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Abstract

To understand heterogeneous economic agents, one frequently models them with
parametric statistical distributions. A variety of distributions have proven useful. This
paper assembles information on these distributions from a number of sources. It also
highlights the relationships between the distributions. Where possible, I also discuss the
underlying processes that give rise to the different distributions. References to recent
applications and debates are provided.

1 Introduction

Economic variables exhibiting heterogeneity—such as size, incomes, factor prices, productiv-
ity, and trade costs—share some common features. They are usually positive, continuous, and
without upper limits. While heterogeneity has a long history in economics, most economists
were trained to use models involving representative individuals and firms. There now appears
to be a resurgence of interest in heterogeneity. Examples of variables where hetereogeneity is
thought to be important include individual incomes (Pareto, 1896), consumer preferences (An-
derson, de Palma and Thisse), urban populations (Zipf, Krugman, Gabaix, Eeckhout), firm
sizes (Axtell, Cabral and Mata), and productivities (Kortum, Melitz). Attention to skewed
distributions with long tails has even spilled over into books intende for popular audiences
such The Long Tail and Black Swan.

Papers on heterogeneity often refer to specific distributions such as the Pareto, Frechet,
and Log-normal. These references are, by necessity, usually quite brief. Authors wishing to
know more about the relevant distributions and how they relate to each other must consult
a variety of large and sometimes difficult-to-find volumes (or search through the fragmentary
information on the Web).

This paper collects a variety of results about the main distributions used in the literature.
Most references organize their coverage around the specific distributions. I depart from this
practice and organize around particular topics: density functions, relationships between them,
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Table 1: Symmetric Distributions

Uniform (Rectangular)
f(x) = 1

β−α Range: α ≤ x ≤ β

F (x) = x−α
β−α Standardized form: α = 0, β = 1

Normal (Gaussian)
f(x) = φ[(x− µ)/σ] Range: −∞ < x <∞
F (x) = Φ[(x− µ)/σ] Standardized form: µ = 0, σ = 1, where φ[] and Φ[] are PDF and CDF
of the standard Normal(0,1) distribution.

Logistic
F (x) = 1/(1 + exp[−(x− µ)/σ])

moments. The motivation for this is that the standard treatment tends to make it difficult to
see commonalities and differences. My imagined audience has not yet decided which distribu-
tion fits the data or which distribution to assume in a model but wants to scan through some
plausible alternatives. A complete coverage requires a massive volume or two.1 I have been
very selective in what I include and tend to emphasize things that seem useful, interesting, or
confusing. I am no expert on these matters and it is nearly certain that I remain confused on
many issues. I hope for the reader’s forbearance and request that he or she contact me with
suggested corrections, clarifications, and additions.

2 The density functions

In this section I show the pdf, f(x), and cdf, F (x), of each density. Each reference I have
employed uses different notation. Thus, for most distributions there is no standard set of
parameters. To make it easier to see the relationships between distributions, I have tried to
use parameters that correspond to each other. A parameter capturing a central tendency
of the data is denoted µ. Lower and upper bounds are denoted α and β. The parameter
measuring decay in the right tail is λ. It is inversely related to the spread of the distribution.

3 Origins and relations

Each distribution relates to others, sometimes because one is a limiting value of the order
statistics of a large sample and sometimes through monotonic transformations. Most distri-
butions seem to be linked to the Exponential in one way or the other.

1See Johnson, Kotz, and Balakrishnan (1994). Even this reference skimps on certain distributions, in
particular the Frechet. On the other hand, Bury (1999) only mentions the Pareto briefly in connection with
his thorough coverage of the Frechet.
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Table 2: The Skewed Distributions

Exponential
f(x) = λ exp[−λ(x− α)] Range: 0 ≤ α ≤ x
F (x) = 1− exp[−λ(x− α)] Standardized form: α = 0, λ = 1

Pareto f(x) = λαλx−λ−1 Range: 0 < α ≤ x
F (x) = 1− (x/α)−λ Standardized form: α = 1, Zipf form: λ = 1.

