
the SqueezeNet applications exhibit nearly flat growth in SDC
rates with error rates, and that the SDC rates are consistently
low. This is because faults need to cause large deviation in
order to cause SDCs, which rarely occurs with the random
replacement fault type.

‡There are a few outliers such as HCNN in Fig. 6, which exhibit
oscillations, as SDC measurements are subject to small statistical variations.



Fig. 8: SDC rates of different operators under bit-flip FI in the CNN model).
Error bars range from ±0.3077% to ±0.9592% at 95% confidence interval.

3) RQ3: SDC rates across different operators: In this RQ,
we study the SDC rates on different operators in the CNN
model. The SDC rates are shown in Fig. 8. It can be seen that
faults in the convolution layer usually have higher SDC rates,
compared with other operators (e.g., Sub).

Moreover, we can see that operators such as SoftMax,
ArgMax, Equal exhibit the highest SDC rates. In fact, the SDC
rates on the ArgMax and Equal operators are nearly 100%.
This is because these operators are directly associated with the
output, and thus faults in these operators are more likely to
cause SDCs (we consider these three operators as special cases
and we exclude them from all other injection experiments). On
the other hand, operators such as Sub, MatMul have low SDC
rates because faults in these operators are unlikely to propagate
much. For example, faults at the convolution layer are likely
to propagate through the complex convolution operators, in
which faults can quickly propagate and amplify. However,
faults at operators such as add and multiply might be masked
before propagating to the convolution layer; or occur after the
convolution layer. Therefore, faults in these operators are less
likely to cause SDCs, due to limited fault amplification.

4) RQ4: Overhead.: In this question, we evaluate the
memory overhead and the performance overhead. The memory
overhead is mainly due to the graph computation, which is not
duplicated, and is hence low. For FCN, which has the highest
number of operations, the memory overhead is 6.25%.

For the performance overhead, we measure the execution
time for the TensorFlow programs as a baseline for 50 predic-
tions. Then we measure the time taken for 50 predictions after
the TensorFI instrumentation phase, but with fault injections
disabled. These measurements are detailed in the Disable FI
column of the Table IV. We then measure the time taken
for 50 predictions with a single bit flip fault injected per
run, and report this time in the Enable FI column. The
first subcolumn ‘Inst.’ in Overheads, is the instrumentation
overhead (difference between Disable FI and Baseline over the
Baseline) and the second subcolumn ‘FI’ gives the overhead
incurred by fault injection alone (difference between Enable
and Disable FI over Disable FI).

As can be observed, the instrumentation overheads are rela-

TABLE IV: Overheads for the program (baseline); with in-
strumentation, without FI (disable FI); with FI (enable FI)

ML model Baseline Disable
FI

Enable
FI

Overheads

(in s) (in s) (in s) Inst. FI
NN 0.06 0.16 13.50 1.6x 83.34x

FCN 0.13 1.03 86.53 6.9x 83x
LeNet 0.105 0.22 17.44 1.1x 78.27x

AlexNet 0.51 0.58 45.24 0.1x 77x
CNN 0.23 0.23 25.94 0.1x 107x

HCNN 0.44 1.02 134.56 1.3x 131x
RNN 0.097 2.39 145 1.5x 59.66x

VGG11 0.19 0.82 29.1 3.3x 34.5x
SqueezeNet 0.85 1 22 0.2x 21x

ResNet 2.72 3.76 300 0.4x 78.78x
Comma.ai 0.3 0.47 46 0.6x 96.87x
Average 0.59 1.06 78.66 1.5x 77.3x

tively small, and range from 0.1x to 6.9x across applications.
The fault injection overheads are much higher, ranging from
21x to 131x. This is because we are emulating the TensorFlow
operators during fault injections in Python, and cannot benefit
from the optimizations and low-level implementation of Ten-
sorFlow. However, the instrumentation phase itself incurs only
modest overheads, with an average of 1.5x, when faults are
not injected, in keeping with our minimal interference goal -
this overhead is due to the runtime check for choosing which
version of the operator to invoke (Section III-D).

