L

THE ﬁll_ﬂ

»SC20
/ OF lOowA

Everywhere | more

we dre | than hpc.

NVIDIA.

GPU-Trident: Efficient Modeling of
Error Propagation in GPU Programs
November 19, 2020

Soft Errors

Gate
Neutron

Source

I

Drain

1 ,,’0
L 090
1 ,/
‘- @ e-hPairs
09,
‘——@ © Nuclear Spallation
Bulk
A
B
- M
C =00
D
88,

Proton

(or other charged particle)
®4

. The ionizing track left by :
secondary particles can
. cause an erroneous current :
. pulse in one or multiple
neighboring transistors.

58,

TN

T Server Unavadabie - Micresolt batemet Erplarer i =lalx

Silent Data Corruption (SDC) e e——T S

‘ Server Application
| Unavailable

1
| The wab 2pplication you are attempting to access on this
1 4 el

@)oo T Nyt voa:

e.g. Amazon S3 Incident

Correct Output

Exceptions, No Output
~

Incorrect
Output

Normal Execution

Error Propagation

J

Traditional Solutions

* Error Correction Code (ECC)

* Hardware means

variations consumption

Guard-band

Average Worst-case

Software Solutions

Software protection techniques are
more flexible and cost-effective!

Protection Overhead
Increasing

Soft Error

Impactful Errors

Fault Injection

H_O,

Program Program
SA = 0x00 $A = 0x00
$B = A + 0x04 X sB=A+0x04
SC=A+B SC=A+B
Golden Output | Compare Fl Output

Fl injection — Overhead

« GPU-Qin [ISPASS’14, Fang], LLFI-GPU [SC'16,Li], SASSIFI [ISPASS’17, Hari]

* Highly inefficient, as it b2 adated

Time in minutes
(Log scale)
> o o o
m m m m
+ + + +
(&) — r W
* .
* .
*

+ OO SR LA SIS ¢ & o
5 B & & & L O O © 9 © &S N
é‘@“ee}°¢°§$\\quyy°\9\9OVOO°Q06/0°
> > =) =) & Qg
i <

*Timings obtained from our experiments using LLFI-GPU, other works report similar timings

Trident — for CPU (DSN’18, Li)

Insn. for Prediction

Inst. SDC prob.

Profiling B Prediction ‘ Overall SDC prob.

-

Source Code

Program Input

Output Insn.

v

GPU - Challenges

« Execution of GPU applications is inherently multi threaded

* Threads frequently communicate with each other

Interleaving dependencies complicate error propagation

Thread 1 Shared Memory Thread 2
‘l store | Istore |
-\Iload | [load |

[SC'16, Li]

Y20 N

GPU - Challenges

No. of Threads

No. of Executions

Thread

W

CPU Program

* Average of ~5 years, Max 17 years

 >5GB, data to be profiled in Circuit
* |naccuracies in model accumulate

W

Threads

W W -

GPU Program

10

Challenges - Summary

1. Tracking error across threads
2. Huge amount of states to profile

3. Accumulation of inaccuracies

11

Challenges - Summary

Tracking error across threads

Static (f,)

Reg.

Huge amount of states to profile

- O
A Iati £ . Control flow Memory
ccumulation of Inaccuracies OFC) Opm)

12

Updating f

. fm constructs a memory dependency graph between instructions.

* We construct graph of whole kernel, instead of individual threads.

__global void staticReverse(int *d, int n)
{

__shared___ int s[64];

int t = threadIdx.x;

int tr = n-t-1;

s[t] =dJt];

__syncthreads();

di.t] = s[tel;
}

13

Constructing the dependency graph

 Memory dependency, based on control-flow

* Limited possible control-flows

(

_

Solution: Sample threads with
unique control-flows for profiling
e.g. 3,840 out of 592,640 threads

profiled for Pathfinder

~

load

store

J

store

L

load

store

14

Challenges

Tracking error across threads

Static (f,)

Reg.

