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Abstract

Constant elasticity of substitution (CES) demand for monopolistically competi-

tive firm-varieties is a standard tool for models in international trade and macroeco-

nomics. Inter-variety substitution in this model follows a simple share proportionality

rule. In contrast, the standard toolkit in industrial organization (IO) estimates a de-

mand system in which cross-elasticities depend on similarity in observable attributes.

The gain in realism from the IO approach comes at the expense of requiring richer

data and greater computational challenges. This paper uses the data generating pro-

cess of Berry et al. (1995), BLP, who established the modern IO method, to simulate

counterfactual trade policy experiments. We use the CES model as an approximation

of the more complex underlying demand system and market structure. Although the

CES model omits key elements of the data generating process, the errors are offsetting,

allowing it to fit BLP-based predictions closely. For aggregate outcomes, it turns out

that incorporating non-unitary pass-through matters more than fixing over-simplified

substitution patterns.
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1 Introduction

Tariffs, never completely absent, rose to the foreground of US economic policy again in
2018. The US imposed safeguard tariffs on washing machines and solar panels, followed
by national security tariffs on steel and aluminum. The US president threatened Canada,
Mexico, and Germany with national security tariffs on imported autos. Intensified tariff
use led to renewed efforts by economists to quantify the impact of trade policies. The
2018 tariffs also reinforce the point that most trade policy is imposed at the industry level.
This creates a dilemma for researchers. Trade economists have developed a toolkit for
tariff counterfactuals that imposes minimal data and estimation requirements. Industrial
organization (IO) economists have an even more established framework for conducting
industry-level counterfactuals. It differs from the approach favored by trade economists
in almost every important respect, but the most emphasized feature is rich substitution.
Berry et al. (2004) state the main IO critique that applies to constant elasticity of substitu-
tion (CES) as well as other demand systems common in the models of monopolistic com-
petition used in trade: “Models without individual differences in preferences for charac-
teristics generate demand substitution patterns that are known to be a priori unreasonable
(depending only on market shares and not on the characteristics of the vehicles).”

The IO structure pioneered by Berry et al. (1995) promises greater realism at the cost
of more onerous data and estimation requirements. What can be said, systematically,
about the suitability of the trade approach when the data are generated by the assump-
tions of the IO approach? This paper starts with the premise that IO economists have
correctly specified the data generating process (DGP). The demand side of that DGP is
mixed multinomial logit (MMNL). McFadden and Train (2000) proved that “any discrete
choice model derived from random utility maximization has choice probabilities that can
be approximated as closely as one pleases by a MMNL model.” This theorem motivates
the use of MMNL as the benchmark model of consumer behavior. This DGP presents
several distinct challenges for the simpler representation of CES-monopolistic competi-
tion (CES-MC) offered by trade economists. After analyzing those problems, we inves-
tigate whether the CES-MC method can be viewed as an acceptable approximation. To
do so, we use both the data and the parameter estimates from the seminal paper in the
literature, Berry et al. (1995). Our counterfactual imposes a 10% tariff on foreign varieties
and solves the model to obtain the new equilibrium. We then use the method of Exact
Hat Algebra (EHA)—relying solely on initial market shares and on an estimate of the
elasticity of substitution—to obtain a CES-MC prediction of ex post equilibrium market
shares. This policy scenario is more general than it might appear, since it applies to any
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tax that discriminates against some across varieties (e.g. a tax based on fuel consumption
as in Grigolon et al. (2018), or based on the sugar content of soft drinks as in Dubois et al.
(2020)).

Throughout this paper, we evaluate the accuracy of the CES model at matching the
changes in domestic market share caused by a tariff imposed on a data-generating process
given by random coefficients discrete choice with multi-product firms (BLP for short).1 In
this first simulation, the CES prediction is astonishingly accurate, undershooting this tar-
get by only one quarter of a percentage point (8.00 vs 7.73). To understand this remarkable
success, we proceed to a second set of simulations. Those are intended to investigate each
of the methodological differences (errors) between the CES approximation and the BLP
DGP. Trade economists typically estimate the CES as a constant price elasticity when BLP
features own price elasticities that vary across firms. Within the single-market setup of
the original data, we cannot easily estimate the CES parameter. A first change is therefore
to augment the original model to consider multiple markets, each imposing import tar-
iffs. Once we base the CES prediction on an estimated parameter rather than calibration,
the central case performs a little less well, but alternative settings are more robust.

The simulations evaluating the CES approximation of the random coefficients logit
DGP do not contain CES as a limiting case as heterogeneity goes to zero. This makes
it hard to determine the role of rich substitution because that change is confounded by
the logit versus CES differences in demand curvature. To remedy this, we include in our
second set of simulations a mixed CES version of the data generating process. By nesting
homogeneous CES as a polar case, we can see clearly the extent that random coefficients
undermines the CES approximation.2

The main takeaway is that pass-through from tariffs into prices is a first-order con-
sideration for the success of the CES approximation. When CES gets pass-through (close
to) right, it tends to hit the aggregate target accurately. The CES success at approximat-
ing BLP in aggregate outcomes turns out to be a case of offsetting errors: assuming CES
monopolistic competition, rather than logit oligopoly, overestimates the pass-through of
tariffs into consumer prices. However, random coefficients on prices generates a selec-
tion effect that pushes in the opposite direction: As established in Nakamura and Zerom
(2010), heterogeneous price sensitivity raises pass-through. In our context, when tariffs

1This paper is agnostic on the separate issue of whether BLP or CES models accurately predict the real-
world impacts of tariffs. An important step towards evaluating this question is taken by Adao et al. (2022).

