New Wine in an Old Bottle:

N-Version Programming for Machine Learning Components

Arpan Gujarati
Max Planck Institute for Software Systems
arpanbg@mpi-sws.org

Abstract—We revisit IN -version programming in the context of
machine learning (ML). Generating IN versions of an ML com-
ponent does not require additional programming effort, but only
extra computations. This opens up the possibility of executing
hundreds of diverse replicas, which, if carefully deployed, can
improve their overall reliability by a significant margin. We use
mathematical modeling to evaluate these benefits.

I. INTRODUCTION

Driven by breakthroughs in machine learning (ML) and
the widespread availability of ML frameworks, cyber-physical
systems (CPS) that interact intelligently with the world are
becoming part of our everyday lives. They range from smart
devices in the home, to retail and restaurant robots, to self-
driving cars and self-flying drones. However, the extensive use
of ML for automation entails significant reliability and safety
risks. For example, in 2018, an Uber self-driving car operating
in autonomous mode struck and killed a pedestrian.

In general, at least two challenges need to be addressed
before we can trust the use of ML in safety-critical CPS:
(i) improving the baseline accuracy of ML algorithms, and
(ii) reducing the impact of software bugs and hardware faults,
which is exacerbated by the use of off-the-shelf ML frameworks
on commodity platforms. Our focus is on the latter challenge.

The classical approach to tolerating both software bugs and
hardware (design) faults is N-version programming (NVP) [1].
Central to NVP is the idea that independently generated
programmed components are diverse and thereby reduce the
probability of identical bugs and faults. However, prior work has
argued that failures in /N-version programs are not statistically
independent [2, 3], and that the time and costs of developing
a complete N-version execution environment (NVX) is often
not worthwhile in practice [4].

Our goal here is to revisit NVP in the context of ML compo-
nents, which are not programmed but trained, using supervised,
unsupervised or reinforcement learning. Our hypothesis is that
NVP for ML components is actually like new wine in an old
bottle, i.e., although the basic principles and terminology viz.
“NVP” and “NVX” remain the same, the exact mechanisms
and costs involved in generating and deploying N different
versions of an ML component are different.

Generating N functionally identical and yet diverse ML
components does not require extra programming effort; this

IThis work was supported in part by research grants from the Natural
Sciences and Research Council of Canada (NSERC), Huawei, and the Peter
Wall Institute for Advanced Studies at The University of British Columbia.

Sathish Gopalakrishnan, Karthik Pattabiraman
The University of British Columbia
{sathish, karthikp}@ece.ubc.ca

requires additional computations [5, 6]. For instance, consider
deep neural networks (DNNs): different ML frameworks such
as PyTorch, TensorFlow, and TVM can be used to generate ML
models with different execution plans; DNNs can be trained
with different network structures (e.g., image recognition
using ResNet50, ResNet101, and ResNet152); and ensemble
techniques [7] could be used to train ML models using distinct
random choices. These options open up the possibility of
generating and executing hundreds of diverse replicas inside
an NVX, which was impossible before.

In addition, unlike programmed components, whose baseline
reliability is already high (and typically measured in “nines”),
the baseline reliability of ML component is relatively low
(e.g., an inference accuracy of 75% to 90% is common among
DNNs). NVP therefore has a huge potential to improve the
overall reliability of ML components. Hence, we believe
there is a need to investigate the problem of NVP for ML
components with a fresh perspective, and also explore different
NVX configurations. In this regard, we present an initial study
assessing the benefits of NVP for ML components in the
presence of permanent faults. Our main findings are as follows:

o Concurrent execution of replicas can improve the reliabil-
ity of ML components by a significant margin, but only
if the number of faults is not very high.

o Sequential execution is ineffective for low diversity values,
but if the diversity percentage among each replica pair
is increased (say, beyond 75%), it can be as effective as
concurrent execution in providing high reliability.

e The voting algorithm plays an important role. Simple
majority voting can reverse the reliability gains that are
otherwise achievable using more lenient quorum sizes.

Another interesting takeaway from our work is that NVP can
be used to improve the baseline accuracy of ML components
as well, and not just their reliability in the presence of faults.
This indicates that NVP has the potential to kill two birds with
one stone, and merits a thorough investigation going forward.

