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Heterogeneous firm papers that need para-
metric distributions—most of the literature fol-
lowing Melitz (2003)—use the Pareto distribu-
tion. The use of this distribution allows a large
set of heterogeneous firms models to deliver
the simple gains from trade (GFT) formula de-
veloped by Arkolakis, Costinot and Rodriguez-
Clare (2012) (hereafter, ACR). This implication
is closely tied to the fact that Pareto allows for
a constant elasticity of substitution import sys-
tem.1

Three important criteria have motivated re-
searchers to select the Pareto distribution for het-
erogeneity. The first is tractability. Assuming
Pareto makes it relatively easy to derive aggre-
gate properties in an analytical model. Users
of the Pareto distribution also justify it on em-
pirical and theoretical grounds. For example,
ACR argue that the Pareto provides “a reason-
able approximation for the right tail of the ob-
served distribution of firm sizes” and is “consis-
tent with simple stochastic processes for firm-
level growth, entry, and exit...”

This paper investigates the consequences of
replacing the assumption of Pareto heterogene-
ity with log-normal heterogeneity. This case is
interesting because it (a) maintains some desir-
able analytic features of Pareto, (b) fits the com-
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1Two papers remove the long fat tail of the standard Pareto
by bounding productivity from above. The first, Helpman,
Melitz and Rubinstein (2008), shows that this leads to variable
trade elasticities. The more recent, Feenstra (2013), shows how
double truncated Pareto changes the analysis of pro-competitive
effects of trade.

plete distribution of firm sales rather than just
approximating the right tail, and (c) can be gen-
erated under equally plausible processes (see on-
line appendix). The log-normal is reasonably
tractable but its use sacrifices some “scale-free”
properties conveyed by the Pareto distribution.
Aspects of the the calibration that do not matter
under Pareto lead to important differences in the
gains from trade under log-normal.

I. Welfare Theory

We assume CES monopolistic competition
with a representative worker of country i en-
dowed with Li efficiency units, paid wages wi,
and facing price index Pi. As shown in the ap-
pendix, welfare (defined by real income) is given
by

(1) Wi ≡
wiLi
Pi

=

(
L

σf
1/σ
ii

) σ
σ−1

σ − 1

τiiα∗ii
,

where α∗ii, τii and fii denote the internal zero-
profit cost, trade cost, and fixed production cost.

Following a change in international trade
costs, welfare varies according to changes in the
only endogenous variable in (1), α∗ii:

(2)
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∗
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i
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i

)
.

Changes in welfare depend on changes in the do-
mestic trade share, πii, and in the mass of do-
mestic entrants, M e

i . Both effects are stronger
when the partial trade elasticity, εii, that affects
internal trade is small.2

The result in (2) that marginal changes in wel-
fare mirror changes in the domestic cost cutoff
focuses our attention on the role of selection.
Assuming that successful entry in the domestic
market is prevalent, it is the left tail of the distri-
bution that is crucial for welfare. This is the part

2By “partial” we mean that incomes and price indices are
held constant as in a gravity equation estimated with origin and
destination fixed effects.
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of the distribution where Pareto and log-normal
differ most strikingly.

Shifting to the last equality in (2), welfare falls
with the domestic market share since εii < 0 but
it is increasing in the mass of entrants. Under
Pareto, εni = ε, a constant across country pairs,
which implies dM e

i = 0.3 This means we can
integrate marginal changes to obtain the simple
welfare formula of ACR, where Ŵi = π̂

1/ε
ii ,

where “hats” denote total changes. The log-
normal case is much more complex and requires
knowledge of the whole distribution of bilateral
cutoffs. To build intuition on when and why de-
parting from Pareto matters, we investigate the
simplest possible case, the two-country symmet-
ric version of the model described by Melitz and
Redding (2013).

II. Calibration of the symmetric model

To consider the case of two symmetric coun-
tries of size L, set τni = τin = τ , τii = 1, fii =
fd, fni = fin = fx. We know from (1) that the
domestic cutoff, α∗ii = α∗d is the sole endoge-
nous determinant of welfare. In this model, the
cutoff equation is derived from the zero profit
condition, one for the domestic and one for the
export market in the trading equilibrium. Under
symmetry, the ratio of export to domestic cutoffs
depends only on a combination of parameters:

(3)
α∗x
α∗d

=
1

τ

(
fd
fx

)1/(σ−1)

,

Equilibrium also features the free-entry condi-
tion that expected profits are equal to sunk costs:

fd ×G(α∗d) [H(α∗d)− 1](4)

+ fx ×G(α∗x) [H(α∗x)− 1] = fE.