Power
f(x) = λβ−λxλ−1 Range: 0 < x < β
F (x) = (x/β)λ Uniform(0,1): λ = 1, β = 1.

Gumbel (Type 1 Extreme Value, log-Weibull, double-exponential, Gompertz, Fisher-Tippet)
f(x) = (1/σ) exp{−(x− µ)/σ − exp[−(x− µ)/σ]} Range: −∞ < x <∞
F (x) = exp{− exp[−(x− µ)/σ]} Standardized form: σ = 1, µ = 0.

Frechet (Type 2 Extreme Value, log-Gompertz, inverse-Weibull)
f(x) = σλλx−λ−1 exp{−(x/σ)−λ} Range: 0 ≤ x
F (x) = exp{−(x/σ)−λ} Standardized form: σ = 1.

Weibull (Type 3 Extreme Value: minimum)
f(x) = σ−λλxλ−1 exp{−(x/σ)λ} Range: 0 ≤ x, 0 < σ, λ
F (x) = 1− exp{−(x/σ)λ} Standardized form: σ = 1. Exponential form: λ = 1

Rayleigh form: λ = 2, σW → σR
√

2.

Rayleigh
f(x) = [x/σ2] exp[−.5(x/σ)2] Range: 0 ≤ x, 0 < σ
F (x) = 1− exp[−.5(x/σ)2] Standardized form: σ = 1

Log-Normal
f(x) = φ[(lnx− µ)/σ]/(xσ) Range: 0 < x
F (x) = Φ[(ln x− µ)/σ] Standardized form: µ = 0, σ = 1

Fisk (Log-Logistic)2

f(x) = (λ/σ)(x/σ)λ−1[1 + (x/σ)λ]−2 Range: x > 0
F (x) = 1/(1 + [x/σ]−λ)
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3.1 Sums and products

Log-normality and the central limit theorem. An analogous derivation of Pareto (which may
not have finite mean and variance therefore might violate the assumptions of the Central limit
theorem)?

3.2 Extreme values

The Gumbel, Frechet and Weibull are called extreme value distributions (EVD). They are
the only three forms that such distributions can take. Each has a “basin of attraction,” i.e.
a set of original distributions which, if one take a large number of draws from the resulting
maximum, gives rise to the particular EVD. The name Weibull is conventionally used to
denote the distribution of the minimum. To distinguish the the case of of the maximum, I
propose that distribution be called Weibull-max.

Gumbels come from distributions that are not bounded above but do have a full set of
finite moments. The maximum from a sample of Normal, Log-Normal, Exponential, Gamma,
logistic, and Weibull distributions will be distributed Gumbel. The maximum of a finite set
of n Gumbels is Gumbel with the same shape parameter σ but with µ replaced by µ+σ ln(n).

Frechets arise when the maximum is unbounded and some of the moments are not finite.
Two examples are the Cauchy and Pareto distribution. The maximum of Frechets would also
be Frechet. The maximum of a finite set of n Frechets is Frechet with the same λ but with θ
replaced by σn1/λ.

Weibulls come from distributions that have a bounded lower tail. The lowest draws from
a sample of Log-Normals, Gammas, Betas, Frechets, and other Weibulls will also be Weibull.
The minimum of a finite set of n Weibull is Weibull with the σ replaced by σn−1/λ.

The maximum of n Paretos is given by the distribution function F (x) = [1 − (x/α)−λ]n.
The minimum of n Paretos is also Pareto but with λ replaced with nλ. Thus the Pareto, like
the Weibull, is “closed with respect to the minimum.”3

3.3 Logarithmic, inverse, and power transformations

General rule for monotonic, continuous, invertible, differentiable functions4: If X has CDF
FX(x) and Y = g(X), then FY (y) = FX(g−1(x)) if g′(X) > 0 and FY (y) = 1 − FX(g−1(x))
for g′(X) < 0.

