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Traditional Solutions

* Error Correction Code (ECC)

* Hardware means

variations consumption

Guard-band

Average Worst-case




Software Solutions

Software protection techniques are
more flexible and cost-effective!

Protection Overhead
Increasing

Soft Error

Impactful Errors



Fault Injection
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Fl injection — Overhead

« GPU-Qin [ISPASS’14, Fang], LLFI-GPU [SC'16,Li], SASSIFI [ISPASS’17, Hari]

* Highly inefficient, as it b2 adated
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*Timings obtained from our experiments using LLFI-GPU, other works report similar timings



Trident — for CPU (DSN’18, Li)
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GPU - Challenges

« Execution of GPU applications is inherently multi threaded

* Threads frequently communicate with each other

Interleaving dependencies complicate error propagation

Thread 1 Shared Memory Thread 2
‘l store | Istore |
-\Iload | [load |

[SC'16, Li]
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GPU - Challenges

No. of Threads

No. of Executions

Thread

W

CPU Program

* Average of ~5 years, Max 17 years

 >5GB, data to be profiled in Circuit
* |naccuracies in model accumulate

W

Threads

W W -

GPU Program
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Challenges - Summary

1. Tracking error across threads
2.  Huge amount of states to profile

3.  Accumulation of inaccuracies
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Challenges - Summary

Tracking error across threads

Static (f,)
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Updating f

. fm constructs a memory dependency graph between instructions.

* We construct graph of whole kernel, instead of individual threads.

__global  void staticReverse(int *d, int n)
{

__shared___ int s[64];

int t = threadIdx.x;

int tr = n-t-1;

s[t] =dJt];

__syncthreads();

di.t] = s[tel;
}
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Constructing the dependency graph

 Memory dependency, based on control-flow

* Limited possible control-flows

(

\_

Solution: Sample threads with
unique control-flows for profiling
e.g. 3,840 out of 592,640 threads

profiled for Pathfinder
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Challenges

Tracking error across threads

Static (f,)

Reg.

Huge amount of states to profile
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Lucky Stores

* If a memory contains the same data we want to store in it

« Missing that store won’t result in any SDC

Solution: Update f_to modify propagation probability of comparisons dominating
output stores.

|
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Challenges

Tracking error across threads

Static (f,)
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Trident - Workflow
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GPU-Trident - Workflow

Parallelize this using
CPU resources
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Experiments - Overview

GPU-Trident: A set of LLVM passes, driven by python scripts
URL: https://github.com/DependableSystemsLab/GPU-Trident

Use LLFI-GPU for Fl and use it as a baseline

Predict SDC probability with GPU-Trident, compare with Fl

Evaluate GPU-Trident for 17 kernels (Rodinia and OSS HPC) at
« Kernel level
 Instruction level
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https://github.com/DependableSystemsLab/GPU-Trident

Fl in GPU applications

CPU Thread

b

GPU Thread

GPU Thread

=

GPU Thread

Compare

Memory

|:> CPU Thread
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SA = 0x00
SB = A + 0x04

SC=A+B
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Evaluating Kernel SDC probability

T1 T2 Tn
SA = 0x00 SA = 0x00 $A = 0x00
SB = A + 0x04 SB = A + 0x04 SB = A + 0x04
SC=A+B SC=A+B SC=A+B

o0 O 1 |0 1 1 1

5,000 random Fl trials per kernel



Evaluating Instruction SDC probability

T1 172 Tn
SA = 0x00 SA = 0x00 $A = 0x00
SB = A + 0x04 SB = A + 0x04 SB = A + 0x04
L
SC=A+B SC=A+B SC=A+B
o 0 |0 1 |0 1 1 1

100 random Fl trials per instruction
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Accuracy - Summary

 Mean absolute error for kernel SDC is 5.7% (Trident has error of 4.75%)
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« Pearson correlation coefficient for kernel SDC is 0.88 (Without outliers 0.99)

* Average Pearson correlation coefficient for instructions is 0.83
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Scalability - Summary

* Kernel SDC probability

1000 11x
3000 33x
5000 55x

* Instruction SDC probability
 GPU-Trident is 2 orders of magnitude (~100x) faster than Fl
* Fl takes 7 hrs, while GPU-Trident takes less than 5 minutes

GPU-Trident needs to construct model once, while each Fl trials requires

an application run
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Software Solutions

Protection Overhead
Increasing

Software protection techniques are
more flexible and cost-effective!

Soft Error

Impactful Errors

26



Selective Instruction Duplication

* Proposed by [DAC'09, Reddi], [ASPLOS’10, Feng], [CGO’16, Laguna]
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Selective Instruction Duplication
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Summary

 Modeling error propagation in GPU applications is challenging due to scale and
inaccuracy

* We develop heuristics, based on memory access and data patterns
» Experiments show our techniques are accurate and scalable

 GPU-TRIDENT: Efficient Modeling of Error Propagation in GPU Programs
(https://github.com/DependableSystemsLab/GPU-Trident)

* For questions: arehman.anwerl@gmail.com
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