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Robotic vehicles (RV) are increasing in adoption in many industrial sectors. RVs use auto-pilot software for perception and
navigation and rely on sensors and actuators for operating autonomously in the physical world. Control algorithms have been
used in RVs to minimize the effects of noisy sensors, prevent faulty actuator output, and recently, to detect attacks against
RVs. In this paper, we demonstrate the vulnerabilities in control-based intrusion detection techniques, and propose three
kinds of stealthy attacks that evade detection and disrupt RV missions. We also propose automated algorithms for performing
the attacks without requiring the attacker to expend significant effort, or to know specific details of the RV, thus making the
attacks applicable to a wide range of RVs. We demonstrate the attacks on eight RV systems including three real vehicles in
the presence of an Intrusion Detection System (IDS) using control-based techniques to monitor RV’s runtime behavior and
detect attacks. We find that the control-based techniques are incapable of detecting our stealthy attacks, and that the attacks
can have significant adverse impact on the RV’s mission (e.g., deviate it significantly from its target, or cause it to crash).
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1 INTRODUCTION
Robotic Vehicles (RVs) are cyber-physical systems (CPS) that operate autonomously leveraging closed-loop
feedback control mechanisms (e.g., PID controller [23]). Two prominent examples of such systems are Unmanned
Aerial Vehicles (UAVs), also known as drones) and Unmanned Ground Vehicles (UGVs), also known as rovers. Such
vehicles are utilized in a variety of industrial sectors (e.g., agriculture, surveillance, package delivery [6, 8, 58],
warehouse management [61]) and even critical missions such as space exploration [44]. Unfortunately, such
vehicles are not well protected, and are vulnerable to both physical and cyber attacks. Examples of such attacks
demonstrated in previous research are GPS spoofing [30, 64], gyroscope sensor tampering [60], attacks on vehicles’
braking system [59]. These attacks can cause significant damage to the RV, and cause it to fail in its mission.
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Because RVs inherently use control algorithms for minimizing sensor or actuator faults and for trajectory
planning [54], control-based techniques have been proposed to detect attacks. Control Invariants (CI) [15] and
Extended Kalman Filter (EKF) [9] are two such techniques that uses RV’s mission profile data (e.g., control inputs
and outputs) to extract invariants of the system and create a model that correlates between sensor inputs and
actuator outputs. Based on the current sensor inputs, CI and EKF models estimate both the next state and the
control output signal of the RV. The estimated values are used to monitor the RV’s runtime behaviour and flag
anomalous behaviour, thus detecting attacks.
In this paper, we highlight the vulnerability of control-based intrusion detection. We propose automated

techniques to launch attacks against RVs protected by CI and EKF techniques. Our main insight is that by design,
CI and EKF techniques have to tolerate some degree of deviation from the planned trajectory due to environmental
factors such as friction, wind or sensor noise, and hence have a certain threshold for flagging deviations as attack.
Further, we found that the invariants extracted by CI and EKF fail to accurately model RV’s runtime behavior.
Therefore, CI and EKF techniques set a large threshold in order to avoid false alarms. We propose an automated
process by which an attacker can learn the thresholds and the tolerances of each system for any arbitrary RV that
uses Proportional Integral Derivative (PID) control, the most commonly used controller [36], and consequently
perform targeted attacks against the RV. By controlling the deviation introduced and the timing of the attacks, we
show that the attacker can remain stealthy and not be detected by techniques such as CI and EKF. Furthermore,
though the deviations may be small, the consequences of the attacks are severe as they can be performed over
a prolonged period of time, and at a time and place of the attacker’s choosing. This makes them particularly
insidious when RVs are used in safety-critical and time-critical scenarios.
We propose three types of attacks on RVs that are undetectable by current control-based techniques.

(1) False data injection: We devise an automated approach through which the attacker can derive the control
state estimation model of RVs and reverse engineer it to obtain the detection threshold and monitoring
window used in the IDS. Exploiting the aforementioned threshold related imperfections, the attacker can
launch sensor and actuator tampering attacks such that the deviations in the control output are always
maintained under the detection threshold, i.e., a false data injection attack [37]. By performing such a
controlled false data injection over a period of time, the attacker will be able to significantly deviate the RV
from its original mission path.

(2) Artificial delay: We launch artificial delays into the system’s control execution process, which will affect
the timing behaviour of crucial system functions. We show that the attacker can inject intermittent delays
in the reception of the RVs gyroscopic sensor measurements, which will, in turn influence the estimation of
RV’s angular orientation while eluding detection. By launching stealthy, intermittent delays, the attacker
can adversely influence the RV’s performance and efficiency.

(3) Switch-mode attack: Finally, we identified that the invariants derived by CI and EKF fail to accurately model
the RV’s runtime behaviour when the RV switches modes (e.g., when a drone switches from steady flight
to landing), hence do not provide tight bounds. We exploit this weakness to launch another form of false
data injection attack on sensor and actuator signals, which is triggered upon the RV switching modes.

Prior work has focused on exploiting the vulnerabilities in communication channels, and attacks on the RV’s
sensors through noise injection [15, 59, 60] in the absence of any protection. In contrast, we consider a scenario
where the RV is protected by both CI and EKF technique, which makes the attacker’s job much more difficult.
Further, unlike prior work, we make minimal assumptions on the RV itself, and instead completely automate the
attack generation and learning process, without requiring any apriori knowledge of the system on the part of
the attacker (other than that the RV is using a PID control system). This makes our technique applicable to a
wide range of RVs. To the best of our knowledge, we are the first technique to automatically find attacks against the
control state estimation model of RVs without being detected by existing techniques, or targeting a specific type of RV.
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We make the following contributions in this paper:

(1) Demonstrate three types of stealthy attacks namely: false data injection, artificial delay, and switch mode
attacks against RVs in the presence of both CI and EKF attack detection techniques. The attacks can
significantly deviate the RVs from their missions trajectory, disrupt RV missions and even result in crashes
without being detected.

(2) Propose automated algorithms for launching the above three attacks against any arbitrary RV without
apriori knowledge of its internals. We derive the thresholds and states of the RVs, and the protection
techniques by repeated observations, and learn the control models used for state estimation.

(3) Implement the attacks on eight RV systems based on Ardupilot, PX4 and Paparazzi auto-pilot platform
among which three are real RV systems. We also use simulation platforms to demonstrate the attacks on a
wider variety of missions and trajectories.

(4) We find that attackers can learn the thresholds, monitoring windows, and states of the RVs using a modest
amount of effort (typically 5 to 7 missions). We further show that the stealthy attacks can have severe
repercussions such as deviating a drone by more than 160 meters from its trajectory (for a mission distance
of 5 Kilometers), and deteriorating the efficiency and performance of rovers and drones by increasing
their mission duration by more than 65% and 30% respectively. If launched strategically at vulnerable
states, the stealthy attacks can also cause a drone to crash while landing, or cause other undesirable effects
(e.g., ignoring user commands). Finally, we show that the attacks can be generalized across different RVs.

2 BACKGROUND
We first discuss the architecture and control processes of RVs, followed by a description of its modes of operation,
and how attacks propagate in RV systems. Then, we present the control-based attack detection mechanisms
namely Control Invariants [15] and Extended Kalman Filter [9] (EKF). Finally, we present the attack model.