Huge amount of states to profile

- O
A Iati £ . Control flow Memory
ccumulation of Inaccuracies OFC) Opm)

15

Lucky Stores

* If a memory contains the same data we want to store in it

« Missing that store won’t result in any SDC

Solution: Update f_to modify propagation probability of comparisons dominating
output stores.

|

16

Challenges

Tracking error across threads

Static (f,)

Reg.

Huge amount of states to profile

- O
A Iati £ . Control flow Memory
ccumulation of Inaccuracies OFC) Opm)

17

Trident - Workflow

-~

Profiling

Js

¥ 3\
Q-

Execution

Mem

Profiling

18

GPU-Trident - Workflow

Parallelize this using
CPU resources

-~

Profiling

_

N

H-Value

o

H-Value

¥ 3\
-

>

Execution

Mem

Profiling

~

H-Intra

H-Inter

/

19

Experiments - Overview

GPU-Trident: A set of LLVM passes, driven by python scripts
URL: https://github.com/DependableSystemsLab/GPU-Trident

Use LLFI-GPU for Fl and use it as a baseline

Predict SDC probability with GPU-Trident, compare with Fl

Evaluate GPU-Trident for 17 kernels (Rodinia and OSS HPC) at
« Kernel level
 Instruction level

20

https://github.com/DependableSystemsLab/GPU-Trident

Fl in GPU applications

CPU Thread

b

GPU Thread

GPU Thread

=

GPU Thread

Compare

Memory

|:> CPU Thread

\

SA = 0x00
SB = A + 0x04

SC=A+B

21

Evaluating Kernel SDC probability

T1 T2 Tn
SA = 0x00 SA = 0x00 $A = 0x00
SB = A + 0x04 SB = A + 0x04 SB = A + 0x04
SC=A+B SC=A+B SC=A+B

o0 O 1 |0 1 1 1

5,000 random Fl trials per kernel

Evaluating Instruction SDC probability

T1 172 Tn
SA = 0x00 SA = 0x00 $A = 0x00
SB = A + 0x04 SB = A + 0x04 SB = A + 0x04
L
SC=A+B SC=A+B SC=A+B
o 0 |0 1 |0 1 1 1

100 random Fl trials per instruction

23

Accuracy - Summary

 Mean absolute error for kernel SDC is 5.7% (Trident has error of 4.75%)

100%

Fe)

©

:f-_’ 80% 3

7

o 60%

o ®

O Y L J

£ 40% Ze

s

X 20% s

(®)

®
8 0%
0% 20% 40% 60% 80% 100%

SDC % from Fl

« Pearson correlation coefficient for kernel SDC is 0.88 (Without outliers 0.99)

* Average Pearson correlation coefficient for instructions is 0.83

24

Scalability - Summary

* Kernel SDC probability

1000 11x
3000 33x
5000 55x

* Instruction SDC probability
 GPU-Trident is 2 orders of magnitude (~100x) faster than Fl
* Fl takes 7 hrs, while GPU-Trident takes less than 5 minutes

GPU-Trident needs to construct model once, while each Fl trials requires

an application run

25

Software Solutions

Protection Overhead
Increasing

Software protection techniques are
more flexible and cost-effective!

Soft Error

Impactful Errors

26

Selective Instruction Duplication

* Proposed by [DAC'09, Reddi], [ASPLOS’10, Feng], [CGO’16, Laguna]

020 a Target I . A Knapsack Problem

0 P Instruction:
0 (S)DC I;(\ated= X;/oo/

Q verhead = Y%

G O

© O---d--__
(0 Q @-9--ue .
S g PAEEEEEES =

@ checker

Instruction Sequence Instruction Duplication

Selective Instruction Duplication

m F| == Y=X == GPU-Trident

100

75

SDC Coverage
(&)}
o

25

0 25 50 Fi 100
Dynamic instruction protected

28

Summary

 Modeling error propagation in GPU applications is challenging due to scale and
inaccuracy

* We develop heuristics, based on memory access and data patterns
» Experiments show our techniques are accurate and scalable

 GPU-TRIDENT: Efficient Modeling of Error Propagation in GPU Programs
(https://github.com/DependableSystemsLab/GPU-Trident)

* For questions: arehman.anwerl@gmail.com

29

https://github.com/DependableSystemsLab/GPU-Trident