Two common transformations are applying the natural logarithm and raising the original
variable to some power. As Pareto is an important distribution, I use it for two examples.
Suppose X is Pareto with minimum x and shape λ. Then Y = ln(X) is exponentially
distributed with location parameter lnx and decay parameter λ.

P(Y < y) = P(lnX < y) = P(X < exp(y)) = 1−
(

exp(y)

x

)−λ
= 1− exp[−λ(y − lnx)].

Suppose instead Y = aXb in that case

P(Y < y) = P(aXb < y) = P(X < (y/a)1/b) = 1−
(

(y/a)1/b

x

)−λ
= 1−

(
y

axb

)−λ/b
.

3Kleiber and Kotz (2003, p. 72, 176)
4McCord and Moroney (1964).
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Thus Y is also Pareto with new minimum parameter axb and shape λ/b.

Table 3: Origins, transformations, results

X ∼ Y = g(X) Y ∼ Parameters∗

Uniform(0,1) Y = ln(1/X) Exponential λ = 1
Log-Normal Y = ln(X) Normal(µ,σ2)
Log-Normal Y = aXb Log-Normal ln a+ bµ, b2σ2

Fisk Y = ln(X) Logistic µL = lnσF , σL = 1/λ
Pareto Y = ln(X) Exponential αE = ln(αP )
Pareto Y = 1/X Power 1/α in Pareto = β in Power
Pareto Y = aXb Pareto α→ aαb, λ→ λ/b
Frechet Y = ln(X) Gumbel µG = lnσF , σG = 1/λF
Frechet Y = (X/σ)−λ Exponential λE = 1
Frechet Y = aXb Frechet σ → aσb, λ→ λ/b
Weibull Y = 1/X Frechet
Weibull Y = ln(1/X) Gumbel µ = lnσF
Weibull Y = aXb Weibull σ → aσb, λ→ λ/b

Weibull Y = Xλ Exponential λE = σ−λWW

Rayleigh Y = aXb Weibull σW = a(σR
√

2)b , λ = 2/b

∗: → means “is replaced with”

4 Moments, quantiles, etc.

The F−1() formula (inverse cumulative distribution) has several important uses. First, one
can obtain medians by plugging in q = .5. Indeed it is called the quantile function because
any other percentile of the data can be obtained by selecting q. Second, the inverse function is
the basis for pseudo-random number generation. Substituting a Uniform(0,1) random number
(available in almost all software) instead of q in the quantile formula gives a random variable
distributed according the corresponding distribution.

If X is distributed log-normal, then its mean will be larger than its median. Indeed the
mean to median ratio is given by eσ

2/2. As σ2 → 0, the skewness of Log-Normal disappears
and it approaches the Normal. There is a simple relationship between the mean to median
relation and the coefficient of variation (cv):

Log-normal
mean

median
=
√

1 + cv2.

The mean to median ratio for a Pareto variable is given by

mean

median
=

λ

(λ− 1)21/λ

The coefficient of variation is
cv = [λ(λ− 2)]−1/2
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Table 4: Describing the distributions

Distribution Mean Std. Dev. Mode F−1()

Uniform (α + β)/2 (β − α)/
√

12 NA α + (β − α)q
Exponential α + 1/λ 1/λ α α− (1/λ) ln(1− q)
Pareto αλ/(λ− 1) αG(λ)? α α(1− q)−1/λ
Power βλ/(λ− 1) βH(λ)• β or 0 βq1/λ

Gumbel µ+ .577σ πσ/
√

6 µ µ− σ ln(− ln q)
Frechet σΓ(1− 1/λ) σK(λ)† σ[λ/(1 + λ)]1/λ σ[ln(1/q)]−1/λ

Weibull σΓ(1 + 1/λ) σL(λ)‡ σ[(λ− 1)/λ]1/λ σ[− ln(1− q)]1/λ
Rayleigh σ

√
π/2 σ

√
2− π/2 σ σ

√
−2 ln(1− q)