II. RELIABILITY MODELING

Assumptions and axiomatic properties. =~ We assume that
an ML component refers to a trained DNN model, and hence
we use these terms interchangeably. We also consider only
permanent faults in this study. Our reliability modeling is
based on three axiomatic properties as follows.

1) A trained DNN, even in the absence of any faults, may
not always output the correct answer. Thus, we consider
its baseline reliability, often referred to as its acccuracy,
to be anywhere in the interval [0, 1).

2) Permanent faults may interfere with the functioning of
individual hardware units. We also assume that the higher
the number of faults, higher is the probability that the
DNN outputs a wrong inference.

3) This property pertains to the training of architecturally
diverse DNN models for the same functional objective,
such as image detection. As a result, depending on the
degree of diversity, a fault may trigger correlated failures
in two diverse replicas or only independent failures.

Modeling axiomatic properties. = Based on prior work by
Zhang et al. [8], we use an exponential function to approximate
a DNN’s reliability R(x) in the presence of z faults:

R(z) = ae™P* (where o < 1). (1)

Equation (1) sufficiently models the first two axiomatic
properties, since the baseline reliability is less than one,
i.e., R(0) = a < 1, and since the reliability decreases with
increasing number of faults, i.e., R(y) < R(z) for y > .

There is a paucity of empirical data on how the reliabilities of
diverse ML components, e.g., DNNs generated using different
ML frameworks, are related. Therefore, to model the third
axiomatic property, we make a simple modeling assumption,
namely that each ML component replica is split logically into
two ML subcomponents (see Figure 1(a)). We refer to these
as the identity and diversity subcomponents. While the identity
subcomponent remains same across replicas, the diversity
subcomponent varies from one replica to another.

Given a replica, let Ry ,(z) and Ry ;(x) denote the reliability
of its identity and diversity subcomponents. We define the
replica reliability R;(z) as a weighted geometric mean of
R q(x) and R ,(z). Given respective weights w, and wy,

Ry (z) = WeightedGM (R q(x), R1p(x), wa, ws)

= (Rya(z)" X Ry p(w)™?)waton (2)

where d = 100wy, /(w, + wp) denotes intuitively the diversity
percentage among all ML component replicas.

The models introduced above provide us with a set of
useful tools to approximate the reliability of different NVX
configurations. In the following, we explore the reliability of
sequential and concurrent NVX configurations.

Modeling sequential execution. In the sequential execu-
tion model, the replicas execute one after another on a single
shared hardware platform, followed by voting (or some form of
merging) to suppress the redundant outputs. Building up on the
models introduced in the aforementioned paragraphs, we first
decompose the execution sequence into sequential executions
of identity and diversity subcomponents of each replica.

We assume that outputs of all identity subcomponents
Ch,a: Cayq, ..., Cnq are first passed through voter V, (as
illustrated in Figure 1(b)). Similarly, outputs of all diversity
subcomponents C p, Cap, ..., Cnp are then passed through

...

Replica

: *~a E—
T Output

(a) Single replica with its identity and diversity subcomponents

Input [

Three diverse replicas

) * Voter Va b,
1 < e

D
% Voter Vi Output
| J

Trusted components

f 1 1
w;)ut Input Input)

Spatially N\

distributed for concurrent NVX

Time axis (for sequential NVX)

(b) Three replicas in sequential and concurrent NVX configurations

Fig. 1. NVX with replica diversity (colors used only to separate components).

voter V},. Inputs to any component is independent of the outputs
of previously executed components (e.g., input to C', is
independent of C 4). In the final step, outputs of voters V,
and V;, are composed to generate the NVX output. The last
step is similar to the output composition shown in Figure 1(a).

Let Rnyx seq(z) denote the sequential NVX reliability in
the presence of x faults. Ryvx seq() can be computed in a
straightforward manner, like in Equation (2) using a weighted
geometric mean, if the reliabilities of voters V,, and V}’s outputs
are known. Let these reliability be denoted as Ryvx,seq,q (%)
and Ryyx seq,b(2), respectively.