2.1 Robotic Vehicle Control
At a high level, the RV system consists of three components: (i) Flight controller software e.g., Ardupilot [7], PX4
[63] or Paparazzi [62] that provides high-level functions to enable complex flight modes as well as other control
functionalities, (ii) Controller hardware such as Pixhawk, Bebop or Navio2 that serves a centralized interface to
command and control low-level hardware, (iii) Low-level hardware consisting of sensors, motors, propellers, etc.
An RV system uses a number of sensors (e.g., barometer, gyroscope, accelerometer, magnetometer, and GPS)

for navigation and perception. The raw sensor data captures the physical state of the vehicle in the environment
(e.g., angular and linear position), and aids in calculating the actuator signals (e.g., rotors speed, steering) for
positioning the vehicle in the next state. RVs use Proportional-Integral-Differential (PID) control algorithm to
determine the actuator signals based on error and a weighted sum of the propositional (P), integral (I), and
derivative (D) terms. Typically, in the case of drones or rovers, a PID controller is used for position control
(e.g., estimating altitude, latitude, longitude), and attitude control (e.g., estimating yaw, roll, pitch). Figure 1 (based
on ArduPilot [7]) shows an example illustrating the PID controller used in path planning along each axis.
The position control is done using a P controller to convert the target position error (difference between the

target position and actual position) into target velocity, followed by a PID controller to derive the target angle
(roll, pitch, yaw). Similarly, the target angles are given as input to the attitude controller, and using the PID
control functions, a high-level motor command is calculated. A PID controller can be described by the following
formula [15]:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ )dτ + Kd

de(t)
dt
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Fig. 1. PID Control operations in RVs: Position Control and Attitude Control.

P is the proportional term, which aims to adjust the control signal (e.g., the rotor currents) proportional to the
error; I is the integral term, which is for tracing the history of the error. It compensates for P ’s inability to reduce
the error in the previous iterations. D is the derivative term to avoid stark change in the error.

2.2 Modes of Operation in RV Mission
For a given flight path, an RV transitions through a series of high level states typically referred as modes of
operation. In the case of a drone for instance, when a mission starts, the drone is armed at its home location.
When the Takeoff mode is triggered, the drone takes off vertically to attain a certain height. Subsequently, a
series of modes can be performed such as Loiter mode, Waypoint mode, which will prompt the drone to fly
autonomously to a pre-defined location, and Return to launch (RTL) mode, which will prompt the drone to return
to home. The Land mode enables the drone to drop elevation when it arrives at the destination. Figure 2 (based
on ArduPilot SITL [7]) shows a state diagram of the various mode of operation commonly deployed in a drone.
The change in mode of operation causes a change in the angular orientation, control input and actuator signals.
The PID control algorithm plays a crucial role in balancing the RVs, and ensuring smooth flight when a dynamic
mode change is triggered during an RV mission.

Fig. 2. Modes of operation in RVs.

2.3 Attacks Against RVs
As RVs inherently rely on sensor measurements for actuation, one of the most successful ways of triggering
attacks against RVs is through sensor tampering or spoofing [30, 60]. Attackers often launch sensor tampering
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attacks by injecting false data (an arbitrary bias value) to raw sensor measurements through acoustic noise
injection [37, 60]. False data injection attack (FDI) can be launched to manipulate both sensor and actuator signals.
When an FDI attack is launched, the sensor signal u is replaced with an manipulated signal ua = u + bias , where
an arbitrary bias value is selected so that ua causes significant fluctuations in RV’s control operations. A similar
FDI attack can be launched to manipulate actuator signals y.
Another way of launching attacks against RVs is by compromising the inertial measurement unit (IMU) to

trigger artificial delays in the control processes or a denial of service [67]. When an artificial delay attack is
launched at time ti , the receptors will not receive the recent sensor signals ui .....un . Such an obstruction will
prevent the RV system from performing critical control operations. These sensor tampering and artificial delay
attacks cannot be prevented through traditional software security measures such as encrypted communication
and memory isolation [15]. Real-time invariant analysis has been proven effective in detecting such attacks
[1, 3, 5, 11]. As RV systems use control algorithms for position and attitude control, control-based invariant
analysis techniques have been proposed for securing RVs [15, 38].

In this paper, we build on the ideas of FDI and artificial delay injection attacks to design novel stealthy attacks
against RVs, which are undetected by invariant analysis techniques using control properties.

2.4 Control Invariants
The control invariant (CI) approach [15] models the physical dynamics of an RV and leverages its control
properties to derive invariants (e.g., control outputs). The control invariants are determined by two aspects
namely, vehicle dynamics, and the underlying control algorithm. For a given RV, the CI model captures the
system’s sensor inputs, based on its current state to estimate the systems’ control outputs. The approach then
derives invariants using the following state estimation equations.

x ′(t) = Ax + Bu (1)

y(t) = Cx + Du (2)

Where x(t) is the current state, and u(t) is the control input. A,B,C,D are state space matrices determined
through system identification [40]. The above equations determine the next state x ′(t) and output y(t) of the
system based on the current state and control input signal. The CI model uses a stateful error analysis, where it
accumulates the error (deviation) between the estimated output and the actual output in a pre-defined monitoring
window. When the accumulated error exceeds a pre-defined threshold, the CI technique raises an alert e.g., if the
error for roll angle (error = |y(t)est − y(t)act |) is larger than 91 degrees (threshold) for a window of 2.6 seconds.

2.5 Extended Kalman Filter
Extended Kalman Filter [9] is commonly used in RVs to fuse multiple sensor measurements together to provide
an optimal estimate of the position and/or orientation. For example, EKF fuses accelerometer, gyroscope, GPS and
magnetometer measurements with a velocity estimate to estimate the UAV’s yaw, pitch and roll. The estimate of
the system’s state is given by the following equation:

x ′(t) = Ax + Bu + K(y(t) −C(Ax + Bu)) (3)

Where K is the steady-state Kalman gain, and A,B,C are the state space matrices. An IDS based on EKF uses the
residual analysis technique to detect sensors and actuator attacks. The difference between the real-time sensor
measurement and the estimate of the sensor measurement is the residual vector, which is defined as:

r (t) = y(t) −C(Ax + Bu) (4)
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Where r (t) is residual at each time-instant t . An IDS based on EKF compares if the residual r (t) is larger than a
pre-defined threshold for a certain monitoring window, and raises an alarm when such anomalous behaviour is
observed [39].

3 ATTACK MODEL
The goal of the attacker is to perform stealthy attacks and prompt deviations in the RV’s mission by manipulating
sensor and actuator signals in the presence of an IDS using the CI and EKF techniques, and modify the timing
behaviour of the system events or control events of the RV and adversely influence its performance and efficiency.
Stealthy means the attack does not cause any immediate unexpected behaviour. For instance, a stealthy attack
manipulates the sensor measurements and actuator signals in a controlled manner such that the deviations are
within the expected thresholds during an RV mission. When performed over a prolonged period, the attack
deviates the RV from its defined mission path and/or adversely affects its performance and efficiency.
Our Systems Under Test (SUT) are quadcopters and ground rovers. There are two attack vectors through

which the attacker can perform the stealthy attacks, namely (i) malicious code injection, and (ii) acoustic noise
injection or sensor spoofing. The former has to be done via the GCS as RVs today only accept commands from it.
The latter can be done directly on the RV provided it is in physical proximity. With the increase in adoption of RVs
in industrial use cases, it is expected that future RVs (e.g., delivery drones) will operate in a distributed manner
and communicate with each other to complete tasks efficiently [13, 61]. In this case, it is possible for attackers to
use a compromised RV to send malicious packets to other RVs.
We assume that the attacker has the following capabilities:
• Manipulate the sensor measurements (e.g., GPS, gyroscope, accelerometer) through acoustic noise injection.
• Snoop on the control inputs and outputs and derive the RV’s state estimation model (i.e., the state-space
matrices).
• Access the application binary that runs on board the RV systems.
• Replace the dynamically linked system libraries in the RV’s software stack through code injection [4, 27].
• Perform a coordinated attack by tampering multiple sensor measurements at once.

However, we assume that the attacker cannot tamper with the firmware, does not have root access to the
Operating System (OS), and cannot delete system logs. Furthermore, the attacker does not know the physical
properties of the RV, such as the detailed specifications of its shape. In addition, the low-level control parameters
(e.g., how the vehicle reacts to control signals) and the commands from the auto-navigation system (e.g., mission
semantics of the vehicle) are not known to the attacker. However, the attacker does need to know that the IDS
uses CI and/or EKF models to derive the invariants - this is so that he/she can modulate the attack accordingly (if
not, the attacker can simply assume both techniques are deployed together).