Log-Normal eµ+σ
2/2 eµ+σ

2/2
√

exp(σ2)− 1 exp(µ− σ2) exp{µ+ σΦ−1[q]}
Fisk (σ/λ)π csc(π/λ) σM(λ)∗ σ[(λ− 1)/(λ+ 1)]1/λ σ[q/(1− q)]1/λ

?: G(λ) =
√
λ/(λ− 2)/(λ− 1)

•: H(λ) =
√
λ/(λ+ 2)/(λ+ 1)

†: K(λ) =
√

Γ(1− 2/λ)− Γ2(1− 1/λ)

‡: L(λ) =
√

Γ(1 + 2/λ)− Γ2(1 + 1/λ)

∗: M(λ) =
√

(π/λ)[2 csc(2π/λ)− (π/λ)(csc(π/λ))2]

Combining we obtain

Pareto
mean

median
=

1 +
√

1 + cv−2√
1 + cv−221/(1+

√
1+cv−2)

As with Log-normal, the mean to median ratio goes to 1 as as cv goes to zero. But as
cv becomes large the two distributions behave very differently. For log-normal the mean to
median ratio converges on the cv (suppose the cv = 10, the square root of 101 is 10.05).
On the other hand the Pareto distribution rises far less quickly and reaches a maximum of√

2 = 1.414. Thus any mean to median ratio greater than 1.4 is inconsistent with a Pareto
distribution with a finite coefficient of variation.

Taking logs of a log-normal variable, Y = lnX will have a mean equal to the median.
Suppose however X is Pareto. Then the expected value will not even exist unless λ > 1.

If we take logs of a Pareto variable, the expected value always exists as logged Pareto
variables are distributed exponential (see Table 3). The expected value of the logged Pareto
variable, ln(α) + 1/λ—which equals the log of the geometric mean of the Pareto variable—
should still be larger than its median, ln(α) + (1/λ) ln 2. Indeed the difference should be
.31/λ. This approach could provide a simple way to do an initial diagnosis of a variable that
you think could be normal, log-normal, or Pareto. Another potentially useful fact is that the
harmonic mean of the Pareto is given by α(1 + 1/λ). When λ is large the geometric and
harmomic means should be about the same. But for small λ the geometric mean can be much
larger. For the Zipf value of λ = 1, the geometric mean is 36% larger.5

5The Stata command means provides arithmetic, geometric and harmonic means.
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5 Truncated distributions

Truncated distributions are quite important in economic data. One cause of truncation is
the data collecting and reporting process. One case is the size distribution of cities where
populations are only reported for the top cities or cities above a certain threshold population.
More on that below. A more interesting cause of truncation is where it is caused by economic
forces. Melitz and Syverson consider the case where competition creates a threshold level of
productivity below which firms cannot remain in the industry because the price is lower than
costs.

Unfortunately, the literature on distributions gives scant coverage to truncation. Johnson
et al (2000, p. 241 ) provide a general formula for the moments of the trunctated log-normal
distribution.

E[x | x > x0] = exp(µ+ 0.5σ2)
1− Φ(z0 − σ)

1− Φ(z0)
, (1)

where z0 ≡ (lnx0 − µ)/σ, x0 is the truncation point, and µ and σ are parameters of the
log-normal distribution.

Jawitz (2004) gives formulas that allow us to obtain the more general case of two-sided
truncation. For x ∼ log-N (µ, ν) truncated between lower limit ` and upper limit u the Jawitz
formula can be expressed as

mr = exp(rµ+ r2ν2/2)

[
Φ

(
lnu− µ− rν2

ν

)
− Φ

(
ln `− µ− rν2

ν

)]
m0 = Φ

(
lnu− µ

ν

)
− Φ

(
ln `− µ

ν

)
The conditional expected value of xr for ` < x < u is mr/m0.