Computing Ryvx seq,o(x) is trivial since the inputs to
voter V;, come from identity subcomponents C; 4, Coq, ...,
Cn,q, Which are expected to fail identically in the presence
of permanent faults. In other words, voting is irrelevant here,
because either all identity subcomponents fail, or none of them
fail (we ignore the small chance that a permanent fault occurs
in the middle of a sequential execution, thereby invalidating
Equation (3)). Thus, we have the following equalities,

Ri4(xz) =Rog(z) =... = Ry o(z) = Ro(x)
RNVX,seq,a(l') = Ra($)'

3)
“4)

In contrast, computing Rnvx,seq,»() is not trivial since
the inputs to voter V;, come from diversity subcomponents
C1,p» Cop, ..., Cn,p, which fail differently in the worst case.
Therefore, we enumerate all possible scenarios, which accounts
for the possibility of each subcomponent C; ; being affected
by faults and not affected by faults, i.e., up to 2 scenarios.
Assuming that voter V}, requires a minimum quorum size of
g < N, and letting Ny = {1,2,..., N}, we define

RNVX,squ)(x) =

>3 (T

i=q SCNy JES
& |S|=i

I[I -Rju@)

JENN\S

®)

In Equation (5), the first summation from the left (i.e., from
1 = ¢ to 7 = n) enumerates scenarios with quorum sizes greater

than or equal to the minimum quorum size ¢q. Given a quorum
size ¢, the second summation enumerates over all permutations
of N — ¢ faulty replicas, i.e., in each permutation, ¢ out of
N subcomponents yield correct answers, whereas others are
assumed to yield faulty answers. The first product from the
left computes the combined reliability of all correctly executed
subcomponents. The second product computes the combined
failure probability of all the faulty subcomponents.

Next, we compose the reliabilities of voters V, and V}’s
outputs, like in Equation (1). This yields the reliability of a
sequential NVX in the presence of x permanent faults.

RNVX,seq,a(x)a
RNVX,seq,b(x)v
Wq, Wy

WeightedGM (6)

RNVX,seq(w) =

Modeling concurrent executions. In the concurrent exe-
cution model, replicas execute concurrently on independent
hardware platforms. The voting step is similar to that in
a sequential execution. While the objective of concurrent
execution is typically to tolerate crash failures, it also helps
to minimize the chances of correlations among faulty replica
outputs (it is highly unlikely that replicas are exposed to the
same set of faults on independent hardware platforms).

The reliability model for a concurrent NVX can be derived
assuming that identity subcomponents are affected by the
faults differently. That is, while Equation (3) still holds
for all identity subcomponents, e, Ri4(x) = Roo(z) =

. = Ry.a(r) = Ru(x), we define voter V,’s reliability
RNvX ,cone,o () differently from Equation (4), as follows:

)

RNVX,conc,a(x
N

I Ria(x) I[I 0-Rja2)

i=q SCNy \Jj€S JENL\S
& |S|=1
Z () 1 — R, (x))N_i {using Equation (3)}. (7)

Voter V;’s reliability definition and the overall NVX relia-
bility remain the same as in for sequential NVX. That is,

RNVX,conc,b (I) =

S Y (Mrew

i=q SCNy \j€S
& [8|=i

I[I G=Riu@)], ®

jGNN\S

and RNVX,conc(z> =

RNVX,conc,a(x)a RNVX,conc,b(x)a
Wq, Wy

WeightedGM (

). o

The objective of the numerical evaluation is to derive
actionable insights using the proposed reliability modeling
through design-space exploration. We defer the problem of
validating the models themselves through simulation or through
fault injection to future work.

III. EVALUATION

We assume throughout that each R; () = R;(z) = R(z),
where R(x) is defined as in Equation (1). We then use non-
linear least squares to fit R(x) to the empirical data provided
by Zhang et al. [8] where they evaluate the accuracy of MNIST
digit classification and TIMIT speech recognition tasks with
respect to the number of faulty Multiply-Accumulate (MAC)
units in a DNN accelerator. The data and the values obtained
for parameters « and /3 through curve fitting are shown below
(x denotes the number of faulty MACs). Note that our model
is applicable to other types of hardware and software faults
as well. Unfortunately, there has been little published work,
especially on the effect of software faults on ML components.