4 LIMITATIONS IN EXISTING METHODS AND STEALTHY ATTACKS
This section describes the limitations in CI and EKF techniques, and how we exploit those limitations to design
stealthy attacks. Then, we discuss a few attack scenarios to analyze the repercussions of such attacks when
targeted at RVs deployed in industrial use-cases. Finally, we describe the main challenge we address.

4.1 Stealthy Attacks
As mentioned, the CI and EKF techniques derive invariants leveraging the control properties, and estimate
the vehicles’ position and angular orientation. An IDS based on CI and EKF models will analyze the error
(i.e., deviation) between the real-time values and the estimated values. If the error is substantial for a pre-defined
monitoring window (tw ), it is treated as an anomaly and an alarm is raised. However, RVs may incur natural
errors caused due to environmental factors. Therefore, to avoid false positives due to natural errors, and to
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accommodate overshooting of the RV, the IDS accumulates errors in a monitoring window, and compares the
aggregated error with a pre-defined threshold. Therefore, instead of performing direct comparison between the
real-time control outputs and the predicted control outputs, the detection techniques perform a threshold-based
(τ ) comparison as shown below.

IDS(tw ) =

{
1, i f

∑tj
ti |Vpredicted −Vr ealt ime |n > τ

0, otherwise
(5)

Attackers can exploit the aforementioned attack detection principle and successfully perform stealthy FDI
attacks on sensor and actuator signals in three ways as follows.

First, the error values under the threshold limit for a certain monitoring window are acceptable, and will not
be reported as anomalies. Assuming the attacker figures out the threshold, he/she can trigger stealthy attacks
by injecting false data fi to the sensor signal u in a controlled manner to replace it by ua : ua = u + fi . Such
manipulations in sensor signals will result in fluctuations in actuator signal y (shown in Equation 6) causing the
RV to gradually deviate from its mission trajectory.

yai = yi + (τ − |Vpredicted −Vr ealt ime |i ) (6)

The false data fi is calculated such that ua does not cause major deviations in actuator signal y. By performing
such an attack for a long period of time, the attacker will be able to cause a substantial deviation. Because the
deviation d = yai − yi is within the accepted threshold τ (d < τ ), the control-based techniques (CI and EKF) will
not be able to detect it.
Second, because the detection techniques employ a fixed monitoring window for threshold comparison, an

attacker can inject artificial delays between time ti and tj , which will obstruct the system from receiving the
current set of sensor measurements ui ....uj . Such delays can stop the system for a few seconds, and prevent
the system from performing critical operations such as mode changes. The attacker can inject the delay attacks
intermittently to avoid accumulating large errors, which might trigger the IDS.

Finally, we found that the invariants derived using CI and EKF are insufficient in providing a close estimate of
target angles when the RV switches modes (e.g., when the drone is commanded to land after flying at a fixed
height). In other words, the difference between the runtime values and the estimated values becomes larger when
the RV switches to Land mode fromWaypoint mode. Therefore, the detection techniques will have to employ a
larger threshold to avoid false alarms. This enables the attacker to inject large false data fsm into u or y signals
such that the deviation d = d + fsm : d < τ , without triggering alarms, and abruptly destabilizing the RV.

4.2 Attack Scenarios
Each of the stealthy attacks presented in this paper exploits a weakness in the CI/EKF techniques identified in the
previous section. In this section, we discuss the impact of the attacks when performed against RVs in industrial
scenarios. Table 1 shows the attackers’ goal, the type of attack to achieve the goals, and how the attack would
affect the RVs operations in an industrial use-case.
False Data Injection (FDI) This attack enables the attacker to mutate the sensor measurements to a value

desirable for them. For instance, an attacker may inject false readings to the gyroscopic sensor measurements,
which would make the drone unstable. Prior work [15, 60] simulated similar attacks using acoustic noise signals
to tamper with the sensors of an RV, causing a major deviation in the intended path of the RV. However, we are
interested in performing more subtle mutations to sensor readings. The goal is to simulate subtle and minor
deviations in a controlled manner for an extended time period, and to maintain the deviation just under the
threshold pre-defined by an IDS using CI and EKF. Instead of causing a large deviation (e.g., 60 degrees) at once
(which might trigger the IDS and result in the attack being detected), the attacker can intermittently inject small
false data values to the sensor readings. This will influence the control operations causing a difference in the
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Table 1. Attacker’s goal, types of attack and its consequences.

Attack Goal Scenarios Attack
Type

Consequences

Deviate the RV to a desired
location

Deviating a delivery drone False data
injection

Drone may deliver a package at wrong location

Influence RVs performance Disrupting productivity of
warehouse rovers

Artificial
delay

Rovers may not follow the right organization pattern and
products will be stored randomly.

Damage, crash or cause
major disruptions

Crash a drone while landing Switch
mode

Payload items could be damaged

drone’s position and angular orientation. By performing such minor deviations for a prolonged period of time,
the attacker will be able to divert the drone to his/her desired location.
Artificial DelayWith this attack, the attacker influences the timing behaviour of the system events or the

controller events by injecting artificial delays. Such artificial delays can allow attackers to change the timing of
important system actions (e.g., change in mode of operation), delay essential API calls, or cause other controller
functionality to be suppressed. For instance, autonomous rovers are increasingly deployed in warehouses to
facilitate inventory management and packaging. These rovers receive real-time commands to pick up or drop
a package at a given location in the warehouse area. With artificial delay attacks, the attacker can cause an
RV to receive a particular command at a delayed time. However, if the RV receives the sensor measurements
of a previous state in the mission, the difference between the estimated behavior and observed behaviour for
a pre-defined motioning window will increase. This may potentially trigger an alert by the IDS. Therefore, to
maintain stealthiness, the attacker will need to inject such delays intermittently and not perpetually.
Switch Mode (SM) The SM attack is a form of FDI launched at highly vulnerable states in the RV’s mission.

Knowing the current mode of operation the attacker can inject malicious code, which is triggered when the RV
switches its mode of operation. For instance, when a drone switches to Land mode, a malicious code snippet will
overwrite the actuator signals. This will prompt the drone to gain elevation instead of landing, or increase the
rotor speed causing the drone to land harder than is safe, potentially resulting in a crash. When such an attack is
launched against delivery drones, it may damage the packages, or hurt the recipients of the package. Because the
attack will not cause the monitoring parameters to exceed the pre-defined threshold, the IDS will not be able to
detect it.

4.3 Challenges
The main challenge for the attacker is to launch attacks against RVs while remaining undetected by the CI
and EKF techniques (if the techniques are deployed). Therefore, to remain undetected, the attacker needs to (1)
learn the system parameters such as current state, control input, control output, etc., (2) derive the detection
parameters such as monitoring windows and thresholds set by CI and EKF techniques, and (3) derive techniques
to manipulate the sensor readings or inject delays by just the right amounts, and at the right times to remain
stealthy, even while achieving his/her aims. This is the challenge we address in this paper.

5 APPROACH
In this section, we describe the approach for performing each of our stealthy attacks. First, we describe the steps
necessary for preparing and performing the stealthy attacks. Then, we present the algorithms for executing the
stealthy attacks against RVs.
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5.1 Attack Preparation
Figure 3 presents an overview of the common steps required for carrying out each attack. This section describes
the steps in detail.

Fig. 3. Attack Overview.

Data Collection: The first step in attack preparation is to collect mission profile data of the RV. The attacker
can either collect mission profile data from a real RV, or he/she can simulate the missions for the RV to achieve a
realistic mission profile. The time series data of the target state x ′(t), current state x(t), control input u(t), control
output y(t) parameters will be used to derive the state estimation model (i.e., the state space matrices). Ideally, the
attacker will collect traces from two control operations namely, position control and attitude control (Figure 4).
The Position Controller takes the target position as input, and applies the PID control algorithm to calculate the
target angles along X , Y , and Z axis). The actual position is looped back as feedback to the controller. The Attitude
Controller takes the target angle as input, and calculates the motor outputs (rotation speed). The actual angles are
looped back to the controller. The attacker will record the parameters pertaining to the above mentioned control
operations (e.g., target velocity and actual velocity along x ,y, z axis, target acceleration, target and actual angles,
angular velocity and angular rate). Ideally, the attacker will collect mission profile data from different mission
trajectories, covering multiple modes of operation to generate an accurate state estimation model. However, the
data does not have to be comprehensive to derive the state estimation model for RVs [15].