The Pareto distribution is an interesting case because truncation does not change its shape
but only the scale of measurement:

E[x | x > x0] =
x0λ

λ− 1
. (2)

In contrast, truncating a log-normal distribution can make it look very much like a Pareto.
Mitzenmacher (2003) shows algebraically why this is the case and Eeckhout (2004) illustrates
the point using the size distribution of populated places. I have also solve for the truncated
expected value for the exponential and uniform distributions and I found the normal distri-
bution. For the exponential with unconditional mean 1/λ, the truncated mean is

E[x | x > x0] = x0 + 1/λ. (3)

For a uniform between α and β,

E[x | x > x0] = (x0 + β)/2. (4)

For the normal,

E[x | x > x0] = µ+
σφ(z0)

1− Φ(z0)
, (5)

where z0 ≡ (x0 − µ)/σ.
Jawitz (2004) provides a general method and a table covering examples for other distribu-

tions including the gamma and log-gamma (LP3) distributions.
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6 Estimation and Detection

Typically you are confronted with data Xi and your goal is to detect which distribution fits
it best and to estimate the corresponding free parameters.

6.1 Maximum-likelihood methods

The geometric mean is used to determine the maximum likelihood estimate (MLE) of λ in
a Pareto distribution. The MLE of λ is 1/(lnmg − ln α̂), where mg denotes the geometric
mean given by mg = exp [(1/n)

∑n
i=1 lnXi] and α̂ is either known in advance or estimated as

the minimum of the observed Xi. Kleiber and Klotz (2003, pp. 86–89) point out that the
MLE is heavily influenced by extreme observations, such as might arise from contaminated
data. They describe the method of Brazauskas and Serfling (2001) that aims at “favorable
tradeoff between efficiency and robustness.” Since the log of a Pareto is exponential and the
standard deviation of the exponential is 1/λ, another possible estimate would be the inverse
of the standard deviation of lnX.

The geometric mean, mg would also be used to estimate the parameters of log-normally
distributed data. The MLE of µ is lnmg, or the mean of the logged data. The MLE of σ is
just the standard deviation of the logged data.

Estimating parameters of Frechet or Weibull distributed data is not as straightforward,
with the MLE requiring solution of two non-linear simultaneous equations.6

6.2 Method of moments

It is often desirable to make distributions as directly comparable to each other as possible. For
two-parameter distributions, it is usually possible to choose parameters for each distribution
such that they replicate the mean and variance of the data under consideration. Thus we
use method-of-moments estimators based on an assumed mean and variance. Bury (1999)
provides the estimators for Lognormal and Gamma. I derived analogous formulas for the
Pareto and Uniform distributions. They are shown in Table 6 for the reader’s reference,
with m and v denoting mean and variance of x, the underlying raw performance measure
(untruncated, untransformed).

Table 5: Method of moments estimators for mean = m and variance = v

Pareto(min=x, shape=κ) κ = 1 +
√

1 +m2/v x = m(κ− 1)/κ

Log-normal(meanlog= µ, sdlog= σ) σ =
√

ln(v +m2)− 2 lnm µ = lnm− σ2/2
Gamma(shape= γ1, scale=γ2) γ2 = v/m γ1 = m/γ2
Uniform(min= x, max=x̄) x = m−

√
3v x̄ = 2m− x

For the Log-normal and Pareto things simplify considerably when we re-express the formu-
las in terms of the coefficient of variation. The formula for the log normal is σ =

√
ln(1 + cv2)

and for the Pareto it is κ = 1 +
√

1 + 1/cv2. These formulas highlight the fact that σ is pos-
itively related to dispersion whereas κ is inversely related to dispersion. As cv→ ∞, we

6See Evans et al. (2000)
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estimate κ = 2. I believe this is because κ = 2 is the smallest shape parameter for which
the second moment is finite. Another interesting fact is that neither parameter relates to the
scale of the variable in question (given cv, m does not matter).

If the DGP is log-normal it seems likely that the method-of-moments estimator of x will
differ substantially from the maximum likelihood estimator. This is because the latter is equal
to the minimum observed value and that goes to zero as the sample size increases under a
log-normal DGP. In contrast the MoM estimator of x has to be large enough to be consistent
with the observed mean of the data. The share of data below the MoM estimator of x ought
to be a good indicator of the inadequacy of the Pareto distribution.