2Mixed CES finds support in work by Björnerstedt and Verboven (2016), who refer to it as the “constant
expenditures specification.” In a recent application to a pharmaceutical merger, mixed CES has a “more
plausible range of elasticities, more reasonable markups, and yields more realistic average predicted price
effects for the merging firms.” Other applications include Adao et al. (2017), Redding and Weinstein (2019),
and Piveteau and Smagghue (2021).
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rise, the households who keep buying foreign varieties are the ones with low price re-
sponsiveness. This lowers the demand elasticity and increases the pass-through elasticity.
Our simulations show that estimating the tariff elasticity (instead of calibrating demand
parameters to fit literature estimates of the own-price elasticity) provides an additional
degree of freedom to the CES approximation. This allows it to capture non-unitary pass-
through and perform better in a broader range of DGP settings.

The large literature employing the Berry et al. (1995) framework motivates the use of
the random coefficients demand by critiquing systems that fail to incorporate rich substi-
tution. In a recent survey, Berry and Haile (2021) point to this crucial flaw:

“[O]ne can go too far in the pursuit of parsimony. Some of the simplest de-
mand specifications (e.g. the CES, multinomial logit, multinomial probit) im-
pose strong a priori restrictions on demand elasticities—and therefore on markups,
pass-through and other key quantities of interest—that are at odds with com-
mon sense and standard economic models.”

Emphasis on the need to incorporate rich substitution, combined with multi-product
oligopoly is particularly strong in the literature devoted to the car industry, an emblem-
atic case studied from the beginning of the demand-centered IO literature (Berry et al.
(1995, 1999), Goldberg (1995), Verboven (1996), Goldberg and Verboven (2001), Petrin
(2002), Train and Winston (2007), Reynaert and Verboven (2014), and Coşar et al. (2018)
for instance). Because of our use of the BLP structure, data, and parameters, we speak to
this literature “on its playground”, assessing when and why the approximation fails to
predict aggregate outcomes. Using the same data and parameters as Berry et al. (1995,
1999) addresses the potential concern that an ad hoc DGP might not exhibit sufficiently
rich substitution patterns or strong enough market power.

Notwithstanding the valid critiques made by IO economists, CES-MC has advantages
that may not have been fully recognized. In addition to the parsimony point conceded in
the quote above, CES allows us to exploit Exact Hat Algebra. This method, introduced
by Dekle et al. (2007), allows the researcher to do without detailed data on product at-
tributes and prices. It also does not require the inference of marginal costs from first order
conditions. The tractability of models featuring CES was exploited by applied theorists
and empiricists long before Exact Hat Algebra was developed.3 EHA gives CES a new
advantage in conducting quantitative research by providing a simple tool for running
counterfactuals with minimal data requirements.

3For example, Krugman and Romer exploited CES modelling properties in their (respective and inde-
pendent) work on trade and economic growth with increasing returns.
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Relatedly, the IO literature has acknowledged that the random-coefficients models
present serious challenges in computation (Knittel and Metaxoglou, 2014), identification
(Gandhi and Houde, 2016), sensitivity to the choice of instruments (Reynaert and Ver-
boven, 2014), data requirements, and transparency of estimation. Conlon and Gortmaker
(2020) present a very complete coverage of the various practical challenges in BLP esti-
mation, with different fixes to the original framework that have been proposed by the IO
literature. Salanié and Wolak (2019) also note the estimation challenges of the BLP-based
framework and propose an alternative estimation strategy, consisting in an approxima-
tion where consumer’s tastes dispersion parameters can be estimated in a simple 2SLS
procedure. Their Monte Carlo simulations show that their approximation result can be
used to at least give very close starting values to a more elaborate but more challenging
estimation technique. Our paper is also centered around Monte Carlo simulations, but we
sidestep the estimation of issues related to the BLP model. Instead, our Monte Carlos as-
sess the ability of the CES approximation to predict aggregate outcomes of BLP-generated
data.

Our paper proceeds as follows. We first describe the BLP data and model structure in
section 2. We then explain our two extensions to the Exact Hat Algebra method in section
3. After analyzing the three main causes of concern for the CES approximation in section
4, we assess in section 5 the relative importance of these issues using simulations that
treat them one at a time.

2 The BLP data generating process

Berry et al. (1995, 1999) describe the data generating process in detail, but here we re-
view the key equations and provide the necessary details on how we implement it in our
simulations, together with some key statistics of the original data set used in both articles.

The key components of the BLP DGP are heterogeneous consumer choice probabilities
and multi-product firms. Let each firm f own a set of varieties denoted Jf . The union of
these sets is J which we also partition into sets of domestic, JH and foreign JF varieties.4

The total number of varieties, |J |, is taken as fixed. The demand side consists of a large
number, N , of households, with each h having its own indirect utility umh for variety m.
The preferences of the households are unobserved in BLP, but we have data on the frac-
tion, sm, of the N consumers that select each model m within the set of new cars available
for purchase, along with the fraction who purchase the outside good s0 (used car or no

4In the BLP data, domestic models constitute 68% of new car sales.
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purchase). With unit demand, the market share of variety m is5

sm =

∑
h Pmh
N

where Pmh = Prob(umh > um′h,∀m′) (1)

Assuming Gumbel-distributed additive shocks in umh, the choice probabilities are

Pmh =
exp(

∑K
k=0 β

k
hx

k
m − αhpm + ξm)

1 +
∑

j∈J exp(
∑K

k=0 β
k
hx

k
j − αhpj + ξj)

. (2)

We will refer to β heterogeneity as the feature of the model that households value the
physical characteristics (other than price) differently. There are K = 4 characteristics
plus a constant (x0

h = 1). Since the indirect utility of the outside good is normalized
to one, the coefficient β0

h tells how much the household prefers a new car relative to the
outside good. The mean of these coefficients, β̄0 determines the share of the outside good.
Reflecting the fact that only 9% of households buy new cars, Berry et al. (1995) estimate
β̄0 to be −7.1. The standard deviation of β0

h is 3.6, suggesting considerable dispersion
in appeal of new cars. The four other xkm are (1) acceleration(horsepower/weight), (2)
fuel economy (miles per dollar), (3) space (width × length), and (4) air conditioning (as a
standard feature). When we speak of β heterogeneity, we refer to the variance in the βkh .
The means and standard deviations for each of these βkh are all obtained from Berry et al.
(1995) and reported in the first column of Table 1.