The H function is defined as H(α∗) ≡
1

α∗1−σ

∫ α∗

0
α1−σ g(α)

G(α∗)
dα, a monotonic, invert-

ible function. Equations (3) and (4) character-
ize the equilibrium domestic cutoff α∗d. Once
the values for L, τ , f , fE , fx, σ have been
set, and the functional form for G() has been
chosen, one can calculate welfare. Following
(1), the GFT simplifies to the ratio of domes-
tic cutoffs, autarkic over openness cases: Ti =
α∗dA/α

∗
d. The domestic cutoff in autarky is ob-

3See the working paper version of ACR for the proof.

tained by restating the free entry condition as
fd ×G(α∗dA) [H(α∗dA)− 1] = fE .

The last step is therefore to specify G(α).
Pareto-distributed productivity ϕ ≡ 1/α im-
plies a power law CDF for α, with shape param-
eter θ. A log-normal distribution of α retains the
log-normality of productivity (with location pa-
rameter µ and dispersion parameter ν) but with
a change in the log-mean parameter from µ to
−µ. The CDFs for α are therefore given by

(5) G(α) =

{(
α
ᾱ

)θ
Pareto

Φ
(

lnα+µ
ν

)
Log-normal,

where we use Φ to denote the CDF of the stan-
dard normal. The equations needed for the quan-
tification of the gains from trade are therefore
(3) and (4), which provide α∗d conditional on
G(α∗d), itself defined by (5).

A. The 4 key moments

There are four moments that are crucial in or-
der to calibrate the unknown parameters of the
two-country model.
M1: The share of firms that pay the sunk cost
and successfully enter, G(α∗d) in the model.
Since the number of firms that pay the entry cost
but exit immediately is not observable, M1 is a
challenge to calibrate. We show in the appendix
that under Pareto, the GFT calculation is invari-
ant to M1. Unfortunately, M1 matters under log-
normal, so our sensitivity analysis considers a
range of values.
M2: The share of firms that are successful ex-
porters, G(α∗x)/G(α∗d) in the model. The target
value for M2 is 0.18, based on export rates of US
firms reported by Melitz and Redding (2013).
M3 is the data moment used to calibrate the
firm’s heterogeneity parameter: θ in Pareto and
ν in log-normal. There are two alternative mo-
ments that the model links closely to the hetero-
geneity parameters. The first, which we refer to
as M3, is an estimate derived from the distribu-
tion of firm-level sales (exports) in some market:
the micro-data approach, on which we concen-
trate in the main text. The second, which we call
M3′ is the trade elasticity εx: the macro-data ap-
proach, covered in the appendix.
M4: The share of export value in the total sales
of exporters. Using CES and symmetry, M4 sets



VOL. VOL NO. ISSUE WELFARE AND TRADE WITHOUT PARETO 3

the benchmark trade cost τ0. Indeed, M4 =
τ1−σ
0

1+τ1−σ
0

, which Melitz and Redding (2013) take
as 0.14 from US exporter data. Setting σ = 4,
we have τ0 = ([(1−M4)/M4])1/3 = 1.83.

Two parameters still need to be set: the CES
σ, and the domestic fixed cost, fd. We follow
Melitz and Redding (2013) in setting σ = 4.
Since equations (3) and (4) imply that only rel-
ative fx/fd matters for equilibrium cutoffs, we
set fd = 1.

B. QQ estimators of shape parameters

Each of the two primitive distributions is char-
acterized by a location parameter (ᾱ ≡ 1/ϕ
in Pareto or µ in log-normal) and a shape pa-
rameter (θ or ν) governing heterogeneity. For
the trade elasticities and GFT, location parame-
ters do not matter whereas heterogeneity (falling
with θ and rising with ν) is crucial.