While the overheads may seem high, we report the actual
time taken by the FI experiments to put this number in
perspective. In our experiments, the most time-consuming
experiment is on the ResNet and Highway CNN models,
which took less than 16 hours to complete. However, on
average, most of our experiments took 3-4 hours to complete
for injecting 10, 000 faults, which is quite reasonable.

5) GAN FI results: The FI results on GAN is presented
in Fig. 9 The set of images in the top row, (ii) to (vi), are
generated from setting the fault type to Rand-element. (ii)
and (iii) are for one fault per run, and dynamic instance
respectively. (iv) to (vi) are generated from the errorRate
mode. (iv) is from setting the error rate to 25%. We can see the
fault progression clearly as the image becomes more difficult
to decipher as the error rate increases. The second row shows
images obtained from similar configurations as the first row,
with the only difference being that the fault type chosen is
single bit flip. We observe that with bit flip in the operators, the
resulting faults in images (vii) to (xi) tend to be more bipolar
(i.e., have more black and white pixels than shades of grey).
This is likely because with bit flips, the tensor values that
store the image data are toggled between being present (1) at
a pixel or being absent (0). As this error propagates into more
operators, the computations performed amplify this effect and
the resultant end images have strong activated regions of
black or white. In the random replacement mode, the injected
operators are replaced with values over the entire range, thus
causing the error propagation, and consequently the generated
pixels to also exhibit any values within the range.



Fig. 9: Generated images of the digit 8 in the MNIST data-set under different
configurations for GANs. Top row represents the Rand-element model, while
bottom row represents the single bit-flip model. Left center is with no faults.

Fig. 10: SDC rates in different variations of the NN model. Error bars range
from ±0.7928% to ±0.9716% at the 95% confidence interval.

V. CASE STUDIES

In this section, we perform two case studies to demonstrate
the utility of TensorFI in enhancing the error resilience of ML
models. The first case study considers the effect of hyper-
parameter variations to tune for resilience, while the second
considers the effect of per-layer protection in a DNN.

A. Effect of Hyper-parameter Variations
In this first case study, we empirically analyze the effects

of hyper-parameter variation on the error resilience of a
simple neural network model [32]. We consider three hyper-
parameters, namely: (i) number of layers - 2, 3, 4; (ii) number
of neurons in each layer - 16, 32, 64, 128, 256 and 512;
and (iii) optimizers for model training - Adam [33] and
RMSProp [34]. This constitutes a total of 36 different models
(3*6*2 = 36), on which we use TensorFI to evaluate their
error resilience. In this study, we consider the single bit-flip
fault model, and oneFaultPerRun injection mode. We perform
10000 injections for each model configuration.

Fig. 10 shows the SDC rates for the NN model under
different number of layers and neurons. The networks in
Fig. 10 are all trained with the Adam optimizer. We observe
a similar trend in the networks trained with the RMSProp
optimizer, and hence do not report them. In other words, the
choice of the optimizer does not affect the SDC percentages.

We first examine the results of decreasing the number of
neurons. As can be seen in Fig. 10, the SDC percentages
decrease with the increase in the number of neurons. To

Fig. 11: Accuracy in different variations of the NN model.

TABLE V: Layerwise resilience in a CNN model

Layer Operators within the layer Average SDC rate
1st convolutional Add, Relu, Conv, Maxpool 0.3102
2nd convolutional Add, Relu, Conv, Maxpool 0.2275
Fully connected Add, MatMul, Relu 0.1429

Output Add, MatMul 0.0499

understand the reason behind this, we studied the accuracy of
the models trained with different number of neurons ranging
from 16 to 512. The results are shown in Figure 11. As
can be seen, the accuracy remains more or less constant
with the increase in the number of neurons. In other words,
adding more neurons does not increase the accuracy, hence
these additional neurons are redundant, which increases the
resilience of the model. Therefore, adding more neurons is
beneficial to resilience (in this case).