Variance in the price responsiveness parameter αh will be referred to as α heterogene-
ity. There are two important points. First, α heterogeneity is large because we follow
Berry et al. (1999) in setting αh = α/yh where ln yh ∼ N (2.18, 1.72) in 1990.6 While this
specification imposes a negative relationship between income and price sensitivity (αh),
subsequent papers, such as Nevo (2001) and Nakamura and Zerom (2010), estimate the
relationship using more flexible specifications. Second, as our simulations will illustrate,
α heterogeneity changes the curvature of demand, leading to market outcomes that are
qualitatively different from those generated by β heterogeneity.7

5Here we deviate slightly from the convention of expressing market shares as integrals over a continuum
of consumers. Our summations over a finite number of consumers lead naturally to expressions of demand
elasticities in terms of variances and covariances of household probabilities. The averages in equation (1)
can also be thought of as a Monte Carlo integration, the method used in our simulations.

6We follow the recent literature that replicates the original BLP results by using the Berry et al. (1995)
data and parameter values, combined with the Berry et al. (1999) approach to consumer-level hetero-
geneity in price sensitivity (αh). Our approach follows Andrews et al. (2017) (with details contained
in their replication package) and Conlon and Gortmaker (2020) (with code tutorial accessible at https:
//pyblp.readthedocs.io/en/stable/_notebooks/tutorial/blp.html).

7Heterogeneity in price sensitivity across firms can also be obtained using non-CES demand curves,
often derived from non-homothetic preferences. See Mrázová and Neary (2017) and Matsuyama (2023).
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Table 1: BLP data: estimated parameters and key statistics

Estimated parameters Auto industry statistics in 1990
Variable Mean Std. dev. Statistic Value

Constant -7.061 3.612 Outside good share (%) 91
HP/WT 2.883 4.628 Domestic share (%) 68
Air con. 1.521 1.818 Concentration (CR5 in %) firms 86
Miles/USD -0.122 1.050 Concentration (CR5 in %) models 18
Size 3.460 2.056 Number of firms 20
Price 43.501 91.906 Number of models 131
Note: Estimated parameters obtained from Table IV of Berry et al. (1995), with
the exception of the standard deviation of the price parameter, calculated as
α
√

(exp(σ2)− 1) exp(−2µ+ σ2) with µ = 2.18 and σ = 1.72, being the mean and stan-
dard deviation of log incomes in the United States in 1990 used by BLP. The Andrews et al.
(2017) replication package provides these parameters as well as the data for our calculated
statistics in the second column.

The right panel of table 1 summarizes some important industry statistics that guide
our counterfactual experiments of sections 4.5 and 5. One important part of the BLP is
the outside good, defined as the number of households minus the number of new cars
purchased. The 91% share for the outside good means that actual market shares for new
car models are very small. Including the outside good in the denominator of market
shares, the mean sm in 1990 is 0.07% and the maximum is 0.44%.

Such small market shares might seem to leave little room for oligopoly conduct. How-
ever there are two countervailing forces. First is the prevalence of multi-product firms.
The Big 3 firms made half the 131 varieties sold in 1990. The five largest firms accounted
for 86% of new car sales. Second, the large dispersion in taste for the outside good men-
tioned above also restores market power within the inside good (new cars). Intuitively,
a sizable number of potential consumers are effectively outside the market for new cars
because they have strong preference for the outside good. Car manufacturers therefore
mostly compete for the remainder of the customer base, on which they have larger market
share and therefore greater pricing power.

The firm’s profit maximization problem chooses prices for each model accounting for
the impact a rise in m’s price would have on the profits earned for the other models
(j 6= m) ∈ Jf . The first order condition is

pm = cm −
sm +

∑
(j 6=m)∈Jf (pj − cj) ∂sj∂pm

∂sm
∂pm

. (3)

The own- and cross-price derivatives of sm are shown in Appendix B. Having data on
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{sm, pm, Jf} and having estimates of the mean and standard deviation of {α, β}, we
can infer ξm (via an inversion referred to by the literature as the contraction mapping).
Then cm can be obtained by moving cm to the left hand side of equation (3). On the right
hand side, sm is known, ∂sm/∂pm is implied by the parameters and price data, leaving
only the summation term as a function of the unknown cm. Starting with cm = pm, we
iterate until reaching a stable vector of marginal costs. At this stage, we have knowledge
on all relevant characteristics of each car model m, and can use those combined with the
parameters of consumer preferences to run counterfactual experiments.

In the next sections, we will consider several variants of the BLP data generating pro-
cess. In order to make it very clear which variant we are referring to in different exercises,
we adopt a systematic terminology. Starting with the DGP just described in that section,
we use:

• Mixed Logit for the random coefficients logit DGP of Berry et al. (1995, 1999) includ-
ing heterogeneity in β (characteristics) and α (price).

• Mixed CES for the random coefficients CES DGP described in appendix A, including
heterogeneity in β (characteristics) and α (log price).

• Logit for homogeneous coefficient multinomial logit.

• β heterogeneity for random coefficients on characteristics. This can apply in either
the logit or the CES functional forms as it is always clear by context.