As comprehensive and reliable data on firm-
level productivity are difficult to obtain, we in-
stead obtain M3 from data on the size distri-
bution of exports for firms from a given origin
in a given destination. In so doing, we rely
on the CES monopolistic competition assump-
tion, which implies that sales of an exporter
from i to n, with cost α can be expressed as
xni(α) = Kniα

1−σ. The Kni factor combines
all the terms that depend on origin and destina-
tion but not on the identity of the firm.

Pareto and log-normal variables share the fea-
ture that raising them to a power retains the
original distribution, except for simple transfor-
mations of the parameters. Therefore, CES-
MC combined with productivity distributed
Pareto(ϕ, θ) implies that the sales of firms in any
given market will be distributed Pareto(ϕ̃, θ̃),
where θ̃ = θ

σ−1
. If ϕ is log-N (µ, ν) then ϕσ−1

is log-N (µ̃, ν̃), with ν̃ = (σ − 1)ν. Estimating
θ̃ and ν̃, and postulating a value for σ, we can
back out estimates of θ and ν.

We estimate 1/θ̃ and ν̃ by taking advantage of
a linear relationship between empirical quantiles
and theoretical quantiles of log sales data. Orig-
inally used for data visualization, the asymptotic
properties of this method are analyzed by Kratz
and Resnick (1996), who call it a QQ estima-
tor. Dropping country subscripts for clarity, we
denote sales as xi where i now indexes firms as-
cending order of individual sales. Thus, i = 1 is

the minimum sales and i = n is the maximum.
The empirical quantiles of the sorted log sales
data are QE

i = lnxi and the empirical CDF is
F̂i = (i− 0.3)/(n+ 0.4).

The distribution of lnxi takes an exponential
form if xi is Pareto:

(6) FP(lnx) = 1− exp[−θ̃(lnx− lnx)],

whereas the corresponding CDF of lnxi under
log-normal xi is normal:

(7) FLN(lnx) = Φ((lnx− µ̃)/ν̃).

The QQ estimator minimizes the sum of the
squared errors between the theoretical and em-
pirical quantiles. The theoretical quantiles im-
plied by each distribution are obtained by apply-
ing the respective formulas for the inverse CDFs
to the empirical CDF:

(8) QP
i = F−1

P (F̂i) = lnx− 1

θ̃
ln(1− F̂i),

(9) QLN
i = F−1

LN (F̂i) = µ̃/ν̃ + ν̃Φ−1(F̂i).

The QQ estimator regresses the empirical quan-
tile, QE

i , on the theoretical quantiles, QP
i or QLN

i .
Thus, the heterogeneity parameter ν̃ of the log-
normal distribution can be recovered as the co-
efficient on Φ−1(F̂i). The primitive productiv-
ity parameter ν is given by ν̃/(σ − 1). In the
case of Pareto, the right hand side variable is
− ln(1 − F̂i). The coefficient on − ln(1 − F̂i)
gives us 1/θ̃ from which we can back out the
primitive parameter θ = (σ − 1)θ̃. We provide
more information on the QQ estimator and com-
pare it to the more familiar rank-size regression
in the appendix.

One advantage of the QQ estimator is that the
linearity of the relationship between the theoret-
ical and empirical quantiles means that the same
estimate of the slope should be obtained even
when the data are truncated. If the assumed
distribution (Pareto or log-normal) fits the data
well, we should recover the same slope estimate
even when estimating on truncated subsamples.

We implement the QQ estimators on firm-
level exports for the year 2000, using two
sources, one for French exporters, and the other
one for Chinese exporters. For both set of ex-
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TABLE 1—PARETO VS LOG-NORMAL: QQ REGRESSIONS (FRENCH EXPORTS TO BELGIUM IN 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 34751 17376 8688 1737 1390 1042 695 347
Log-normal: ν̃ 2.392 2.344 2.409 2.468 2.450 2.447 2.457 2.486
R2 0.999 0.999 1.000 0.999 0.998 0.998 0.996 0.992
ν 0.797 0.781 0.803 0.823 0.817 0.816 0.819 0.829
Pareto: 1/θ̃ 2.146 1.390 1.174 0.915 0.884 0.855 0.822 0.779
R2 0.804 0.966 0.981 0.990 0.992 0.994 0.994 0.994
θ 1.398 2.158 2.555 3.278 3.392 3.511 3.650 3.849
The dependent variable is the log exports of French firms to Belgium in 2000. The RHS is Φ−1(F̂i) for log-normal and ln(1−F̂i)

for Pareto. ν and θ are calculated using σ = 4.