Second, we examine the results for varying the number of
layers from 2 to 4 in Fig. 10. We find that the SDC rate
initially decreases from 2 to 3 layers, but increases from
3 to 4 layers. This shows that while adding layers initially
increases resilience, layer redundancy has an optimal point (in
this case, 3 layers), beyond which the resilience falls again.
Further, from the accuracy results in Figure 11, the addition of
layers has little effect on the accuracy, and hence increasing
the number of layers from 2 to 3 boosts the error resilience
without degrading accuracy. However, we should not increase
the number of layers beyond 3 as it degrades the resilience.

B. Layer-Wise Resilience

In the second case study, we study the layer-wise resilience
in a CNN. The goal is to evaluate the resilience of the different
layers in the network, and identify those that are most suscepti-
ble to transient faults. This could guide cost-effective resilience
techniques to selectively protect the vulnerable layers.

We inject faults into the instances of different operators,
and coalesce the result based on the layers. We used the same
single bit-flip model and the oneFaultPerRun fault mode as in
the previous case study. For instance, the first layer consists of
4 operators: Add, ReLu, Conv and MaxPool. We inject faults
into these operators, and measure the SDC percentages.

We summarize these results in Table V. As can be seen, the
SDC rate decreases as the layer numbers increase. (i.e., the



first layer has the highest SDC rate). This is because these
layers consist of the operators (Relu, Conv and Maxpool)
that are vulnerable to transient faults (Fig.8). Though the first
two layers include the same type of operators, the former
has higher SDC rate. This is because faults occurring in the
earlier layers have a longer fault propagation path, and thus
more values are likely to be corrupted during fault propagation.
Therefore, based on the results, one should protect the earlier
layers of the network first, if the protection overhead is limited.

VI. CONCLUSION

We present TensorFI, a generic fault injection tool for
ML applications written using the TensorFlow framework.
TensorFI is a configurable tool that can be easily integrated
into existing ML applications. TensorFI is both portable and
configurable. Further, it is also compatible with third party
libraries that use TensorFlow. We use TensorFI to study the
resilience of 12 TensorFlow ML applications under different
fault configurations, including one used in AVs, and also
to improve the resilience of selected applications via hyper-
parameter optimization and selective layer protection. Our
evaluation thus demonstrates the utility of TensorFI in mea-
suring and improving the resilience of ML applications.

As future work, we plan to (1) mitigate the performance
overhead of TensorFI by providing C/C++ variants of the
TensorFlow operators that support FI, (2) extend TensorFI to
inject faults during the training phase, and (3) consider ML
frameworks other than TensorFlow such as PyTorch and Keras.

ACKNOWLEDGEMENTS
This work was supported in part by the Natural Sciences and Engi-

neering Research Council of Canada (NSERC). This manuscript has been
approved for unlimited release and has been assigned LA-UR-20-26216.
This work has been co-authored by an employee of Triad National Security,
LLC which operates Los Alamos National Laboratory under Contract No.
89233218CNA000001 with the U.S. Department of Energy/National Nuclear
Security Administration. The publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published
form of the manuscript, or allow others to do so, for U.S. Govt. purposes.

REFERENCES

[1] S. S. Banerjee et al., “Hands off the wheel in autonomous vehicles?:
A systems perspective on over a million miles of field data,” in 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018.

[2] K. D. Julian et al., “Policy compression for aircraft collision avoidance
systems,” in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), 2016.

[3] “Functional safety methodologies for automotive applications.” [Online].
Available: https://www.cadence.com/content/dam/cadence-www/global/
en US/documents/solutions/automotive-functional-safety-wp.pdf

[4] M.-C. Hsueh et al., “Fault injection techniques and tools,” Computer,
vol. 30, no. 4, pp. 75–82, 1997.

[5] D. T. Stott et al., “Nftape: a framework for assessing dependability
in distributed systems with lightweight fault injectors,” in Proceedings
IEEE International Computer Performance and Dependability Sympo-
sium. IPDS 2000. IEEE, 2000, pp. 91–100.