ML task Accuracy % for different values of x [8] Fitted params

0 1 2 4 8 16 32 64 « B8

TIMIT 74 70 70 40 46 4 2 2 774 0.11
MNIST 98 94 96 8 64 48 20 12 994 0.05

Overall trends. To understand the general trends, we first
computed the reliability for sequential and concurrent NVX
using Equations (6) and (9) for two different configurations.
(i) In the first case, function R(x) is fitted to the MNIST
data, the minimum quorum size is ¢ = min (2, N), diversity
percentage d = 100wy /(w, + wp) = 50%, and the number of
replicas N is varied from 2 to 64. (ii) In the second case, the
only change is that R(z) is fitted to the TIMIT data. Results
are illustrated in Figures 2(a) and 2(b), respectively.

We observe that more replication always helps, since
reliability values for N € {33,...,64} are strictly higher
than those for N € {2,...,32} for respective execution types.
Secondly, concurrent executions are generally more reliable
than sequential executions, at least as long as the number of
faults x is smaller than some threshold x,,,,, beyond which
many sequential executions start offering relatively higher
reliability. Threshold 4, depends on both R(zx) and N.

Most importantly, Figures 2(a) and 2(b) show that concurrent
NVX can improve the reliability of ML components by a
significant margin. In the case of TIMIT, the overall NVX
reliability can get very close to 1 despite its baseline reliability
being R(0) = 74%. This suggests that it is possible to increase
the reliability of the system by generating a large number of
replicas with very high diversity (50%) among each pair.

Effect of quorum size. In Figure 2(c), we illustrate results
for the TIMIT data once again with a minimum quorum size of
¢ = min (2, N); but unlike in Figure 2(b), we fix the number
of replicas at N = 32 and instead vary the diversity percentage
d = 100wy, /(wg + wp) from 0% to 100%. As expected, the
reliability of concurrent NVX is independent of d, since we
assumed that faults on independent hardware platforms do not
overlap. On the other hand, the reliability of sequential NVX
approaches R(z) at d = 0 and the reliability of concurrent
NVX at d = 100. Thus, by introducing sufficient diversity,
even sequential NVX can offer significant reliability.

Putting it all together. In this last numerical study, we
evaluated all configurations discussed above but with a mini-

LOTR -) 1.01 -= R(X)
\ —— seq(N=2..32) seq (d = 0%-25%)

0.8 T \\ conc (N=2...32) 0.8 seq (d = 25%-50%)
> > both (N = 33 ... 64) > seq (d = 50%-75%)
= 0.6 = £ 06 seq (d = 75%-100%)
Qo Q Q
s K o conc (d = 0%-100%)
2041 ™ e} S 0.4+

024 — seal 0.21

00t ———— —— o 7

0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Number of faults (x) Number of faults (x) Number of faults (x)
(a) MNIST, ¢ = min (2, N) (b) TIMIT, ¢ = min (2, N) (c) TIMIT, ¢ = min (2, N)
1.0 1.0 == 1.0 T
: == R(x) ' == R(x) : == R(x)
—— seq (N =2..32) — seq (N =2..32) seq (d = 0%-25%)

0.8 7 conc (N=2...32) 0.8 1 conc (N =2 ...32) 0.8 1 seq (d = 25%-50%)
> both (N = 33 ... 64) > both (N = 33 ... 64) > seq (d = 50%-75%)
= 067 £ 067 £ 061 seq (d = 75%-100%)
Qo Q el
ol o] conc (d = 0%-100%)
041 & 041 3041

0.2 1 0.2 0.2 1

0.0 0.0 — 0.0 m———

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

Number of faults (x)

(d) MNIST, ¢ = |n/2 + 1]

Number of faults (x)

(¢) TIMIT, ¢ = |n/2 + 1]

Number of faults (x)

(f) TIMIT, ¢ = |n/2 + 1]