FIGURE 1. QQ GRAPHS

(a) French firms→ Belgium (b) Chinese firms→ Japan
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porters we use a leading destination: Belgium
for French firms and Japan for Chinese ones.
The precise mapping between productivity and
sales distributions only holds for individual des-
tination markets. Nevertheless, we also show
in the appendix that the total sales distribution
for French and Spanish firms follow distribu-
tions that resemble the log-normal more than
the Pareto. As the theory fits better for pro-
ducing firms, we show in results available upon
request that the sample excluding intermediary
firms continues to exhibit log-normality.

Table 1 reports results of QQ regressions
for log-normal (top panel) and Pareto (bottom
panel) assumptions for the theoretical quantiles.
The first column retains all French exporters to
Belgium in 2000, whereas the other columns
successively increase the amount of truncation.
The log-normal quantiles can explain 99.9% of

the variation in the untruncated empirical quan-
tiles, compared to 80% for Pareto. In the log-
normal case the slope coefficient remains sta-
ble even as increasingly high shares of small ex-
porters are removed. This what one would ex-
pect if the assumed distribution is correct. On
the other hand, truncation dramatically changes
the slope for the Pareto quantiles. This echoes
results obtained by Eeckhout (2004) for city size
distributions.

When running the same regressions on Chi-
nese exports to Japan (the corresponding table
can be found in the appendix), the same pattern
emerges: log-normal seems to be a much better
description of the data. The easiest way to see
this is graphically. Figure 1, plots for both the
French and the Chinese samples the relationship
between the theoretical and empirical quantiles
(top) and the histograms (bottom).
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III. Micro-data simulations

Here we take as a benchmark M3 the values
of θ obtained from truncated sample columns of
Table 1. While this does not matter much for
log-normal (for which we take the un-truncated
estimates), it is compulsory for Pareto, since the
model needs θ > σ − 1 > 3 for that case. With
the value of θ = 4.25 used by Melitz and Red-
ding (2013) in mind, we choose the top 1% esti-
mates as our benchmark: that is θ = 3.849 and
ν = 0.797 for the French exporters case, and
θ = 4.854 and ν = 0.853 for China.

We present results in a set of figures that show
the GFT for both the Pareto and the log-normal
cases, for values of τ0/2 < τ < 2τ0, with
τ0, our benchmark level of trade costs. An ad-
vantage of that focus is that it keeps us within
the range of parameters where α∗x < α∗d, en-
suring that exporters are partitioned (in terms of
productivity) from firms that serve the domestic
market only.

As stated above, the share of firms that enter
successfully (M1) affects gains from trade in the
log-normal case, but not in the Pareto one. Fig-
ure 2 investigates the sensitivity of results when
entry rates goes from tiny values (0.0055 as in
Melitz and Redding (2013)), to very large ones
(up to 0.75). The appendix shows that the im-
pact of a rise in M1 on GFT is in general am-
biguous, depending on relative rates of changes
in α∗ under autarky and trading situations. A
unique feature of Pareto is that those rates of
change are exactly the same. Under log-normal,
α∗dA rises faster than α∗d. Intuitively, this is due
to an additional detrimental effect on purely lo-
cal firms under trade. In that situation, exporters
at home exert a pressure on inputs, and exporters
from the foreign country increase competition
on the domestic market, such that the change in
expected profits (determining the domestic cut-
off) is lower under trade than under autarky, and
gains from trade increase with M1. This rein-
forces the point following from equation (1) that
it is not only the behavior in the right tail of
the productivity distribution that matters for wel-
fare. When M1 increases, cutoffs lie in regions
where the two distributions diverge, and that af-
fects relative welfare in a quantitatively relevant
way. This raises the question of the appropri-
ate value of M1. The fact that we do observe in
the French, Chinese and Spanish domestic sales

data a bell-shaped PDF suggests that more than
half the potential entrants are choosing to oper-
ate (otherwise we would face a strictly declining
PDF). As a conservative estimate, we therefore
set M1=0.5 as our benchmark.