Rather than use the raw moments, a related approach that works for at least three inter-
esting distributions is to match parameters to the moments of the logged data. The first and
obvious case is the log-Normal distribution. There we know that µ is the mean Y = ln(X)
and σ is the standard deviation of the Y . These estimates have the added advantage of being
the MLE of µ and σ.

Extending the method to Pareto, recall that if X is Pareto, then Y = ln(X) is exponential.
The Pareto shape parameter is estimated as λ̂ = 1/SD(Y ). The Pareto scale (minimum value)
parameter is estimated as x = MEAN(Y )− SD(Y ).

Table 6: Method of moments estimators for sample mean = M and variance = V

Pareto(min=x, shape=θ) θ = 1 +
√

1 +M2/V x = M(θ − 1)/θ

Log-normal(meanlog= µ, sdlog= ν) ν =
√

ln(V +M2)− 2 lnM µ = lnM − ν22/2

Table 7: Method of moments estimators for sample mean = m and standard deviation of = s
of the log of x

Pareto(min=x, shape=θ) θ = 1/s x = exp(m− s)
Log-normal(µ, ν2) ν = s µ = m

Frechet(σ, λ) λ = 1.28/s σ = exp(m− 0.45s)

An interesting case is where one works with a logged variable (sales, city size, wages) that
is truncated from below, sometimes because of data availability but other times because an
economic selection mechanism at work (e.g. fixed costs, test scores). Let L denote the log
of the raw truncation point. Let µ and ν denote the expectation and standard deviation of
the logged variables in the absence of truncation. The expected value of the logged truncated
variable is

E[lnx | lnx > L] = µ+ νh,

where h = φ(t`)/[1−Φ(t`)] and t` = (L−µ)/ν. The standard deviation of the logged truncated
variable is

ν
√

1 + tlh− h2.
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6.3 Graph and regression based methods

Going back to Vilfredo Pareto’s original work, one method to detect a Pareto variable is
to plot the log of the number cases of where Xi is larger than some number against the
log of that number. If the distribution is Pareto then the rank-size figure should exhibit a
linear relationship in logs. A frequently used estimate (at least by economists) of the Pareto
parameter λ is to regress the logged rank data on lnXi. The coefficient on lnXi is −λ̂.
A similar procedure, called a “probability plot”, Chambers (1983), is used more broadly
in exploratory data analysis.7 In that approach the horizontal axis consists of the ordered
statistical medians for a given distribution and the vertical axis is the actual corresponding
data values. Thus probability plots reverse the Pareto plots. I suggest an approach that
follows the same orientation as the Pareto graph but generalizes it to incorporate a wide
variety of possible distributions.

The graphical method starts with the data in levels, Xi or logs, lnXi. The data should
be sorted in ascending order so that i = 1 is the minimum and i = n is the maximum.
Let F̂i = (i − 0.3)/(n + 0.4). The vertical axis is a transformation, g() of F̂i. The slope
and intercept—denoted a and b—in the relationship between g(F̂i) and Xi (in levels or logs)
correspond to the parameters of the model:

g(F̂i) = a+ bh(x), (6)

where h() is either the natural logarithm or the identity function. One could estimate them
by regressing the g(F̂i) on h(Xi). This almost equivalent to the rank-size regression since rank
is given by 1 + (n− i).

Table 8: Generalized linear-in-parameters rank-size relationships
Ordinate (y-axis) Abscissa (x-axis)

g(F̂i) Xi a b lnXi a b

F̂i Uniform −α/(β − α) 1/(β − α)) ?

ln F̂i ? n/a n/a Power −λ ln β λ

ln(1− F̂i) Exponential α −λ Pareto λ lnα −λ
ln(− ln F̂i) Gumbel λµ −λ Frechet λ lnσ −λ
ln(− ln[1− F̂i]) ? n/a n/a Weibull −λ lnσ λ

Φ−1[F̂i] Normal −µ/σ 1/σ Log-Normal −µ/σ 1/σ

ln[F̂i/(1− F̂i)] Logistic −µ/σ 1/σ Fisk −λ lnσ λ

My conjecture: As F → 1, the Fisk resembles Pareto. As F → 1, the Fisk resembles the
Power distribution.