Fig. 4. Position and Attitude Controllers in RV.

Control State Estimation Model: Both CI and EKF derive invariants based on the vehicle dynamics and
the underlying control algorithm (typically PID control in the case of RVs). The invariant generation process
heavily relies on the state estimation model as shown in Equations 1,2, 3 and 4. The attacker’s goal is to derive
the unknown coefficients for solving the aforementioned equations. The mission profile data collected in the
above steps can be used to derive the state estimation model (i.e., state space matrices). To derive the A,B,C,D
state space matrices, the attacker can use system identification (SI) [40], which is a process to develop a dynamic

, Vol. 1, No. 1, Article . Publication date: September 2020.



10 • Pritam Dash et al.

model of the system using the system’s control input and control output data. From the state space matrices, the
attacker can derive the Kalman gain K . The procedure is explained in Appendix A.

Malicious Libraries Typically, the RV’s software uses two broad set of libraries for i) control operations
such as PID control, attitude estimation (AHRS), and motor mixing etc. ii) sensor operations such as performing
inertial measurements, GPS interface, optical interface etc. The APIs are specific to each class of RVs, but do
not vary within a class (typically distributed as shared libraries). For example, the Autopilot software stack,
which is deployed on many RVs, has a common set of shared libraries. One of the ways the attacker can perform
the stealthy attacks is by replacing the original shared libraries with malicious ones. The malicious libraries
will contain the attack code snippets. Once the unknown coefficients (A,B,C,D,and K) for solving the control
equations are derived, the attacker will package themwith the malicious library to perform threshold comparisons
in runtime.
Malicious Wrapper: The attacker will design a malicious wrapper which will overwrite the original control

and sensor libraries with malicious libraries by exploiting the dynamic linking feature [4]. When the RV software
makes an API call to the control or sensor libraries, the malicious libraries will be called.

The attacker can also inject acoustic noise at the resonant frequency [60] to achieve the same results. However,
because of the difficulties associated with such noise injection (e.g., the noise source has to be in close proximity
of the RV, and the impact of the attack is unknown) it will be harder to perform the attacks in realistic settings.
Our approach is similar to that of Choi et al.[15], who also simulated noise injection through a piece of attack
code.

5.2 Attack Execution
False Data Injection (FDI) To perform an FDI attack, the attacker will need to derive the threshold and the
monitoring window for the CI and EKF models as follows. i) CI model - To derive the monitoring window, the
attacker can use the time series data collected in the steps above to figure out the maximum temporal deviation
between the observed control output sequences and the corresponding estimated control output sequences via a
sequence alignment algorithm (e.g., [57]). Once the window is obtained, the attacker can calculate the accumulated
error in this window and select the accumulated value as the threshold. This is similar to the dynamic time
wrapping technique used in Choi et al.[15]. ii) Leveraging EKF’s state correction - EKF accumulates the error
between the predicted angular orientation and the measurements of accelerometer and gyroscope in a large
matrix called State Covariance Matrix. When the error is larger than the threshold, it applies a filter, which is
referred to as State Correction, and the state covariance matrix is updated. The attacker can perform experiments
on a simulator by injecting noisy sensor measurements to observe the time interval at which the state covariance
matrix is updated. This time interval is the most viable monitoring window that the state estimation model based
IDS can employ, and the accumulated error in this monitoring window will be the threshold. To remain stealthy,
the attacker will need to manipulate the control input parameters such that the deviations in the control output
signal are within the detection threshold of both CI and EKF.
Algorithm 1 shows the algorithm to launch FDI attack on the RV’s position controller by manipulating the

angular orientation measurements. The function falseDataInjectionwill get triggered when the RV’s software
components make an API call to the malicious libraries. The pre-computed state space matrices and the threshold
values will be packaged with the malicious library (Lines 2 to 5). Based on the error threshold, the attacker will
derive a value f for a target sensor. The duration of false data injection tattack is based on the monitoring window.
Lines 10 to 13 manipulate the control input u(t) by injecting false data f in the sensor measurements. Lines 18 to
24 manipulate the value of f when the deviation approaches the detection threshold in order to remain stealthy.
Since the detection procedure resets the accumulated error (Line 25) for each monitoring window, the attack will
not be detected by the CI and EKF techniques.
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Algorithm 1: FDI in sensor readings
1 Function FalseDataInjection():
2 A, B , C , D : pre-calculated state-space matrices.
3 K : pre-calculated Kalman gain.
4 TCI : pre-defined threshold for CI.
5 TEKF : pre-defined threshold for EKF.
6 tattack : duration of attack.
7 f : false data
8 while (tattack ) do
9 TAnдle ←− Tarдet anдle ;

10 AAnдle ←− Actual anдle ; (read data from sensor)
11 AAnдle ←− AAnдle + f ;
12 attitude tarдetX = Aanдle −Tanдle ;
13 u = attitude tarдetX ;
14 Xn = A ∗ x + B ∗ u ;
15 YRoll = C ∗ x + D ∗ u ;
16 R = YAnдle −C ∗ Xn ;
17 d = |YAnдle −TAnдle |;
18 errorCI = errorCI + d ;
19 errorEKF = errorEKF + R;
20 dsum = dsum + d
21 if dsum > TCI and dsum > TEKF then
22 f = 0;
23 end
24 end
25 errorCI , errorEKF , dsum = 0;
26 return TAnдle ;

Artificial Delay The attacker can trigger the artificial delay (AD) attack by including a code snippet in the mali-
cious library called ArtificialDelay, which when triggered will perform certain resource intensive operations.
Such delays will obstruct other system calls and control operation, thereby disrupting the timing behaviour of
the systems. However, if the delay is triggered for a long time period, the error accumulation in the invariant
analysis will increase and the IDS might raise an alarm. To remain stealthy under such an IDS, the attacker can
use the monitoring window found in the above steps as a threshold (tAD ) and not allow delays longer than this
threshold. By triggering the snippet ArtificialDelay intermittently and under the threshold TAD , the attacker
will be able to bypass the detection mechanism. The function Arti f icialDelay in Algorithm 2 shows an example
of executing resource intensive operation (e.g., infinite recursion, computationally intensive calculations etc.) to
cause delays. The duration of delays to be injected tAD is derived based on the monitoring window (tw ) used in
the invariant analysis model (CI, EKF) as shown in Line 4.
Switch Mode The switch mode (SM) attack is a form of FDI attack launched at a few, highly vulnerable states
of an RV mission. To execute this attack, in addition to the detection threshold and the monitoring window as
per the CI and EKF techniques, the attacker will have to monitor the mode of operations of the RV. Algorithm 3
shows an example of switch mode (SM) attack launched when the RV changes its operations to LAND mode
(Line 11). The attacker can also launch such attacks at other mode transitions (e.g., from Takeoff toWaypoint ).
Similar to the FDI attack, here the attacker will derive a value fsm , which when injected to the motor thrust value
will disrupt the RV’s behaviour (Line 23). Further, to remain stealthy this attack will be carried out for a specific
attack duration tattack , which is derived based on the monitoring window. In this case, as the threshold is found
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Algorithm 2: Artificial Delay Attack
1 Function ArtificialDelay():
2 tNow : current system time.
3 tw : monitoring window.
4 tAD = tNow + tw ;
5 while true do
6 if tAD < tNow then
7 ArtificialDelay();
8 else
9 break;

10 end
11 end
12 tAD = Null;
13 return

Algorithm 3: Switch mode attack - influencing actuator signals
1 Function SwitchModeAttack():
2 A, B , C , D : pre-calculated state-space matrices.
3 K : pre-calculated Kalman gain.
4 TCI : pre-defined threshold for CI.
5 TEKF : pre-defined threshold for EKF.
6 tattack : duration of attack;
7 fsm : false data;
8 while i<num-motors do
9 Tmotor = дetPWMOutput (i);

10 Mode = дetCurrentMode();
11 if Mode = LAND then
12 while (tattack ) do
13 Xn = A ∗ x + B ∗ u ;
14 Ymotor = C ∗ x + D ∗ u ;
15 R = Ymotor −C ∗ Xn ;
16 d = |Ymotor −Tmotor |;
17 errorCI = errorCI + d ;
18 errorEKF = errorEKF + R;
19 dsum = dsum + d
20 if dsum > TCI or dsum > TEKF then
21 fsm = 0;
22 end
23 motor [i] = thrustToPWM () + fsm ;
24 end
25 else
26 motor [i] = thrustToPWM ();
27 end
28 end
29 end

to be larger than normal, the attacker can inject larger false values which may result in severe consequences in a
short time duration, e.g., causing a drone to crash.
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6 EXPERIMENTS AND EVALUATION
In this section, we discuss the experimental setup, followed by the research questions (RQs) we ask. Then, we
present the results of the experiments to answer the RQs.

