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■ Distributed systems widely deployed in various sectors 
■ With the increasing scale and complexity, distributed systems suffering from 

frequent software and hardware faults 
■ The early detection of the symptoms of failures, i.e. anomalies, can mitigate or 

even prevent severe failures

Background

The evolvement of faults in distributed systems (Hadoop)  
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■ A variety of Anomaly Detection(AD) methods
■ Log-based methods: Deeplog[2], PCA approach[3], etc.
■ Metrics-based methods: LSTM-AD[4], Information-theoretic approach[5], etc.
■ Trace-based methods: READ[6], Path similarity approach[7], etc.

Background

What are the advantages and the disadvantages of various anomaly detectors?

No one has tried to systematically evaluate anomaly detectors of distributed systems

to explore how far we have come and how we should move forward. 
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■ A fault injection method that can simulate realistic faults to generate a wide 
variety of anomalies is the prerequisite for comprehensively evaluating anomaly 
detectors
■ Bit-flip FI techniques, inefficient in distributed systems

■ Injecting failures cannot simulate realistic faults 

Motivation

■ Existing code-change FI techniques, only covering few types of faults

The process of a fault evolving into a 
failure is missing

Limited coarse-grained failures cannot 
represent the diversity of anomalies 

A code snippet from Hadoop(NodeManager)
A code snippet from Hadoop



How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault 
Injection Method

P5

■  A systematic approach to evaluate the efficacy of anomaly detectors

Overview

 An overview of the evaluation approach 

■ RQ1: What’s the pattern of anomalies in distributed systems?

■ RQ2: To what extent do distributed systems, by themselves, report the anomalies?
■ RQ3: To what extent do state-of-the-art anomaly detectors detect anomalies of 

different types? 
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■ Fault Model
■ Faults on a single statement : based on an analysis of elements of 8 fundamental statements

■ Faults on multiple statements : based on an analysis of the real software bugs found in the recent 
bug study[8] of Openstack

Fault Injection Methodology

 The fault model of SSFI 
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■ SSFI Overview
SSFI(Statement-level Software FI), able to inject 12 different types of software faults into 

software systems that can be compiled into Bytecode. SSFI also provides always/random 
activation mode for each fault

Fault Injection Methodology

 An overview of  SSFI’s fault injection process 
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Fault Injection Methodology

 An example fault injected using SSFI  

A: Source code

B: Bytecode 

Bytecode Parser

parses runnable bytecode 
into Jimple code 

C: Jimple code
Fault injection parameters 
from Config Parser (fault 
type, location, etc.
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Fault Injection Methodology

 An example fault injected using SSFI  

C: Jimple code

Fault injection parameters 
from Config Parser (fault 
type, location, etc.

Fault Weaver 
modifies the Jimple 
code to injected a 
specified fault 

D: Modified Jimple code

E: Modified Bytecode

Source code

Converter compiles the 

modified Jimple code into 
runnable bytecode with an
injected fault 
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Evaluation Results
■ Evaluation Setup

 Systems used for evaluation 

 Fig.6 An overview of the injected faults  Fig. 7 Different types of anomalies 

■ Three anomaly detectors
– Deeplog (log-based)
– MRD (metrics-based)
– READ (trace-based)
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Evaluation Results
■ Silent Early Exit anomalies, more frequent in distributed systems due to 

incomplete error-resilience mechanisms 

The anomaly distribution in target systems The anomaly distribution in target systems 

Explicitly record the error messages when designing the error-handling 
mechanisms, regardless of whether the error is believed to be tolerated
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Evaluation Results
■ The error reporting mechanisms, able to report the majority of the anomalies 

(recall ranging from 82.1% to 92.8%) but with a high false alarm rate (26.6%) 

Anomalies reported by distributed systems’ error reporting mechanisms 

Simple methods are feasible, but get ready for frequent false alarms 
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Evaluation Results
■ Log-based method, better overall detection results than trace-based and 

metrics-based methods, but not for all anomaly types
■ State-of-the-art anomaly detectors, able to detect the existence of anomalies with 

99.08% precision and 90.60% recall

The detection result of three anomaly detectors

The detection precision and recall for each anomaly type 

Existing AD methods are powerful to decide whether there are anomalies  
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Evaluation Results
■ There is still a long way to go to pinpoint the accurate location of the detected 

anomalies

The detection latency and locating accuracy of Deeplog and READ 
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Summary

■ A systematic approach to evaluating existing anomaly detectors

■ A realistic software fault injection method for distributed systems

■ Findings from the comprehensive evaluation give inspiration 
for developers and researchers
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Q&A

SSFI project: https://github.com/alexvanc/ssfi 
Email: yang.yong@pku.edu.cn
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