The correlation coefficient measures the strength of a linear relationship between two
variables. Hence the correlation of g(F̂i) and h(Xi) might be a good way to measure how well
each distribution fits the data.

7http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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7 Applications

There are two typical uses of the information here. The first is a theory involving heterogeneity.
Applied theories may want to choose a particular distribution that yields analytical solutions
of their model. Although tractability may be an over-riding concern (hence the use of the
uniform which is almost never observed in actual data), ideally the applied theorist selects a
distribution that “fits” the application. The second type of users are empiricists who want to
see which distribution fits the data. One reason to do this is the hope that one can map the
distribution to the underlying generating process.

7.1 Engineering and physics analogies

Extreme value distributions are very important for engineers. Gumbels and Frechets are used
for floods. Weibulls are used for models of breaking strength. The Weibull is sometimes
interpreted with a chain metaphor. Suppose chains consist of a large number of links, each
of varying strength. Then the strength of the chain depends on the strength of the weakest
link. There could be economic implications for Leontieff productions functions comprising a
large number of processes where the performance of the whole is constrained by the worst
performer.

The distribution of energies is exponential. Boltzmann. Statistical mechanics. Maxwell
speed distribution.

The Rayleigh distribution occurs in formulas that sum the squares of two orthogonal
Normal(0,σ2) random variables. Suppose we have locations given as {X, Y } where the hori-
zontal and vertical position are normally distributed with standard deviations, σ. Then the
distance, d from {X, Y } to the origin (d =

√
X2 + Y 2) is distributed Rayleigh with parame-

ter σ. Now suppose that there is an interaction (trade flow, externality, etc.) given by adb.
The interaction should be distributed Weibull.8 The maximum likelihood estimate of σ is√

(1/2n)
∑

i d
2
i = (1/

√
2)RMSD.9 We can use this to calculate the average distance to the

center of a city if the population has a bell-shaped distribution around the center.

7.2 Cities, Countries, Firms, Incomes

Many economic variables are thought to follow Pareto distributions. Pareto’s original appli-
cation was incomes. Zipf, Simon, Krugman, and Gabaix drew attention to the fact that the
size distribution of the largest American metro areas can be fit well by the inverse rank-size
rule, which is equivalent to a Pareto distribution with λ = 1. Eeckhout (2004) countered
that in fact the size distribution of the full set of populated places in the US is distributed
log-normal. The appearance of Pareto comes from a focus on the right tail of the distribution.
As discussed in section 5, the right tail of a log-normal closely resembles a Pareto.

Rose (2005) examines distributions of country populations and concludes they, like city
populations, follow Zipf’s law. However, his rank-size figures suffer from the truncation prob-
lem since they are based on the 50 largest countries. When Rose graphs the PDF of country
size (as a histogram), it is clear that it is not Pareto and hence not globally Zipf.

8Problem: the transformation rule in Table 3 only works when b > 0. With b < 0, I think the result might
be Frechet instead.

9RMSD = Root mean squared distance. See www.mathworks.com/access/helpdesk/help/toolbox/

stats/prob_d43.html.
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A simple static model of lognormal city size: Let there be a single output y whose pro-
duction function is given by y = g(L)h(R) where L is labour and R are immobile natural
resources or amenities. The g() function may have upward sloping regions but the interior so-
lution occurs where g′′() < 0. In the region of the interior solution let g(L) = Lα where α < 1.
Then suppose worker migration sets marginal products equal to a common wage, and set units
so that wage is one. Then L = (αh(R))1/(1−α). Finally suppose h(R) =

∏N
i=1 x

θi
i . That is

aggregate resources of a location are a Cobb-Douglas function of a large number of individual
resources, denoted xi. If the θi are constants and lnxi are independently distributed with
finite first, second, and third moments then the central limit implies a normal distribution for
logL (as the number of amenities or resources, N becomes large), and hence log-normality
for L.