(a) Pixhawk Drone (b) Aion R1 Rover (c) Sky-viper Drone

Fig. 5. Real RV Systems used for Experiments.

6.1 Experimental Setup
To demonstrate the stealthy attacks, we use eight different RV systems among which three are real RVs shown
in Figure 5. The other five systems are on simulation platforms. For real RVs, we use (1) Pixhawk based DIY
drone [43] (henceforth called Pixhawk drone), (2) an Aion R1 ground rover [55] (henceforth called R1 rover),
and (3) Sky Viper Journey drone [56] (henceforth called Sky-viper drone) for real RVs. For the simulations, we
use (4) Ardupilot’s quadcopter (henceforth called ArduCopter), (5) Ardupilot’s ground rover (henceforth called
ArduRover), (6) PX4 Solo software in the loop (SITL) (henceforth called PX4 Solo) [63], (7) PX4 Rover SITL and (8)
Paparazzi UAV [62]. We run the simulators on an Ubuntu 16.0 64-bit machine with Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz processor and 8 GB RAM.
Software We use three different auto-pilot software stacks namely: ArduPilot [7], PX4 [63], and Paparazzi [62].
All the three auto-pilot software stacks use PID controller for position and attitude control. However, they vary
in their internal architecture for handling sensor measurements and control functions. For vehicle simulation, we
use APM SITL [7], JSMSim [31], and Gazebo [52] platforms.
Hardware Both the Pixhawk drone and R1 rover (Figure 5) used in our experiments are based on the Pixhawk
platform [43]. Pixhawk is an ARM Cortex based all-in-one hardware platform, which combines flight management
unit (FMU) controller, I/O, sensors and memory in a single board. It runs NuttX, which is a Unix-based real-time
operating system, on a 32-bit Cortex processor and 256 KB RAM [68]. The Sky-viper drone is based on STM32
processor and uses an IMU including 3-axis accelerometer, gyro and barometer. Note that our attacks are not tied
to a specific hardware or software platform.
Attack Setup We performed 20 missions on both the simulations and the real vehicles, and collected the
time series data of control input u(t), system state x(t), and the control output y(t). The time series data was
collected from both the position control and attitude control operations of the RV (Figure 4) because the sensor
manipulations are targeted at both the control operations. These data sets were used to derive the state estimation
model1.

To perform the attacks, we designed a set of malicious libraries for the following control libraries of the ArduPi-
lot software suite: AHRS, AttitideControl, and PositionControl. We overwrote the environment variable
(LD_LIBRARY_PATH) in the .bashrc file to point to the malicious libraries instead of the originals - this technique
has been used in prior work as well [4]2. This will load the malicious libraries instead of the original ones.
1All the code and data-sets used in this paper can be found at https://github.com/DependableSystemsLab/stealthy-attacks
2A similar effect can be achieved by executing a Trojan program or shell code, for example.
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Henceforth, when the RV software components call functions defined in the above libraries, the corresponding
function in the malicious library will be called (as the malicious libraries have a function with the same name as
defined in the original library). The malicious libraries can stay dormant until the RV is deployed on a critical
mission, at which point, they can get triggered.

6.2 ResearchQuestions
RQ1. How much effort does the attacker need to expend to derive the state estimation model?
RQ2. What are the impacts of the stealthy attacks on the subject RVs?
RQ3. How effective are the attacks in achieving the attacker’s objectives?

6.3 Results
In this section, we present the results of the stealthy attacks experiments performed on the subject RVs to address
the above RQs.
RQ1: Attacker’s effort The first set of experiments aim to quantify the effort required on the attacker’s part
in deriving an accurate state estimation model for a subject RV. We divided the mission data into two sets: i)
Model extraction set - used to derive the state estimation model (15 missions for each subject RV, both simulation
and real vehicles), and ii) Model testing set - used to test the accuracy of the obtained state estimation model (5
missions for each subject RV, both simulation and real vehicles).

We followed an iterative approach in deriving the state estimation model and evaluating its accuracy. In the first
iteration, we randomly picked 5 mission profiles from the model extraction set and using system identification
[40, 41], we derived theA,B,C,D matrices and the Kalman gainK . Following Equations 1, 2, 3, and 4, we estimated
the system output (e.g., roll, pitch, yaw) for missions in the model testing set. Then we analyzed the accuracy of
the state estimation model by comparing the estimated and the realtime system outputs.

For each subsequent iteration, we added 1 more mission profile data from the model extraction set, derived an
updated model, and performed the above analysis to identify if the accuracy of the state estimation model has
converged. From this experiment, we found that all model estimated outputs converged to the real-time outputs
by the third iteration. For some subject RVs, the convergence occurred after the first iteration. Overall, across all
the RVs, the model converged with just 5 to 7 mission data, and hence the attacker can derive an accurate state
estimation model with modest effort.

Even in cases where the model converged, for some states of the RV’s mission path, the state estimation model
failed to provide precise estimates. Figure 6 shows an example of the Pixhawk drone, where the model did not
converge. We have divided the graph into 4 regions: 1, 2, 3, and 4, based on the different modes of the RV’s
mission. As can be seen in Figure 6a, the CI model estimated output converges to the realtime outputs in Regions
2 and 3, but not in Regions 1 and 4. For a different mission, Figure 6b shows that EKF model estimated output are
very close to the real outputs in Regions 1 and 4, but not in Regions 2 and 3. The RVs realtime control outputs
relies on the realtime sensor measurements (control input u(t)) and the P , I ,D gains (Section 2). Based on the
RV’s trajectory and its current mode of operation, the sensor measurements may incur additional noise. The
PID control functions may consequently adjust the gain param to mitigate the effects of the noise, which will
influence the realtime control outputs. However, the model estimated control outputs are not updated as per the
runtime PID parameter adjustments. Therefore, it is difficult to achieve high convergence between the model
estimated and the real-time values with system identification based techniques such as CI and EKF. Therefore,
both CI and EKF techniques are forced to employ a high detection threshold in order to avoid false alarms.
RQ2: Impact of the stealthy attacks In the second set of experiments, we performed the stealthy attacks in
the presence of an IDS using the CI and EKF models respectively. Before performing the attacks, the attacker will
have to derive the detection threshold and the monitoring window. For the CI model, we followed the dynamic
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(a) CI model (b) EKF model

Fig. 6. Control-based Models - Observed vs Estimated Outputs.

time wrapping method (explained in Section 5), to derive the monitoring window. To identify the monitoring
window of the EKF model, we performed experiments in each simulation platforms by injecting small amounts of
noise into the sensor measurements, and observing the intervals at which the state covariance matrix is updated
(explained in Section 5). Then, we calculated the most viable thresholds CI-based or EKF-based IDS can employ
based on the error accumulated in the monitoring windows. The detection thresholds and monitoring windows
derived for all the subject RVs are presented in Table 3.
Table 3 also shows the impact of the attacks on the subject RVs. The results shown in the table are based

on data from 5 missions, and consist of the average values of the attack’s outcomes (deviations, delays) in the
presence of both CI-based IDS and EKF-based IDS. Our results show that the thresholds set by CI and EKF model
allow a considerable margin for stealthy attacks to be launched. The attacks cause substantial deviation in the
RVs trajectory (deviation of 8 to 15 m for a mission distance of 35-50 m), adversely influence their efficiency by
increasing the mission duration by 30% to 68%, and even result in crashes when timed during landing. We discuss
a few examples of the attacks.

