
How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method IBM Watson

ISSRE
2020

How Far Have We Come in Detecting
Anomalies in Distributed Systems? An

Empirical Study with a Statement-level Fault
Injection Method

Yong Yang1, Yifan Wu1, Karthik Pattabiraman2 , Long Wang3, Ying Li1

Peking University1

University of British Columbia2

 IBM Watson3

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P2

■ Distributed systems widely deployed in various sectors
■ With the increasing scale and complexity, distributed systems suffering from

frequent software and hardware faults
■ The early detection of the symptoms of failures, i.e. anomalies, can mitigate or

even prevent severe failures

Background

The evolvement of faults in distributed systems (Hadoop)

Error

Failure

Error
Reporting

Error
Resilience

Error

Error
Reporting

Error
Resilience

Error
Propagation

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P3

■ A variety of Anomaly Detection(AD) methods
■ Log-based methods: Deeplog[2], PCA approach[3], etc.
■ Metrics-based methods: LSTM-AD[4], Information-theoretic approach[5], etc.
■ Trace-based methods: READ[6], Path similarity approach[7], etc.

Background

What are the advantages and the disadvantages of various anomaly detectors?

No one has tried to systematically evaluate anomaly detectors of distributed systems

to explore how far we have come and how we should move forward.

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P4

■ A fault injection method that can simulate realistic faults to generate a wide
variety of anomalies is the prerequisite for comprehensively evaluating anomaly
detectors
■ Bit-flip FI techniques, inefficient in distributed systems

■ Injecting failures cannot simulate realistic faults

Motivation

■ Existing code-change FI techniques, only covering few types of faults

The process of a fault evolving into a
failure is missing

Limited coarse-grained failures cannot
represent the diversity of anomalies

A code snippet from Hadoop(NodeManager)
A code snippet from Hadoop

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P5

■ A systematic approach to evaluate the efficacy of anomaly detectors

Overview

 An overview of the evaluation approach

■ RQ1: What’s the pattern of anomalies in distributed systems?

■ RQ2: To what extent do distributed systems, by themselves, report the anomalies?
■ RQ3: To what extent do state-of-the-art anomaly detectors detect anomalies of

different types?

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P6

■ Fault Model
■ Faults on a single statement : based on an analysis of elements of 8 fundamental statements

■ Faults on multiple statements : based on an analysis of the real software bugs found in the recent
bug study[8] of Openstack

Fault Injection Methodology

 The fault model of SSFI

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P7

■ SSFI Overview
SSFI(Statement-level Software FI), able to inject 12 different types of software faults into

software systems that can be compiled into Bytecode. SSFI also provides always/random
activation mode for each fault

Fault Injection Methodology

 An overview of SSFI’s fault injection process

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P8

Fault Injection Methodology

 An example fault injected using SSFI

A: Source code

B: Bytecode

Bytecode Parser

parses runnable bytecode
into Jimple code

C: Jimple code
Fault injection parameters
from Config Parser (fault
type, location, etc.

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P9

Fault Injection Methodology

 An example fault injected using SSFI

C: Jimple code

Fault injection parameters
from Config Parser (fault
type, location, etc.

Fault Weaver
modifies the Jimple
code to injected a
specified fault

D: Modified Jimple code

E: Modified Bytecode

Source code

Converter compiles the

modified Jimple code into
runnable bytecode with an
injected fault

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P10

Evaluation Results
■ Evaluation Setup

 Systems used for evaluation

 Fig.6 An overview of the injected faults Fig. 7 Different types of anomalies

■ Three anomaly detectors
– Deeplog (log-based)
– MRD (metrics-based)
– READ (trace-based)

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P11

Evaluation Results
■ Silent Early Exit anomalies, more frequent in distributed systems due to

incomplete error-resilience mechanisms

The anomaly distribution in target systems The anomaly distribution in target systems

Explicitly record the error messages when designing the error-handling
mechanisms, regardless of whether the error is believed to be tolerated

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P12

Evaluation Results
■ The error reporting mechanisms, able to report the majority of the anomalies

(recall ranging from 82.1% to 92.8%) but with a high false alarm rate (26.6%)

Anomalies reported by distributed systems’ error reporting mechanisms

Simple methods are feasible, but get ready for frequent false alarms

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P13

Evaluation Results
■ Log-based method, better overall detection results than trace-based and

metrics-based methods, but not for all anomaly types
■ State-of-the-art anomaly detectors, able to detect the existence of anomalies with

99.08% precision and 90.60% recall

The detection result of three anomaly detectors

The detection precision and recall for each anomaly type

Existing AD methods are powerful to decide whether there are anomalies

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P14

Evaluation Results
■ There is still a long way to go to pinpoint the accurate location of the detected

anomalies

The detection latency and locating accuracy of Deeplog and READ

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P15

Summary

■ A systematic approach to evaluating existing anomaly detectors

■ A realistic software fault injection method for distributed systems

■ Findings from the comprehensive evaluation give inspiration
for developers and researchers

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P16

Q&A

SSFI project: https://github.com/alexvanc/ssfi
Email: yang.yong@pku.edu.cn

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

P17

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet services fail, and what can be done about it?” in
USENIX symposium on internet technologies and systems, vol. 67. Seattle, WA, 2003.
[2] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis from system logs through deep
learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017,
pp. 1285–1298.
[3] Wei Xu, Ling Huang, Armando Fox, David Paerson, and Michael I Jordan. 2009. Detecting large-scale system problems
by mining console logs. In Proc. ACM Symposium on Operating Systems Principles (SOSP). 117–132.
[4] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks for anomaly detection in time series,”
in Proceedings. Presses universitaires de Louvain, 2015, p. 89.
[5] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. Ward, “Effi- cient fault detection and diagnosis in complex software
systems with information-theoretic monitoring,” IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 4, pp.
510–522, 2011.
[6] Y. Yang, L. Wang, J. Gu, and Y. Li, “Transparently capturing request execution path for anomaly detection,” 2020.
[7] Y.-Y. M. Chen, A. J. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and
E.A.Brewer,Path-basedfailureandevolutionmanagement. University of California, Berkeley, 2004.
[8] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti, “How bad can a bug get? an empirical analysis of
software failures in the openstack cloud computing platform,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2019, pp.
200–211.

References