3 Counterfactual calculations: true BLP vs CES hat algebra

The counterfactual policy we use to motivate this paper is a new tariff of 10% on imported
varieties. Berry et al. (1999) consider quantitative restrictions on imports, but tariffs are
much easier to model. Recent experience demonstrates that tariffs remain relevant, and
they have a broader interpretation as discriminatory taxes. Because the tariff imposed
on model m depends on the model’s origin country, i(m), and the market n where it is
sold, we now move to a multi-market setup. Tariffs are modeled as shocks to the factory
gate costs, cm. Thus, tariff-inclusive costs are cmn = cmτi(m)n. This makes sense since
customs authorities apply tariffs to the customs value of the good at the border, not on the
retail price. Rules on the value for duties are complex; we simplify matters by applying
them to marginal costs. This allows our counterfactual to apply more broadly than the
trade policy context as it can encompass any model-specific cost shock. Firms apply a
discriminatory market-specific markup to set the retail price, pmn. In the counterfactuals,
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marginal costs rise to cmτ ′i(m)n = cmnτ̂i(m)n, where τ̂i(m)n = τ ′i(m)n/τi(m)n = 1.1 for all foreign
models (i(m) 6= n) and τ̂i(m)n = 1 for domestic models (i(m) = n).

The true new equilibrium is obtained by iterating equation (3) until a fixed point in
new prices, p†mn is reached.8 Then we substitute the prices into demand to obtain the new
market shares, denoted s†mn, which we aggregate to obtain the true change in the domestic
share of new car production.

∆SBLP
n =

∑
m∈JH

(
s†mn

1− s†0n
− smn

1− s0n

)
. (4)

Our goal is to investigate whether ∆SBLP
n can be reasonably approximated with ∆SCES

n ,
the prediction of market share changes implied by CES demand. In contrast to ∆SBLP

n ,
the CES predictions are not obtained by solving the model in terms of its structural pa-
rameters. Rather, hat algebra methods predict new market shares using only the initial
market shares smn and the single CES demand parameter, denoted η. The key idea is
that the initial market shares are sufficient statistics for both observed and unobserved
characteristics of the varieties and trade costs.

The CES market share for model m is given by9

smn =
(pmn/Amn)−η

1 +
∑

j∈J (pjn/Ajn)−η
,

where Amn is the demand shifter. Prices are given by pmn = µmncmτi(m)n, where µmn is the
markup (defined here as price divided by marginal costs). Defining ϕmn ≡ Amn/cm, we
can re-express equilibrium market shares as

smn =

(
µmnτi(m)n/ϕmn

)−η
1 +

∑
j∈J (µjnτi(j)n/ϕjn)−η

. (5)

In appendix D, we show that, with a constant markup of µ = η/(η−1), Exact Hat Algebra
calculates counterfactual proportional changes in market shares as

ŝmn =
s′mn
smn

=
τ̂−η̆i(m)n

s0n +
∑

j∈J sjnτ̂
−η̆
i(j)n

, (6)

8Convergence of this process often requires use of a dampening factor ν < 1 is to achieve convergence.
Thus, if the new price implied by kth iteration of the first order condition is p(k)mn we instead use νp(k)mn +(1−
ν)p

(k−1)
mn . The choice of ν does not affect the equilibrium to which the iteration converges.
9As BLP work with quantity shares, we use the modification of the CES employed by Head and Mayer

(2019), where η is the own-price elasticity holding constant the price index, Pn.
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where η̆ is an estimate of η.
The CES counterfactuals aggregate the new market shares obtained from hat algebra,

s′mn = smnŝmn, to obtain the change in the domestic share of the new car market:

∆SCES
n =

∑
m∈JH

(
s′mn

1− s′0n
− smn

1− s0n

)
, (7)

where s′0n = 1−
∑

m∈J s
′
mn.

We will consider two potential sources of η̆. The first is the average own price elastic-
ity implied by BLP data and estimated parameters (4.05).10 The second estimate comes
directly from a regression of log market shares on an ad valorem cost shifter such as the
log of one plus the tariff rate.

We derive an equation for estimating η by taking logs of equation (5). Since µmn is
constant in CES under monopolistic competition, it will be captured—along with the de-
nominator in equation (5)—with n-specific fixed effects. This yields a firm-level version
of the gravity equation:

ln smn = −η ln τi(m)n + FEm + FEn + υmn. (8)

Here we have modeled η lnϕmn as the sum of a model-specific fixed effect—capturing
production cost (cm) and the way the average consumer values the attributes of the car—
and an idiosyncratic term, υmn. The latter is modeled as if it were a well-behaved error
term capturing variation in Amn across markets. In practice, it also contains the specifica-
tion error from assuming CES when the underlying data comes from a BLP process. The
last element of the specification is a market specific fixed effect capturing −η lnPn.

The estimation of (8) provides η̆, which is the only parameter needed (besides ob-
served market shares and changes in trade costs) to compute the counterfactual outcome
in (6). Because of mis-specification, η̆ does not estimate the underlying price elasticity of
demand as it would have if the data were really generated by a CES-MC process. Instead,
η̆ recovers a rough estimate of the average elasticity of market shares with respect to cost
shocks, building in non-unitary pass-through. Thus, if the underlying pass-through is
less than one, η̆ will be smaller than the price elasticity, which can compensate in part for
the mis-specified functional form.

Equation (8) resembles the type of gravity regressions commonly estimated by trade
economists using industry-level flows. It assumes the availability of variety-level (mi-

10This estimate, obtained from the 1990 data, hardly differs from the 3.928 pooled 1971–1990 estimate
reported in the Conlon and Gortmaker (2020, Table 8) replication.
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cro) market shares, the relevant assumption for our question which presumes that BLP-
type estimation (involving model-level market shares and attributes) is a feasible option.
However, many trade applications rely on country-to-country flows at the product-level
to estimate the trade elasticity and run counterfactuals. In this case, the aggregate (macro)
versions of (8) is

ln sin = −η ln τin + FEi + FEn + υin, (9)

where i is the origin country. The aggregate counterfactual version of equation (6) is

ŝin =
s′in
sin

=
τ̂−η̆in

s0n +
∑

i sinτ̂
−η̆
in

. (10)

With the same estimate of η, and trade cost shocks that depend only on the country-pair,
the macro counterfactual is just the sum of the micro counterfactuals (

∑
m∈i ŝmn = ŝin). In

section 5, Table 3 provides results using both the micro (equations (8) and (6)) and macro
(equations (9) and (10)) approaches of the CES approximation.