False Data Injection (FDI): For all the subject vehicles, we injected false data as per Algorithm 1 to influence the
position and attitude controller of the RVs, which in turn manipulates the actuator outputs, thereby deviating the
RV from its trajectory. We inject false data on GPS and gyroscope measurements, which influence the position
control outputs (yaw, roll, pitch angles) and attitude control outputs (thrust to PWM) respectively.

Figure 7 shows how the FDI attack manipulates the RV’s Euler angles. The injected false data f (discussed in
Section 4) modifies the Euler angles in the range 0 − 45 degrees intermittently. The intermittent and controlled
FDI prevents accumulation of large error within the monitoring windows, thereby bypassing the CI and EKF
techniques, as it is within the thresholds used by them.
Table 3 shows the deviations caused by FDI attack for all the subject RVs. As can be seen in the table, for the

Pixhawk drone running ArduCopter auto-pilot, the average deviation caused by FDI attack is 11 m for a mission
distance of 50 m (video can be found at [49]). When running PX4 auto-pilot, the deviations increase to 12.5 m.
For the same mission, the average deviation for the Sky-viper drone is 15 m. On the other hand, the FDI attack
deviated the R1 rover by 11.2 m from its defined destination (for a mission distance of 35 m). Further, on many
occasions, the FDI attack prompted the R1 rover to follow arbitrary paths (i.e., non-deterministic paths) such as
turning backwards, or causing the RV to deviate significantly from the defined straight line mission path.
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As it is logistically difficult to perform experiments on real vehicles with large mission duration and distance,
we instead perform detailed analysis of this attack on the simulator by increasing the mission distance (from
100m to 5000m). We found that the deviation increases almost linearly with mission distance. For example, we
found that for a mission distance of 5000 m, the FDI attack can deviate the drone by as much as 160 meters.

(a) Aion R1 Rover
(b) Pixhawk Drone

Fig. 7. FDI attacks on subject RVs.

Artificial Delay: The artificial delay attacks were also launched intermittently, and the duration of the delay
was lower than the monitoring window duration found above. For a given monitoring window, we injected
delays in the vehicles’ position and attitude control operations. Such an attack will prevent the actuator from
receiving the correct outputs and commands based on the recent sensor measurements. We found that these
attacks were more disruptive for the rovers than the drones, both in the real world and in simulations (video can
be found at [48]). As shown in Table 3, the attack increases the mission time of Pixhawk drone, Sky-viper drone
and R1 rover by 30%, 35% and 65% respectively.
Switch Mode (SM): We only applied the SM attack on drones (both real and simulated), as the rovers used in

our experiments only had a few operational modes, and hence did not experience many mode transitions. As
we discussed above (Figure 6), the model estimated values and the real-time values do not converge for all of
the modes, and hence we posit that the detection threshold should accommodate large offsets to prevent false
alarms. We found that for the Pixhawk drone and the Sky-viper drone, the offset was as large as 14 degrees for
both CI and EKF models. This enabled us to inject large false values into the sensor measurements during mode
switching which resulted in major disruptions.

Figure 8 shows the roll angle predictions of CI and EKF models and how the large faults manipulates the roll
angles when an SM attack is launched against the Sky-viper drone. Though the manipulations caused by SM
attack are larger compared to the FDI attack, the large thresholds (shown in Table 3) set by CI and EKF provides
enough room for manipulation without triggering alarms.
We also observed many instances of the drones crashing during the SM attacks across a wide range of

trajectories, mission distances and mission types (shown in Table 2). Further, when the SM attack was launched
during landing, it resulted in crashes more often in the case of the Sky-viper drone than the Pixhawk drone. We
believe this is because Sky-viper is a very light weight drone with six axis rotation capabilities (its weight is only
150 g while the Pixhawk drone weighs nearly 2000 g). Hence, the SM attack which triggers large manipulations
in sensor measurements could drastically destabilize the Sky-viper drone, but not the Pixhawk drone.
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Fig. 8. Switch Mode Attack against Sky-viper Drone.

Table 2. Results of Switch Mode Attack against RVs

RV systems No. of missions Mission Distance (meters) SM Attack Target No. of crashes
Pixhawk/ArduCopter 5 50 Land 2
Pixhawk/PX4 5 50 Land 2
Sky-viper 5 50 Land 4
ArduCopter 10 50 to 5000 Takeoff and Land 7
PX4 Solo 10 50 to 5000 Takeoff and Land 9
Paparazzi UAV 10 50 to 5000 Takeoff and Land 8

RQ3: Effectiveness of the attacks From the above experiments, we found that the FDI attack can cause a
deviation of 8 to 15 m (for a mission distance of 50 m, and mission time about 40 seconds) in an RV’s mission
trajectory. For long distance RV mission (5 km or more), the deviations caused by the FDI attack is more than 100
m. When the FDI attack is launched simultaneously on both the position and attitude controllers, the deviation
increases to 160 m for the same mission. Typically, drones deployed in industrial use-cases such as package
delivery, surveillance, etc., will operate autonomously for a mission duration of more than 30 minutes [8, 10], and
cover a distance up to 20 km [29]. In such missions, the impact of the FDI attacks can be much more significant.
The SM attacks can also cause major repercussions, even for short missions. From our experiments (not

presented in the table) we found that for a mission distance of 50 m, the SM attack prevented the drone from
flying to the destination. Instead the drone loitered at a certain height. In another instance, the attack caused the
drone to ignore the "land" command, and the drone kept gaining elevation (video can be found at [50]). Further,
we were able to crash the drone by strategically launching the SM attack when the drone switched to the Land
mode. When such attacks are launched against drones in industrial use-cases such as package delivery, they can
cause damage to the drone and other nearby objects including the packages.
The artificial delay attack increased the mission duration by more than 65% for the R1 rover and by more

than 30% for the drones. Although this attack does not directly deviate or damage the RV, it can have major
performance and efficiency related consequences when launched against RVs in industrial use-cases. For example,
drones are used for delivery of time critical items such as blood samples and drugs [8, 10], and rovers are used to
increase the productivity in warehouses [61], where timeliness is important.
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Table 3. Results of the attacks on different types of RVs and the impacts of the attacks. Note that SM attacks are only
applicable to drones and not to rovers in our experiments.
MD: Mission Distance, FT: Flight Time, TH: Threshold, MW: Monitoring Window
FDI: False Data Injection, SM: Switch Mode, AD: Artificial Delay

RV System Attacks MD (m) FT (s) Control Invariants (CI) Extended Kalman Filter (EKF) Attack ImpactsTH (degree) MW
(S)

Deviation
(m)

TH (degree) MW
(s)

Deviation
(m)

ArduCopter
FDI 50 45

60 (yaw angle 2.0
11

52 (yaw angle) 2.3
10 RV landing at wrong location

SM 50 49 7 7 Crash landing
AD 50 71 - - 54% increase in mission time.

ArduRover FDI 50 42 72 (roll angle) 2.6 14 60 (roll angle) 2.3 11 RV deviated from mission path
AD 50 72 - - 56% increase in mission time.