The second simulation, depicted in Figure 3
looks at the influence of truncation for combina-
tions of parameters of the distributions. We keep
ν at its benchmark level. Now it is the Pareto
case that varies according to the different values
of θ chosen (which depends on truncation). It
is interesting to note that in both cases a larger
variance in the productivity of firms (low θ or
high ν) increases welfare: heterogeneity mat-
ters. Hence truncating the data, which results
in larger values of θ—needed for the integrals to
be bounded in this model—has an important ef-
fect on the size of gains from trade obtained: it
lowers them.

IV. Discussion

In alternative simulations (in the appendix),
we calibrate heterogeneity parameters on the
macro-data trade elasticity, and find slight differ-
ences in GFT between the Pareto and log-normal
assumptions. Hence, the precise method of cali-
bration matters a great deal when trying to assess
the importance of the distributional assumption.
The micro-data method points to large GFT dif-
ferences when the macro-data method points to
very similar welfare outcomes.

Which calibration should be preferred? ACR
make a compelling case for the macro-data cal-
ibration. However, we have several concerns.
First, it seems more natural to actually use firm-
level data to recover firms’ heterogeneity param-
eters. More crucially, a gravity equation with a
constant trade elasticity is mis-specified under
any distribution other than Pareto. That is, the
empirical prediction that εni is constant across
pairs of countries is unique to the Pareto distri-
bution. The two papers we know of that test for
non-constant trade elasticities (Helpman, Melitz
and Rubinstein (2008) and Novy (2013)) find
distance elasticities to be indeed non-constant.
Our ongoing work investigates the diversity of
those reactions to trade costs in a more appropri-
ate way, also departing from the massive simpli-
fication of the case of two symmetric countries.
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FIGURE 2. WELFARE GAINS, SENSITIVITY TO M1 (ENTRY RATE)

(a) French firms→ Belgium (b) Chinese firms→ Japan
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FIGURE 3. WELFARE GAINS, SENSITIVITY TO M3 (TRUNCATION)

(a) French firms→ Belgium (b) Chinese firms→ Japan

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

τ

G
ai

ns
 fr

om
 T

ra
de

 (
W

el
f. 

tr
ad

e 
/ W

el
f. 

au
ta

rk
y)

 

 

LN
Pareto (top 5%)
Pareto (top 4%)
Pareto (top 2%)
Pareto (top 1%)

Bench. τ

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

τ

G
ai

ns
 fr

om
 T

ra
de

 (
W

el
f. 

tr
ad

e 
/ W

el
f. 

au
ta

rk
y)

 

 

LN
Pareto (top 25%)
Pareto (top 5%)
Pareto (top 2%)
Pareto (top 1%)

Bench. τ

REFERENCES

Arkolakis, Costas, Arnaud Costinot, and
Andrés Rodriguez-Clare. 2012. “New Trade
Models, Same Old Gains?” American Eco-
nomic Review, 102(1): 94–130.

Eeckhout, Jan. 2004. “Gibrat’s law for (all)
cities.” American Economic Review, 1429–
1451.

Feenstra, Robert C. 2013. “Restoring the
Product Variety and Pro-competitive Gains
from Trade with Heterogeneous Firms and
Bounded Productivity.” UC Davis Mimeo.

Helpman, Elhanan, Marc Melitz, and
Yona Rubinstein. 2008. “Estimating Trade
Flows: Trading Partners and Trading Vol-

umes.” Quarterly Journal of Economics,
123(2): 441–487.

Kratz, Marie, and Sidney I Resnick. 1996.
“The QQ-estimator and heavy tails.” Stochas-
tic Models, 12(4): 699–724.

Melitz, Marc J. 2003. “The Impact of Trade
on Intra-Industry Reallocations and Aggre-
gate Industry Productivity.” Econometrica,
71(6): 1695–1725.

Melitz, Marc J., and Stephen J. Redding.
2013. “Firm Heterogeneity and Aggregate
Welfare.” National Bureau of Economic Re-
search Working Paper 18919.

Novy, Dennis. 2013. “International trade with-
out CES: Estimating translog gravity.” Jour-
nal of International Economics, 89(2): 271–
282.