One strong restriction of EHA based on CES monopolistic competition is the constant
markup, which implies unitary pass-through elasticities. In the appendix, we consider
two ways to modify EHA to allow for incomplete pass-through. Within the homogeneous
logit model, pass-through elasticities are much lower than one, even under monopolistic
competition. In appendix G, we show how to conduct Exact Hat Algebra in a logit model
with non-negligible market shares. Appendix A maintains CES demand but show how
CES counterfactuals can be adjusted to allow large firms whose variable elasticities lead
to non-unitary pass-through. The chief difference between the two oligopoly models is
that the CES version has a pass-through elasticity just below one, while the Logit version
pass-through elasticity is much smaller (0.67 on average when using BLP data, see second
row in table 3).

In the next section we analyze three features of an equilibrium in the BLP model that
the CES counterfactuals cannot match. Before continuing, we should acknowledge that
Exact Hat Algebra’s parsimony in terms of data requirements may come at a cost. Dingel
and Tintelnot (2021) note that the method is equivalent to calibrating |J | unobserved
parameters (here ϕmn) based on |J | market shares. When those market shares are based
on small numbers of choosers (N in the model), granularity can lead to an overfitting
problem. In the context of large consumer goods markets, like the US new car market, we
do not see this as a major concern, given that millions of American households buy new
cars each year.
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4 Implications of the BLP data generating process

What behavioral predictions of the DGP used by Berry et al. (1995) present difficulties for
the CES model? We have identified three main concerns.11 The first, rich substitution,
is well known but we offer a new way of quantifying its importance in the data. The
second, niche market power, is probably familiar as well but we have a new analytic
result and quantification. We believe the third result—on pass-through—has not received
the attention it deserves, especially as we find it is the best indicator of when the CES
approximation may be expected to miss the mark widely.

4.1 Rich substitution (cross-elasticities)

Implication 1. Positive covariance in household choice probabilities raises cross-price demand
elasticities.

With heterogeneous α and β, the cross-price elasticity of demand is12

∂ ln sj
∂ ln pm

=

∑
h
∂Pjh

∂pm

N

pm
sj

=

[∑
h αhPmhPjh

N

]
pm
sj
. (11)

Similarity in the attributes of models m and j will make Pmh and Pjh covary positively, a
feature that cannot be captured if all consumers value attributes identically. This implica-
tion of BLP arises from both α and β heterogeneity but as it does not require the former, it
is easier to explain by focusing on β heterogeneity alone. Removing income variation by
setting yh = 1, the price coefficient is α and the factor in brackets is linear in the covariance
of h probabilities, yielding a cross-price elasticity of

εβhet
jm ≡

∂ ln sj
∂ ln pm

∣∣∣∣
αh=α

=
αpm
sj

∑
h

PjhPmh
N

= αpmsm

[
1 +

cov(Pjh,Pmh)
sjsm

]
.

Dividing εβhet
jm by εlogit

jm ≡ αsmpm, the cross-price elasticity with homogeneous consumers,
the ratio of cross-price elasticities is

εβhet
jm

ε
logit
jm

= 1 +
cov(Pjh,Pmh)

sjsm
. (12)

11Here we consider only how parameter heterogeneity affects the true demand elasticities; the estimation
of those parameters raises a different set of issues that lie outside the scope of this paper.

12Computation details to be found in Appendix B.
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The cross-price elasticity of BLP (with only β heterogeneity) therefore depends on whether
probabilities of buying varietiesm and j covary positively or negatively across consumers.
Two products with similar characteristics have similar attractiveness for each of the con-
sumers, leading to positive covariance and therefore higher cross-price elasticity than
under homogeneous logit.

What about the comparison with the CES cross elasticity that operates in the CES
counterfactuals? Since the cross-price elasticity under CES is ηsm, the β heterogeneity vs
CES cross elasticity ratio is given by

εβhet
jm

εCES
jm

=
αpm
η
×
[
1 +

cov(Pjh,Pmh)
sjsm

]
. (13)

When quantifying the above expression, we run into the problem that the parameters
α and η come from two different models. We resolve this by calibrating them both to
match the average own-price elasticity implied by the BLP parameter estimates, that
is ε̄BLP = 4.05. Inverting the formula for the homogeneous logit own price elasticity
(εlogit
m ≡ αpm(1 − sm)), we isolate α = ε

logit
m

pm(1−sm)
. Our calibration sets both ε̄logit and η

equal to ε̄BLP, implying that the ratio αpm
η

equals 1
(1−sm)

. With the very small sm associated
with a 91% outside good share, the average value of αpm/η is close to one. As a conse-
quence, the β heterogeneity cross elasticity compared with both types of homogeneous
tastes assumptions has the same sign and is roughly proportional to the covariance of
probabilities. A further implication of the calibration equating average own price elas-
ticities is that the average of the ratio of cross-price elasticities in the two homogeneous
consumer models, εlogit

jm /εCES
jm , will also be close to one.

4.2 Niche market power (own-elasticities)

The first implication relates to cross-price elasticities, and how models with homogeneous
consumers will fail to account for the fact that the response in the demand for “proximate”
varieties will be stronger for a given variety’s increase in price. Introducing consumer
heterogeneity in their preference for characteristics however presents a further challenge:
it also changes the own price elasticity for each model m.