[6] J. Carreira et al., “Xception: Software fault injection and monitoring in
processor functional units,” Dependable Computing and Fault Tolerant
Systems, vol. 10, pp. 245–266, 1998.

[7] J. Aidemark et al., “Goofi: Generic object-oriented fault injection tool,”
in 2001 International Conference on Dependable Systems and Networks.
IEEE, 2001, pp. 83–88.

[8] P. D. Marinescu et al., “Lfi: A practical and general library-level fault
injector,” in 2009 IEEE/IFIP International Conference on Dependable
Systems & Networks. IEEE, 2009, pp. 379–388.

[9] A. Thomas et al., “Llfi: An intermediate code level fault injector for
soft computing applications,” in Workshop on Silicon Errors in Logic
System Effects (SELSE), 2013.

[10] J. Wei et al., “Quantifying the accuracy of high-level fault injection
techniques for hardware faults,” in 2014 44th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks. IEEE,
2014, pp. 375–382.

[11] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265–283.

[12] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems,
2019, pp. 8024–8035.

[13] “Keras.” [Online]. Available: https://keras.io/
[14] G. Li et al., “Tensorfi: A configurable fault injector for tensorflow

applications,” in IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2018.

[15] N. P. Kropp et al., “Automated robustness testing of off-the-shelf soft-
ware components,” in Digest of Papers. Twenty-Eighth Annual Interna-
tional Symposium on Fault-Tolerant Computing (Cat. No. 98CB36224).
IEEE, 1998, pp. 230–239.

[16] A. Lanzaro et al., “An empirical study of injected versus actual interface
errors,” in Proceedings of the 2014 International Symposium on Software
Testing and Analysis. ACM, 2014, pp. 397–408.

[17] “Tensorflow popularity.” [Online]. Available: https://towardsdatascience.
com/deep-learning-framework-power-scores-2018-23607ddf297a

[18] G. Li et al., “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017.

[19] B. Reagen et al., “Ares: a framework for quantifying the resilience of
deep neural networks,” in 55th Annual Design Automation Conference,
2018.

[20] Z. Chen et al., “Binfi: An efficient fault injector for safety-critical ma-
chine learning systems,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2019.

[21] M. Sabbagh et al., “Evaluating fault resiliency of compressed deep
neural networks,” in 2019 IEEE International Conference on Embedded
Software and Systems (ICESS). IEEE, 2019, pp. 1–7.

[22] C. Alippi et al., “Sensitivity to errors in artificial neural networks:
A behavioral approach,” IEEE Transactions on Circuits and Systems,
vol. 42, no. 6, 1995.

[23] S. Bettola et al., “High performance fault-tolerant digital neural net-
works,” IEEE transactions on computers, no. 3, 1998.

[24] L. Ma et al., “Deepmutation: Mutation testing of deep learning systems,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[25] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for dnns,” in
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 2020, pp. 25–31.

[26] K. Pei et al., “Deepxplore: Automated whitebox testing of deep learning
systems,” in proceedings of the 26th Symposium on Operating Systems
Principles, 2017, pp. 1–18.

[27] N. Akhtar et al., “Threat of adversarial attacks on deep learning in
computer vision: A survey,” IEEE Access, vol. 6, 2018.

[28] R. Iyer et al., “Experimental analysis of computer system dependability,”
1993.

[29] “Driving dataset.” [Online]. Available: https://github.com/SullyChen/
driving-datasets

[30] S. Du, et al., “Self-driving car steering angle prediction based on image
recognition,” Department of Computer Science, Stanford University,
Tech. Rep. CS231-626, 2017.

[31] “comma.ai’s steering model.” [Online]. Available: https://github.com/
commaai/research

[32] https://github.com/aymericdamien/TensorFlow-Examples.
[33] D. P. Kingma et al., “Adam: A method for stochastic optimization,”

2014.
[34] T. Tieleman et al., “Lecture 6.5—RmsProp: Divide the gradient by a run-

ning average of its recent magnitude,” COURSERA: Neural Networks
for Machine Learning, 2012.