Fig. 2. The dataset, i.e., MNIST or TIMIT, and the minimum quorum size q are stated for each figure separately. X axis denotes the number of faults and Y
axis denotes the reliability (a probability between 0 and 1). R(x) is the baseline reliability obtained using Equation (1) and denoted using a grey dashed curve.
In insets (a), (b), (d) and (e), the number of replicas /N is varied from 2 to 64 but the diversity percentage d is fixed at 50%. The blue and green curves in
these figures indicate reliability values for sequential and concurrent NVX (respectively), for N = {2,...,32}. The red curves on the other hand indicate
results for both sequential and concurrent NVX but for N = {33,...,64}, i.e., red curves indicate more replication. In insets (¢) and (f), the number of
replicas is fixed at N = 32 but the diversity percentage d is varied from 0% to 100%. For concurrent NVX, the reliability is denoted using green color, and all
curves overlap. For sequential NVX, as the diversity percentage increases from 0% to 100%, the color of the reliability curves change from brown to yellow.

mum quorum size of ¢ = [n/2 + 1| (simple majority) instead
of ¢ = min (2, N). Results are illustrated in Figures 2(d)
to 2(f). With a larger quorum size, more replication helps only
up to a certain value of x, e.g., in Figure 2(e), after x = 4,
the reliability for every configuration is less than R(x). The
reliability gains offered by different configurations are much
smaller. This is typical of majority-voting systems where the
minimum quorum size is proportional to N; after some faults,
a quorum of correct values becomes highly improbable.

IV. CONCLUSION AND FUTURE WORK

NVP has faced criticism for increasing the reliability
traditional (programmed) software components [2, 3]. However,
driven by the observation that NVP for ML components is
vastly different, we revisited this technique for such components.
In the case of MNIST digit classification and TIMIT speech
recognition tasks, our mathematical modeling and experiments
showed that both concurrent and sequential NVX can improve
the overall reliability by a significant margin if a large number
of high diversity replicas can be generated. In general, there are
immense benefits of using NVP for ML components. Especially,
the possibility of increasing the baseline reliability (accuracy) of
many ML components in the presence of faults is encouraging,
as also observed by some recent works [9, 10].

In the near future, we plan to explore three broad directions
of work. First, on the ML side, specifically for DNNs, we

plan to work on quantifying the diversity of replicas with
respect to the input space, network structure, and weights,
which in turn translates into diversity in the presence of
inputs and software/hardware faults. Second, we require high-
fidelity simulations or a thorough fault injection to validate
the proposed models, i.e., does the logical decomposition into
identity and diversity subcomponents match empirical results?
We also intend to work on design of such systems, and a key
aspect is the design of voting mechanisms for ML components.

REFERENCES

[1] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach to
reliability of software operation,” in JEEE FTCS-8, 1978.

[2] J. C. Knight and N. G. Leveson, “An experimental evaluation of the assumption
of independence in multiversion programming,” IEEE Transactions on Software
Engineering, no. 1, pp. 96-109, 1986.

, “A reply to the criticisms of the Knight & Leveson experiment,” ACM
SIGSOFT Software Engineering Notes, vol. 15, no. 1, pp. 24-35, 1990.

[4] L. Sha et al., “Using simplicity to control complexity,” IEEE Software, vol. 18,
no. 4, pp. 20-28, 2001.

[5] S. Latifi, B. Zamirai, and S. Mahlke, “PolygraphMR: Enhancing the reliability and

dependability of CNNs,” in IEEE DSN, 2020.

R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of ISO 26262: Machine

learning and safety in automotive software,” in SAE Technical Paper, 2018.

[7]1 M. P. Ponti Jr, “Combining classifiers: from the creation of ensembles to the
decision fusion,” in JEEE SIBGRAPI, 2011.

[8] J.J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based accelerators
for deep neural network execution,” IEEE Design & Test, vol. 36, no. 5, pp. 44-53,
2019.

[9] H. Xu, Z. Chen, W. Wu, Z. Jin, S.-y. Kuo, and M. Lyu, “NV-DNN: towards fault-

tolerant DNN systems with N-version programming,” in JEEE/IFIP DSN-W, 2019.

F. Machida, “N-version machine learning models for safety critical systems,” in

IEEE/IFIP DSN-W, 2019.

(3]

[6

[10]

	Introduction
	Reliability Modeling
	Evaluation
	Conclusion and Future Work