Implication 2. Variance in household probabilities lowers own-price elasticities.

Heterogeneity in the coefficient on product attributes and prices leads to consumers
differing in their probabilities of choosing a model. This divergence in turn lower the
own price elasticity for each car model compared to simple logit (or CES). We refer to this
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effect as niche market power. Own-price elasticities in mixed logit are

∂ ln sm
∂ ln pm

= −pm
sm
×
∑

h αhPmh(1− Pmh)
N

. (14)

As with implication 1, niche market power is a consequence of both dimensions of con-
sumers’ heterogeneity, but exposition is simpler when restricting to the β heterogeneity
case. Setting αh = α, we obtain

∂ ln sm
∂ ln pm

∣∣∣∣
αh=α

= −αpm
(

1−
∑

h(Pmh)2/N

sm

)
Let Vm ≡

∑
h(Pmh − sm)2/N =

∑
h(Pmh)2/N − s2

m be the variance, for a given m of the
household choice probabilities (Vm = 0 if βh = β). Now the own price elasticity simplifies
to

∂ ln sm
∂ ln pm

∣∣∣∣
αh=α

= −αpm(1− sm − Vm/sm).

This result is not specific to logit and the equation above holds for mixed CES as well
(with the Vm redefined as the income-share weighted variance of Pmh).

Dividing by −αpm(1 − sm), the homogeneous counterpart of own price elasticity, the
shrinkage of the own price elasticity due to β heterogeneity is given by

εβhet
m

ε
logit
m

= 1− Vm
sm(1− sm)

≤ 1, (15)

with εβhet
m and εlogit

m being defined as−∂ ln sm/∂ ln pm, under β heterogeneity and logit cases
respectively.

4.3 Non-unitary pass-through

The last, and quantitatively most important, implication relates to pass-through of cost
changes into prices. Indeed, even assuming that the researcher can overcome Implica-
tion 2 and estimate the correct own price elasticity, the final effect on sales also depends
on how the policy experiment (a cost shock) translates into prices. In this specific context,
we want to know the elasticity of market shares with respect to tariffs:

∂ ln sm
∂ ln τm

=
∂ ln sm
∂ ln pm

× ∂ ln pm
∂ ln cm

× ∂ ln cm
∂ ln τm

. (16)

14



The first factor is the demand own-price elasticity. Under CES-MC, ∂ ln sm
∂ ln pm

= −η. The
second factor is the pass-through elasticity (PTE). Under the constant markups assumed
by CES-MC, ∂ ln pm

∂ ln cm
= 1. The last term is exactly one under the iceberg cost assumption

(ad valorem tariffs) that we maintain throughout. Trade economists working with CES-
MC therefore impose ∂ ln sm

∂ ln τm
= −η. However, if the DGP is mixed logit, true pass-through

deviates from one, and the trade cost elasticity can be larger or smaller than the demand
own-price elasticity.

Implication 3. Logit demand without random coefficients has a pass-through elasticity strictly
less than one, but random coefficients on prices can raise the pass-through elasticity over one. CES
with monopolistic competition constrains the pass-through elasticity to be one.

With multi-product firms, the calculation for the pass-through elasticity is too messy
to be informative. Fortunately, in the single-product firms case, there is a very compact re-
sult, similar to one shown by Bulow and Pfleiderer (1983), that provides intuition on how
demand curvature matters. Let ε andE be the own price elasticity (εm ≡ − ln sm/∂ ln pm >

0) and super-elasticity (Em ≡ ∂ ln εm/∂ ln pm). Then the PTE is given by

∂ ln pm
∂ ln cm︸ ︷︷ ︸

PTE

=
∂pm
∂cm︸︷︷︸
PTR

× cm
pm

=
εm

εm − 1 + Em
× εm − 1

εm
=

εm − 1

εm − 1 + Em
, (17)

where PTR denotes the pass-through rate (∂pm
∂cm

). Since εm > 0, pass-through elasticities
exceed one if and only ifEm < 0. Homogeneous logit hasEm = 1+αpmsm = 1−εmsm/(1−
sm) > 0 and hence ∂ ln pm/∂ ln cm < 1. As the sm become small (for example when the
outside good has a high share), Em → 1, PTR→ 1, and PTE→ (εm − 1)/(εm) < 1, that is
the inverse of the markup formula. On the other hand in CES monopolistic competition
Em = 0, so PTR→ ε/(ε− 1) > 1 and the PTE is one.

In mixed logit, the super-elasticity is given by

Em = 1 + εm − pm
∑

h α
2
hPmh(1− Pmh)(1− 2Pmh)∑

h αhPmh(1− Pmh)
, (18)

which is ambiguous in sign. With levels of α-heterogeneity across households implied by
BLP estimates, we will see that the super-elasticity is negative and pass-through elastici-
ties are greater than one (in the single product case).
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4.4 Three implications illustrated

Figures 1 and 2 and Table 2 illustrate the quantitative relevance of the three implications
in the context of the data set and parameter estimates of Berry et al. (1995, 1999). The
figure and table contents are generated from one run of the BLP Data Generating Process
drawing 100,000 consumers and using the parameters and data for 1990 described in
Table 1.

Panels (a) and (b) of figure 1 display the rich substitution patterns involved in Implica-
tion 1. Equation (11) shows that the cross-price elasticity, ∂ ln sj

∂ ln pm
, is proportional to pricem,

and inversely proportional to market share sj . We remove those effects by first computing
the cross elasticities using the original data and estimated parameters and then regressing
the log cross elasticity on fixed effects to capture the j and m terms. The residual from
this regression is graphed against the dissimilarity in the characteristics vector, measured
with the Mahalanobis distance in terms of the four xk characteristics and price. As with
the log cross-price elasticity, we purge the Mahalanobis distances of m and j effects by
taking residuals from a fixed effects regression. The scatter plot reveals a striking fit: the
within R2 is 77%.