7.3 Search models

Extreme value distributions are useful in theoretical models of the search process. The idea is
that if you take draws and retain the best draw obtained so far your technology is distributed
as the maximum (or minimum if draws are interpreted as unit-input requirements instead of
productivity). For example, Kortum (1997) shows a model where research leads to draws from
a Pareto distribution, causing the technological frontier to be distributed Frechet. He shows
that this can explain several stylized facts about the relationship between research efforts,
patents, and productivity.

Muth (1986) used a search model to provide microfoundations for the learning curve.
As mentioned in section 3, the minimum of n draws from a Weibull is also Weibull with a
parameter that is a power function of n. This implies (via the moments reported in section 4,
that the expected value of the minimum of n draws from a Weibull is given by (n−1/λ/θ)Γ[1 +
1/λ]. Taking logs we see a linear relationship, with slope −1/λ between log costs and the log
number of draws. If the latter are proportional to cumulative production experience, then
we have the linear-in-logs relationship between costs and cumulative output that has been
observed in hundreds of empirical studies.

7.4 Discrete choice models

Anderson, de Palma, and Thisse (1992) and Eaton and Kortum (2002) draw on the properties
of extreme value distributions to specify models where consumers select from a set of possible
suppliers the one that yields them the maximum utility. Anderson et al follow McFadden’s
approach of putting the heterogeneity in a random term in the consumer’s utility function.

Suppose Ui = vi+εi, where v is a function of observables and εi is seen only by the chooser,
not the econometrician. Take the case of two choices. The Probability of choosing 1 is

Pr(U1 > U2) = Pr(U1 > U2) = Pr(v1 + ε1 > v2 + ε2) = Pr(ε2 − ε1 < v1 − v2) = F (v1 − v2),

where F (·) is the cumulative distribution for ε2 − ε1. The difference between to random
variables does not generally offer a closed form for F (). Two cases that do have this useful
property are ε distributed uniform or ε distributed Gumbel. In the uniform ε case, ε2 − ε1 is
also uniform.10 In the ε ∼ Gumbel(µ,σ) case ε2 − ε1 is logistic:

F (v1 − v2) = 1/(1 + exp[−(v1 − v2)/σ]).

10Needs to be verified. Also consider how this result could be reinterpreted as a Hotelling line model.
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Replacing −(v1 − v2)/σ with Xβ gives Logit regressions.11

The Gumbel ε assumption becomes most valuable for the case of N > 2 choices. In that
case a result usually attributed to McFadden is that

Pri = exp(vi/σ)/V,

where V ≡
∑

j exp(vj/σ) is sometimes called the inclusive value. Anderson, de Palma, and
Thisse (1992) show that the Expected value of the maximum utility is

E max{U1, ...Un} = µ+ σ(.577 + lnV ),

where µ and σ are the parameters from the Gumbel distribution defined above.
An important case is vi = K − η ln pi, where K is everything that does not vary across

choices and pi is the price of option i.12 In that case, we have

Pri = p
−η/σ
i /V,

where V =
∑

j p
−η/σ
j is now sometimes considered “price” index. This probability function is

observationally equivalent to a deterministic case with a representative consumer with demand
for variety, maximizing a CES utility function with an elasticity of substitution between
varieties given by ρ = 1 + η/µ.

Eaton and Kortum put the heterogeneity into prices rather than unobservable shocks to
utility. The randomness of prices follows from underlying variation in supplier productivity
that itself could be linked back to a search process a la Kortum (1997). This approach could
also be applied to the migration decisions of workers.

7.5 Firms with heterogeneous productivity

Melitz, etc.
Relative outputs and revenues, equation (6)
Equation 7. Productivity index “completely summarizes the information in the distribu-

tion of productivity levels µ(ψ) relevant for all aggregate variables”
Footnote 8: ψ̃ is a harmonic weighted mean.
Equation 12. Free entry (FE) and zero-cutoff profit (ZCP) conditions.
Chaney
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