
GPU-Trident: Efficient Modeling of 
Error Propagation in GPU Programs
November 19, 2020

Abdul Rehman Anwer
Guanpeng Li
Karthik Pattabiraman
Siva Hari 
Michael Sullivan
Timothy Tsai



Soft Errors
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Silent Data Corruption (SDC)
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Traditional Solutions

• Duplication
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Average Worst-case

Wastes power as gap 
between average and 
worst-case widens due to 
variations

Guard-band

Hardware duplication (i.e., 
DMR) can result in 2X 
slowdown and/or energy 
consumption

• Error Correction Code (ECC) 

• Hardware means

• Circuit hardening
Very expensive to deploy in practice!
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Software Solutions
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Software protection techniques are 
more flexible and cost-effective!



Fault Injection
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• GPU-Qin [ISPASS’14, Fang], LLFI-GPU [SC’16,Li], SASSIFI [ISPASS’17, Hari]

FI injection – Overhead

•   Highly inefficient, as it has to be repeated if application is updated 

~7 hrs. for 100 faults per instruction

*Timings obtained from our experiments using LLFI-GPU, other works report similar timings
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Trident – for CPU (DSN’18, Li)
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• Execution of GPU applications is inherently multi threaded

• Threads frequently communicate with each other

GPU - Challenges
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Interleaving dependencies complicate error propagation



GPU - Challenges
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GPU ProgramCPU Program

No. of Threads

No. of Executions … 
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Thread Threads

• Average of ~5 years, Max 17 years
• > 5GB, data to be profiled in Circuit
• Inaccuracies in model accumulate



1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges - Summary
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1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges - Summary
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• f
m 

 constructs a memory dependency graph between instructions.

• We construct graph of whole kernel, instead of individual threads.

Updating f
m
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Constructing the dependency graph
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Solution: Sample threads with 
unique control-flows for profiling 
e.g. 3,840 out of 592,640 threads 

profiled for Pathfinder

• Memory dependency, based on control-flow

• Limited possible control-flows



1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges
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• If a memory contains the same data we want to store in it

• Missing that store won’t result in any SDC

Lucky Stores
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TF

Solution: Update f
c 
to modify propagation probability of comparisons dominating 

output stores.



1. Tracking error across threads

2. Huge amount of states to profile

3. Accumulation of inaccuracies

Challenges
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Trident - Workflow
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GPU-Trident - Workflow
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• GPU-Trident: A set of LLVM passes, driven by python scripts
URL: https://github.com/DependableSystemsLab/GPU-Trident

• Use LLFI-GPU for FI and use it as a baseline

• Predict SDC probability with GPU-Trident, compare with FI

• Evaluate GPU-Trident for 17 kernels (Rodinia and OSS HPC) at
• Kernel level
• Instruction level

Experiments - Overview
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https://github.com/DependableSystemsLab/GPU-Trident


FI in GPU applications
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Evaluating Kernel SDC probability 
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Evaluating Instruction SDC probability 
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• Mean absolute error for kernel SDC is 5.7% (Trident has error of 4.75%)

• Pearson correlation coefficient for kernel SDC is 0.88 (Without outliers 0.99)

• Average Pearson correlation coefficient for instructions is 0.83

Accuracy - Summary
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Scalability - Summary

FI trials Speed up

1000 11x

3000 33x

5000 55x
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• Kernel SDC probability

• Instruction SDC probability
• GPU-Trident is 2 orders of magnitude (~100x) faster than FI
• FI takes 7 hrs, while GPU-Trident takes less than 5 minutes

GPU-Trident needs to construct model once, while each FI trials requires 
an application run 



Impactful Errors

Software Solutions
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Software protection techniques are 
more flexible and cost-effective!



Selective Instruction Duplication
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Instruction Sequence Instruction Duplication

Instruction:
SDC Rate = X%
Overhead = Y%

A Knapsack ProblemTarget
Program

• Proposed by [DAC’09, Reddi], [ASPLOS’10, Feng], [CGO’16, Laguna]



Selective Instruction Duplication
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• Modeling error propagation in GPU applications is challenging due to scale and 
inaccuracy

• We develop heuristics, based on memory access and data patterns

• Experiments show our techniques are accurate and scalable 

• GPU-TRIDENT: Efficient Modeling of Error Propagation in GPU Programs 
(https://github.com/DependableSystemsLab/GPU-Trident)

• For questions: arehman.anwer1@gmail.com

Summary
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https://github.com/DependableSystemsLab/GPU-Trident