Figure 1: Cross-price elasticities in BLP data
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Table 2 reports the coefficients of this regression in the third column, each of the rows
corresponding to different degrees of consumer heterogeneity. With all sources of het-
erogeneity active, the coefficient is−0.98, while the relationship between cross elasticities
and the distance in varieties’ characteristics less steep at −0.53, but with an even larger
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fit at 90%. Since homogeneous logit predicts a zero slope and therefore a zero R2, we see
this regression as a useful way to quantify the amount of rich substitution conditional on
a set of attributes and parameter estimates.

Table 2: BLP Data Generating Process: Key moments

Elasticities Rich substitution
εm Em Maha. cov(Pjh,Pmh)

sjsm
Vm

sm(1−sm)

Setting Avg. Avg. Coef. Avg. Avg.

Mixed Logit 4.05 -0.49 -0.98 10.36 0.017
Logit 4.05 1.00 0.00 0.00 0.000
β het. 4.02 1.03 -0.53 7.09 0.010
Note: εm is the (opposite of) the own price elasticity and Em is the
super-elasticity (the elasticity of εm wrt pm, with formula given by
(18). Maha. Coef. is the slope in a regression of the log of ∂ ln sm

∂ ln pj

on Dmj , the Mahalanobis distance between characteristics of car
models m and j. The “Mixed Logit” row is the original version of
the model where both types of consumer heterogeneity are active.
“Logit” sets αh = α (holding avg own price elas constant) and
βh = β. “β het.” only sets αh = α.

Depending on the sign of the covariance between household choice probabilities,
equation (13) shows that the β heterogeneity cross-price elasticity can be higher or lower
than the CES corresponding elasticity. Figure 1(b) illustrates the cross-elasticity compari-
son using the full BLP model including α heterogeneity. The intuition from equation (13)
carries through, with BLP elasticities distributed on both sides of the 45-degree line repre-
senting equality with the CES approximation. An example of model pairs with an order
of magnitude higher cross-elasticity than the CES is the Geo Metro and the Ford Escort.
In the reverse direction, an increase in the price of the Yugo GV Plus has a tiny fraction
of the cross elasticity with the Mercedes 560 under BLP as it does in CES (though both
elasticities are very small due to the small share of the Yugo). The fourth column of Ta-
ble 2 reports average value of the scaled covariance term cov(Pjh,Pmh)

sjsm
as 10, with all types of

heterogeneity, and 7, when considering physical attributes only. The high scaled covari-
ances imply, via (12), that cross elasticities average 8 to 11 times larger with heterogeneous
consumers than for logit.13

Figure 1 shows the “cross-section” of cross-price elasticities, i.e. evaluated for each
pair of car models at the values of market shares and prices featuring in the original BLP
data. In order to graphically represent Implication 3, we need to trace how the equilib-

13The same is true when compared to CES: As explained in section 4.1, when parameters α and η are
calibrated to yield the same average own-price elasticity, the two versions of homogeneous consumer cross-
price elasticities have approximately the same average values.
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Figure 2: Own price elasticities
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rium own price elasticity varies when price changes. Varying the assumptions regarding
consumer heterogeneity makes the exercise also useful for evaluating the quantitative
importance of Implication 2. In practice, we run a sequence of simulations in which we
change the price of one car model, and then recompute the whole set of market shares,
holding other prices fixed. This allows to calculate the implied new own price elasticity
for the car model studied. While this is doable for all 131 car models in the data, the
graphical display (in Figure 2(a)) is much clearer when focusing on one. The car model
chosen (the 1989 Volvo 240) has a benchmark own price elasticity quite close to the av-
erage variety in the original BLP settings (4.05 as stated in the first column of Table 2).
Starting with those settings, we then evaluate the own-price elasticity (14), varying the
price of this car model by a range from −25% to +25% of the actual 1990 price. This eval-
uation involves recomputing household probabilities to buy each variety and therefore
all car models’ market shares. The results are displayed in Panel (a) of Figure 2. The
downward-sloping orange line shows the case of full BLP. In that case, the log of own
price elasticity falls with the log of price, implying a negative super-elasticity.

How general is the negative super-elasticity shown for the Volvo model in orange
in Figure 2(a)? Figure 2(b) investigates this question by tracing out the average (across
the 131 models) superelasticity as the standard deviation of log income (the source of
heterogeneity in αh) rises from zero to two.14 Equation (17) tells us that in a single-product
world, the Em < 0 will lead to super-pass-through (PTE > 1). The blue line in panel (b),

14The two curves in Figure 2(b) hold the mean εm constant at 4.05 by adjusting α.
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drawn using equation (17), shows that the average pass-through elasticity exceeds one
at a standard deviation of 0.9, where the mean E becomes negative. This points to the
generality of super-pass-through in random coefficients logit since the threshold amount
of heterogeneity is well below the standard deviation of 1.72 used in Berry et al. (1999). A
second aspect of generality is that the single-product predictions in the figure carry over
to the multi-product firm data of BLP as shown in Table 3, where the average PTE of the
tariff counterfactual is 1.13 (with an average super-elasticity of −0.49).

Returning to panel (a) of figure 2, the solid blue line illustrates the own-elasticity ver-
sus price relationship for the case of simple logit demand, i.e. canceling all sources of
consumer heterogeneity (and adjusting α such that the average own price elasticity is
the same as in the full BLP setup). The slope is positive as predicted by theory (where
Em = 1 + αpmsm) and close to one, the limiting value as market shares go to zero. The
dashed blue line adds β-heterogeneity to consumer behavior, which illustrates Implica-
tion 2: own price elasticities are systematically smaller in that case due to the niche market
power. However, because market shares are so small in the BLP data (since the outside
good share is 91%), the difference is quantitatively negligible.15 Table 2 confirms that
super-elasticities that are positive and very close to one are a feature of the logit model,
even when allowing for heterogeneous tastes for attributes other than price.