PX4 Solo
FDI 50 40

9 (roll rate) 3.5
12.4

6.1 (roll rate) 3.5
11 RV landing at wrong location

SM 50 46 8 7 Crash landing
AD 50 61 - - 51% increase in mission time

PX4 Rover FDI 50 45 8.2 (roll rate) 2.5 15 7 (roll rate) 3.0 11.5 RV deviated from mission path
AD 50 79 - - 68% increase in mission time

Paparazzi UAV
FDI 50 51

6.6 (roll rate) 2.0
8.5

5 (roll rate) 2.4
6 RV deviated from mission path

SM 50 57 6 6 RV landed at wrong location
AD 50 83 - - 65% increase in mission time

Pixhawk/ArduCopter
FDI 50 32

60 (yaw angle) 2.0
11

45 (yaw angle) 2.3
8 RV deviated from the

trajectory
SM 50 34 6 6 Unstable landing at wrong

location
AD 50 41 - - 30% increase in mission time

Pixhawk/PX4
FDI 50 33

8.2 (roll rate) 3.5
12.5

6.1 (roll rate) 3.5
10 RV deviated from the

trajectory
SM 50 36 9 8 Unstable landing at wrong

location
AD 50 44 - - 33% increase in mission time

Sky-viper Drone
FDI 50 45

81 (roll angle) 2.6
15

67 (roll angle) 3.5
13 RV deviated from the

trajectory
SM 50 51 7 7 Crash landing
AD 50 60 - - 33% increase in mission time

Aion R1 Rover FDI 36 35 82 (roll angle) 2.6 11.2 60 (roll angle) 2.5 9 RV followed arbitrary path
AD 36 59 - - 65% increase in mission time.

7 DISCUSSION
The main limitation of our attack approach is that the state estimation model, as well as the threshold and
monitoring window values, vary for RVs using different hardware platforms (e.g., the model derived from
Pixhawk drone does not not apply to Sky-viper drone). Therefore, the attacker will have to expend the effort of
repeating the steps in the Attack Preparation Phase for each class of RVs. In this section, we present the design of
a self-learning malware program that will attack an RV adaptively without any human effort. Then, we discuss
the other limitations of our attacks, followed by a discussion on how IDSes can be better designed for dynamic
CPS such as RVs. Finally, we discuss some of the threats to the validity of our results.

7.1 Self-Learning Malware
We propose a technique though which an attacker with the same capabilities as in our attack model (Section 3)
can automate the attack preparation phase through a self-learning malware. The attacker can design a program
called modelExtractor to collect the sensor measurement and the mission profile data from position controller
and attitude controller. The modelExtractor will work in tandem with the malicious library on the RV. For
each mission, the modelExtractor will collect the data, and create an archive of mission profile data for various
mission trajectories and mode of operations of the RV. As we said earlier (Section 5.1), the mission profile
data from 5-7 missions is sufficient to derive an accurate state estimation model. After the RV has completed
n missions, the modelExtractor will trigger a system identification library [21, 47] to derive the state space
matrices A,B,C,D and the Kalman gain K .
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From our experiments, we have found that the values of the monitoring window and the detection threshold
based on EKF are typically smaller than those of CI. Therefore, the attacker can focus on deriving the EKF’s
threshold and monitoring window, by recording the time intervals at which EKF’s state covariance matrix is
updated. This way, the monitoring window can be extracted, and the error accumulated in this monitoring
window will be the threshold. The modelExtractor program will pass these values to the attack algorithms
(Algorithm 1, Algorithm 3), which will trigger the attacks based on the RVs mode of operation and mission
state. While we have not implemented such a malware program and hence cannot measure its overhead, our
preliminary experiments on performing these measurements and calculating the thresholds, indicate that the
overhead of the malware program will likely be small.

7.2 Limitations
In FDI attacks, the value of the false data to be injected is calculated dynamically based on the threshold and the
current state of the system in order to remain stealthy. However, in some situations the threshold values based
on the CI and EKF models will not allow much room for performing FDI. For example, for an Erle-Rover, the CI
model employs a threshold of 2.5 degrees (steering rate estimation) for a monitoring window of 4.2s [15]. We
did not have access to a Erle-Rover to perform the attacks ourselves. Therefore, we performed experiments in
the ArduRover simulator using the thresholds and monitoring window for Erle-Rover [15]. We found that for a
mission distance of 50 meters, the deviation caused by the FDI attack was only 4 meters, which was considerably
smaller than what we observed for the Aion R1 rover.

Further, in some of our experiments, we found that if the drone overshoots its trajectory because of the injected
false values (for example, in a switch mode attack, where we injected large false values) the drone system activates
the (hardware) fail-safe mode and forces the drone to land and abort the mission. This can be considered a
limitation of our attack because the attack failed in achieving the desired outcome (i.e., deviating or delaying the
RV). However, an attacker can take advantage of such a fail-safe landing mechanism, and force the drone to land
at a location conducive to the attacker (different from the destination defined in the the drone mission).

7.3 Countermeasures
One way to mitigate the attacks in this paper is to design estimation models that demonstrate a high degree of
convergence with the observed control outputs. This will enable an IDS to employ a smaller threshold value
thereby limiting the room for sensor manipulation [25]. An improved version of CI and EKF techniques with
adaptive thresholds and variable monitoring windows can be effective in limiting the stealthy attacks. The
conventional methods for invariant extraction (both CI and EKF) use pre-defined fixed thresholds and monitoring
windows for a subject RV. We exploit this notion of fixed bounds invariant analysis to trigger our attacks. If the
IDS uses an adaptive threshold (e.g., different threshold for steady state flight and Land / Takeo f f modes), the
leeway for injecting false values into sensor and actuator parameters will decrease, which in turn will reduce the
impact of the FDI and switch mode attacks. Similarly, if the IDS employs variable-sized monitoring windows, the
impacts of artificial delay attack will decrease. If the attacker injects a fixed size delay (as we do in our artificial
delay attack), an IDS using a variable sized monitoring window may detect the attack. We defer detailed design
of mitigation techniques for these attacks to future work.

7.4 Threats to Validity
We consider three threats to validity - i) Internal, ii) External and iii) Construct. An internal threat to our work is
that we have considered only control-based attack detection techniques. Although we do not evaluate other attack
detection techniques against our stealthy attacks, we posit that methods that follow a threshold based detection
such as CI and EKF are vulnerable to our stealthy attacks. Another internal threat is that our experiments with
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real vehicle were not very extensive. This is largely because of the logistical restrictions around using unmanned
RVs over long distances, as well as time limitations. However, we mitigate this threat by performing extensive
experiments on a simulator.
An external threat to work is that we have considered only two types of hardware platforms i.e., Pixhawk

and Sky-viper. However, the RV’s hardware platforms use flight controllers that include processors and sensors,
and run a compatible auto-pilot software for control and navigation. The auto-pilot platforms typically use
pre-designed libraries for control and sensor operations. Therefore, our stealthy attacks can be extended to other
RV hardware platforms such as Navio [20] and Bebop [51] that deploy similar libraries.

Finally, a construct threat to our work is that if the detection threshold and monitoring windows are small, the
effects of the stealthy attacks will not be as critical. However, as the detection threshold in CI and EKF methods is
calculated using training traces, it is difficult to come up with small and precise threshold boundaries, for reasons
such as sensor noise and environmental factors. Moreover, an aggressively calculated small detection threshold
would result in high false positives, which is undesirable. Secondly, even with small detection windows, the
artificial delay attack will still be able to cause undesirable consequences in the RV mission.

8 RELATED WORK
Sensor spoofing attacks. Previous work has demonstrated sensor spoofing attacks such as GPS spoofing
[30][64] to misguide a drone’s trajectory, optical spoofing [19] to gain an implicit control channel etc. It has also
been shown that inaudible sound noise when injected at resonance frequency can adversely affect the MEMS
gyroscopic sensor, which can cause the drone to crash [60]. Likewise, attackers can compromise the accelerometer
of drones by injecting acoustic noise in a controlled manner [65]. However, these attacks are not necessarily
stealthy, as they can be detected by the IDS depending on the degree of deviation they cause. In contrast, our
attacks are designed to be stealthy.

