
GPU-Trident: Efficient Modeling of
Error Propagation in GPU Programs
November 19, 2020

Abdul Rehman Anwer
Guanpeng Li
Karthik Pattabiraman
Siva Hari
Michael Sullivan
Timothy Tsai

Soft Errors

2

= 00 = 01

Silent Data Corruption (SDC)

3

Normal Execution

Fault

Error Propagation

Benign

Incorrect
Output

 Correct Output

Exceptions, No Output

e.g. Amazon S3 Incident

Crash

SDC

Traditional Solutions

• Duplication

4
Average Worst-case

Wastes power as gap
between average and
worst-case widens due to
variations

Guard-band

Hardware duplication (i.e.,
DMR) can result in 2X
slowdown and/or energy
consumption

• Error Correction Code (ECC)

• Hardware means

• Circuit hardening
Very expensive to deploy in practice!

Impactful Errors

Software Solutions

5

Device/Circuit Level

Architectural Level

Operating System Level

Application Level
P

ro
te

ct
io

n
 O

ve
rh

ea
d

Soft Error

In
cr

ea
si

n
g

Software protection techniques are
more flexible and cost-effective!

Fault Injection

6

$A = 0x00
$B = A + 0x04
.
$C = A + B

Golden Output

$A = 0x00
$B = A + 0x04
.
$C = A + B

FI Output

0 0 0 0 0 1 1 1

0 0 0 1 0 1 1 1

Compare

Program Program

• GPU-Qin [ISPASS’14, Fang], LLFI-GPU [SC’16,Li], SASSIFI [ISPASS’17, Hari]

FI injection – Overhead

• Highly inefficient, as it has to be repeated if application is updated

~7 hrs. for 100 faults per instruction

*Timings obtained from our experiments using LLFI-GPU, other works report similar timings
7

Trident – for CPU (DSN’18, Li)

8

Source Code

Program Input

Output Insn.

Inst. SDC prob.

Overall SDC prob.

Insn. for Prediction

Profiling Prediction

• Execution of GPU applications is inherently multi threaded

• Threads frequently communicate with each other

GPU - Challenges

9

[SC’16, Li]

.

.
store
.
.
load

0x00

0x04

0x08

.

.
store
.
.
load

Thread 1 Thread 2Shared Memory

Interleaving dependencies complicate error propagation

GPU - Challenges

10

…
…

GPU ProgramCPU Program

No. of Threads

No. of Executions …
…

Thread Threads

• Average of ~5 years, Max 17 years
• > 5GB, data to be profiled in Circuit
• Inaccuracies in model accumulate

1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges - Summary

11

1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges - Summary

12

fm

fc , fs

Reg.

Mem.Contl.

Control flow
(fC)

Memory
(fm)

Static (fS)

• f
m

 constructs a memory dependency graph between instructions.

• We construct graph of whole kernel, instead of individual threads.

Updating f
m

13

Constructing the dependency graph

14

Solution: Sample threads with
unique control-flows for profiling
e.g. 3,840 out of 592,640 threads

profiled for Pathfinder

• Memory dependency, based on control-flow

• Limited possible control-flows

1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges

15

fm

fc , fs

Reg.

Mem.Contl.

Control flow
(fC)

Memory
(fm)

Static (fS)

• If a memory contains the same data we want to store in it

• Missing that store won’t result in any SDC

Lucky Stores

16

TF

Solution: Update f
c
to modify propagation probability of comparisons dominating

output stores.

1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges

17

fm

fc , fs

Reg.

Mem.Contl.

Control flow
(fC)

Memory
(fm)

Static (fS)

Trident - Workflow

18

Profiling

Execution

Mem
Profiling fmfc

fS

GPU-Trident - Workflow

19

Profiling

Execution

Parallelize this using
CPU resources

Mem
Profiling fmfc

fS
H-Intra

H-Inter

H-Value

H-Value

• GPU-Trident: A set of LLVM passes, driven by python scripts
URL: https://github.com/DependableSystemsLab/GPU-Trident

• Use LLFI-GPU for FI and use it as a baseline

• Predict SDC probability with GPU-Trident, compare with FI

• Evaluate GPU-Trident for 17 kernels (Rodinia and OSS HPC) at
• Kernel level
• Instruction level

Experiments - Overview

20

https://github.com/DependableSystemsLab/GPU-Trident

FI in GPU applications

21

CPU Thread

GPU Thread

GPU Thread

GPU Thread
CPU Thread

Compare
Memory

$A = 0x00
$B = A + 0x04
.
$C = A + B

Evaluating Kernel SDC probability

22

$A = 0x00
$B = A + 0x04
.
$C = A + B

$A = 0x00
$B = A + 0x04
.
$C = A + B

$A = 0x00
$B = A + 0x04
.
$C = A + B

…

T1 T2 Tn

0 0 0 0 0 1 1 1 1

5,000 random FI trials per kernel

Evaluating Instruction SDC probability

23

$A = 0x00
$B = A + 0x04
.
$C = A + B

$A = 0x00
$B = A + 0x04
.
$C = A + B

$A = 0x00
$B = A + 0x04
.
$C = A + B

…

T1 T2 Tn

0 0 0 0 0 1 1 1 1

100 random FI trials per instruction

• Mean absolute error for kernel SDC is 5.7% (Trident has error of 4.75%)

• Pearson correlation coefficient for kernel SDC is 0.88 (Without outliers 0.99)

• Average Pearson correlation coefficient for instructions is 0.83

Accuracy - Summary

24

Scalability - Summary

FI trials Speed up

1000 11x

3000 33x

5000 55x

25

• Kernel SDC probability

• Instruction SDC probability
• GPU-Trident is 2 orders of magnitude (~100x) faster than FI
• FI takes 7 hrs, while GPU-Trident takes less than 5 minutes

GPU-Trident needs to construct model once, while each FI trials requires
an application run

Impactful Errors

Software Solutions

26

Device/Circuit Level

Architectural Level

Operating System Level

Application Level
P

ro
te

ct
io

n
 O

ve
rh

ea
d

Soft Error

In
cr

ea
si

n
g

Software protection techniques are
more flexible and cost-effective!

Selective Instruction Duplication

27

Instruction Sequence Instruction Duplication

Instruction:
SDC Rate = X%
Overhead = Y%

A Knapsack ProblemTarget
Program

• Proposed by [DAC’09, Reddi], [ASPLOS’10, Feng], [CGO’16, Laguna]

Selective Instruction Duplication

28

• Modeling error propagation in GPU applications is challenging due to scale and
inaccuracy

• We develop heuristics, based on memory access and data patterns

• Experiments show our techniques are accurate and scalable

• GPU-TRIDENT: Efficient Modeling of Error Propagation in GPU Programs
(https://github.com/DependableSystemsLab/GPU-Trident)

• For questions: arehman.anwer1@gmail.com

Summary

29

https://github.com/DependableSystemsLab/GPU-Trident