Stealthy attacks such as false data injection have been demonstrated on industrial control systems to mislead
state estimators and controllers [18, 37, 42]. Stealthy sensor spoofing attacks can induce the supervisor control
layer into allowing the system to reach an unsafe state, thereby causing physical damage to the system [26]. Our
attacks cause perturbations in the sensor measurements thereby inhibiting the RV from performing its task, and
not necessarily causing physical damage (which is easier to detect).
Malware attacksMultiple instances of malware attacks on industrial control systems have been reported. A few
prominent examples are the Stuxnet attack [32], and the attack on the power grid in Ukraine [35]. Malware with
learning capabilities can derive an optimal attack vector and launch man-in-the-middle attacks [24]. Alamzadeh et
al. [4] present a malware attack targeting a tele-operated surgical robot, where the malware identities an optimal
attack time and injects faults. Similar attacks have been demonstrated on pacemakers [28]. Chung et al. [16]
demonstrated feasibility of attacking water treatment systems using a self-learning malware. Subsequently, they
extended their work to launch MITM attacks on surgical robots by exploiting the vulnerabilities in the underlying
runtime environment (ROS) [17]. However, none of these attacks have been demonstrated on RVs protected with
control-based IDS as in our work (to the best of our knowledge).
Intrusion Detection Systems (IDS) IDS have been proposed that uses physical invariants for each sensor
and actuator to tackle attacks against different cyber-physical systems, including UAVs [45]. BRUIDS [46] is a
specification based IDS that is adaptive based on the attacker type and environment changes. CORGIDS [2] derives
correlations between physical properties using hidden Markov models, and uses these correlations as invariants.
Adepu et al.[1] design an IDS for a water treatment plant by manually describing the invariants for a particular
sensor in terms of the water level changes between two consecutive readings. ARTINALI [5] dynamically mines
data, time and event invariants from an execution trace of the program and use data-time-event invariants to
detect anomalies. Chen et al. [12] present an approach for automatically constructing invariants of CPS, by using
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supervised ML on traces of data obtained from systematically mutated PLC programs. Ahmed et al.[3] propose a
technique to fingerprint the sensor and process noise to detect sensor spoofing attacks. Kim et al.[34] proposed a
technique for detecting control semantic bugs (input validation bugs) leveraging a control instability detector
to detect RV malfunctions. Fei et al.[22] proposed retro-fitting UAVs controllers with reinforcement learning
policies to recover from attacks. Kim et al.[33] presented a machine learning based method for detecting sensor
spoofing attacks against RVs. Most of the above techniques [2, 22, 45, 46] use a threshold based technique to
detect deviations from the invariants or models. Therefore, they are vulnerable to stealthy attacks like ours. That
said, we did not consider these IDS in our evaluations as our attacks target control-based IDS techniques.
Quinonez et al. [53] present Savior, an EKF, and cumulative sum statistics (CUSUM) based technique for

mitigating stealthy attacks against RVs. The difference between the EKF model considered in this paper and
Savior is that Savior does not use a fixedmonitoringwindow based error accumulation. Instead, Savior accumulates
errors throughout the RV mission following the CUSUM algorithm [66], and raises an alert when the error is
greater than a threshold. However, as Savior does not refresh the accumulated error based on a monitoring
window, it can incur high false-positive rates in the presence of external noise [25]. We experimentally evaluated
our FDI attack in the presence of Savior, and found that the attack can still cause significant deviations in RV
missions without triggering any alarms (though it was only half as much as that with CI and EKF).
In recent work, Choi et al. present a technique to recover RVs from attacks by replacing the physical sensor

measurements with those from software sensors once an attack is detected [14]. However, they use a linear
state-space estimation model (similar to CI) to estimate the physical states of the RV, and determine whether the
RV is under an attack based on a threshold analysis. Because the linear state-estimation technique fails to closely
capture the RV’s runtime behaviour and hence requires a high threshold, this recovery technique will only be
effective against attacks that cause abrupt disruptions. Furthermore, the software sensors rely on parameters
derived from physical sensor measurements (e.g., velocity), and thus a coordinated attack launched on multiple
sensors may derail the recovery process.

9 CONCLUSION
In this paper, we highlight the vulnerabilities in control-theory based techniques namely CI (Control Invariants)
and EKF (Extended Kalman Filter) used for attack detection in Robotic Vehicles(RVs). We find that these techniques
use pre-defined detection threshold and monitoring window based invariant analysis techniques, and are hence
susceptible to stealthy attacks. Moreover, both CI and EKF fail to achieve high accuracy in predicting RVs runtime
control outputs which forces them to employ a large threshold in order to prevent false alarms.
To demonstrate how an attacker can exploit the vulnerabilities, we designed three stealthy attacks namely:

false data injection, artificial delay attack and switch mode attack. We present algorithms that will automate the
process of deriving the detection thresholds. Knowing the threshold, an attacker can perform stealthy sensor and
actuator tampering attacks, thereby bypassing the detection mechanisms. We demonstrated the attacks in eight
RV systems including three real systems, and on different auto-pilot software stacks. Though the attacks are
stealthy in nature, and do not cause large-scale disruptions, we found that the consequences can still be quite
severe such as: deviating a drone by more than 160 meters from its trajectory, increasing the mission duration of a
rover and drone by more than 65% and 30% respectively, and causing a drone to crash while landing (and harming
other objects). We also show that the attacks can be triggered against a diverse range of RV hardware platforms
and auto-pilot software. Furthermore, we discuss the attacker’s goals in the context of industrial use-cases, and
discuss how the attacker can perform stealthy attacks to achieve his/her goals.

In our future work, we will explore the design of techniques that achieve high convergence in predicting RV’s
runtime behaviour across various modes of operations. High prediction convergence will allow employing a
small detection threshold, which will limit the room for sensor manipulation, thereby mitigating stealthy attacks.
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A RESEARCH METHODS

A.1 State Estimation Model
The Algorithm 4 shows the process of deriving the state estimation model (i.e., A,B,C,D matrices) from the
mission profile data. We collected time series dataM from n missions, and we use Matlab’s SI toolbox to generate
the matrices [41]. For the first iteration, we randomly select k mission profile data from the data setM (Line 6).
The time series data from k missions is combined with iddata object, which consists of input and output value
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matrices and a fixed sampling interval ts (Line 6 to 8). The control inputs u and control outputs y values collected
in mission i are represented as vectors. At line 20, the tfest function identifies the optimal coefficients for the
model template from the RV’s mission profile data. The transformation turns a time-domain function into the
frequency domain and hence substantially reduces the complexity of fitting the profile data. At line 21, function
tfdata accesses the resultant model: num and den that encode the model in the frequency domain. At line 22,
tf2ss function converts a discrete-time transfer function into equivalent state-space representation. We test the
accuracy of the state space model by comparing the model estimated values (y(t),x ′(t)) with the recorded values.
To improve the accuracy of the state estimation model, we perform system identification iteratively (Line 10 to
18) by adding 1 more mission profile data to the iddata object.

Algorithm 4: Generating State Space Model
1 M ←− Mission prof ile data.
2 n: number of missions.
3 ts : sampling interval.
4 Np : poles.
5 Nz : zeroes.
6 while i < k do
7 data(i) = iddata (y(i), u(i), ts );
8 end
9 A, B, C, D ←− systemIdentif ication(data, Np, Nz );

10 while i < n − k do
11 if checkModelAccuracy(A, B, C, D) then
12 break;
13 else
14 data = iddata (y, u, ts );
15 A, B, C, D ←− SystemIdentif ication(data, Np, Nz );
16 checkModelAccuracy(A, B, C, D);
17 end
18 end
19 Function SystemIdentification(data, Np , Nz):
20 t f = t f est (data, Np, Nz);
21 [num, den] = t f data(t f );
22 [A, B, C, D] = t f 2ss(num, den);
23 return A, B, C, D

A.2 Kalman Gain
The state space matrices derived using system identification can be used to formulate a system model sys . The
Matlab function kalman creates a state space model Kss of the Kalman estimator given the system model sys .
[Kss,K,P] = kalman(sys,Qn,Rn,Nn)

K is the Kalman gain matrix, P is the error covariance matrix, Qn ,Rn ,Nn are the noise covariance data.
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