Lastly, figure 2(a) also illustrates the two CES approximations used in the paper. First,
the CES-MC case, with its continuum of negligible firms, gives a constant elasticity (η)
chosen here to be at the average level of the BLP data (4.05). This is represented in solid
red. In dashed red, we account for the fact that, with non-negligibly sized firms, the CES
elasticity is η(1−sm), i.e. declining with the market share of modelm. With low prices, this
share increases and the own price elasticity falls. This is true in panel (a)’s representation,
although the effect is very small quantitatively, again because of the very small market
shares of all varieties in the data. Even without rich substitution, the positive super-
elasticity implies that logit will have a very different pass-through from CES, a feature
which will prove important in our simulations’ results.

4.5 Benchmark counterfactual, known CES parameter

The first experiment we conduct asks a simple question: Would a CES monopolistic com-
petition approximation of the US car industry be able to predict the response to a change
in trade policy for data generated by mixed logit multi-product oligopoly? To pinpoint

15This generalizes the result of equation (15), where the ratio of β heterogeneity over logit own price
elasticities is driven by Vm

sm(1−sm) , which has an average value of 0.01 (Table 2).

19



the role of functional forms, we first sidestep the issue of how to estimate the CES and
simply assume we already know it to be 4.05 (the average own price elasticity coming
from the BLP parameter and data). Keeping all parameters and data as in the original
Berry et al. (1995) study, we then impose a 10% tariff on the foreign models, solve for the
new BLP equilibrium and compare changes in outcomes to changes predicted by the CES
approximation.

Table 3: Counterfactual 10% tariff using the BLP data

Quantity shares Pass-through
Agg. ∆S rate elasticity

Setting True EHA Avg. Avg. # 1

Mixed Logit 8.00 7.73 1.57 1.13 1.12
Logit 3.85 7.73 1.00 0.67 0.62
β het. 3.33 7.73 0.98 0.65 0.57
Note: CES EHA uses η = 4.05. ∆S is the change in aggregate
share of domestic models in the new car market. The pass-
through rate is the avg. ∆pm/∆cm evaluated for the foreign
firms in the DGP. The elasticity averages the rate divided by
the markup pm/cm. #1 gives the elasticity for the best-selling
import variety. The “Mixed Logit” row is the original version
of the model where both types of consumer heterogeneity are
active. “Logit” sets αh = α (holding avg. own price elas. con-
stant) and βh = β, whereas “β het.” only sets αh = α.

The first line of Table 3 implements this counterfactual increase in tariffs imposed on
all foreign cars. The “true” change in the domestic firms’ collective share of the market
for new cars is reported in the first column. The 10% tariff increases the domestic share
by 8.00 percentage points (to 76%). As the CES approximation predicts a change of 7.73,
the error is about one quarter of one percent. This extremely close fit is surprising in
several respects. The CES approximation makes three deviations from the true DGP: 1)
monopolistic competition rather than oligopoly, 2) a wrong functional form of demand
(CES versus logit), 3) homogeneous consumers. We investigate the two first deviations
(market structure and functional form) in the next section and focus here on the role of
heterogeneity.

The second line of Table 3 (Logit) imposes homogeneity in consumer tastes. We cal-
ibrate α such that all consumers have the same price elasticity as the average one in the
first line (BLP). The CES prediction remains the same (7.73 pp) since it still works with a
price elasticity of 4.05. However, the true counterfactual falls drastically to 3.85pp. This
comes from the fact that the logit demand system implies a pass-through elasticity sub-
stantially below one: here every one percent increase in costs by foreign firms triggers a
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0.67 percent price increase.16 Domestic firms therefore gain much less market share than
in the first line (the BLP case), where the pass-through elasticity is close to one (the value
predicted by the CES-monopolistic competition model).

We further investigate the role of heterogeneity in the third line (β heterogeneity).
This is a hybrid case, as it imposes a single own-price effect α, but lets the βkh coefficients
on the four physical car characteristics (as well as preference for the outside good) vary
across households. The presence of β heterogeneity leads to a slight deterioration of the
accuracy of the CES approximation as compared to logit. The pass-through elasticity is
slightly lower (0.65 vs 0.67) than in the logit case and therefore exacerbates the deviation
from CES. The rise in the bias from 3.88 to 4.40 also highlights Implication 1: the impo-
sition of symmetric substitution patterns damages the quality of the CES approximation.
This occurs because under β heterogeneity, the rising price of foreign cars leads to less
substitution towards the outside good.17 Thus, the new car market shrinks less under β
heterogeneity because the foreign varieties do not fare as badly. The net result is a smaller
increase of the share of domestic varieties as a share of new cars (the inside good).

The accuracy of the fit in the benchmark (BLP) case comes from a countervailing effect
of α heterogeneity. When the price sensitivity of consumers is heterogeneous enough, a
rise in prices triggers selection of consumers, such that only the less price sensitive ones
continue to buy the most expensive varieties. In the BLP DGP this effect is so strong that
it reverses the way own-price elasticity varies with price.18 This raises the incentive to
pass more of the tariff increase into final prices. This effect is so strong in the BLP data
and estimates that the average pass-through elasticity, 1.13, is slightly larger than one,
bringing it closer to the CES-MC assumption.

A potential concern is that our counterfactual imposes a tax based upon on a charac-
teristic of the product, i.e. its foreign status, while this characteristic was not included
in the original analysis of Berry et al. (1995). The omission of the mean effect for do-
mestic/foreign cars has no effect since the unobserved demand shock ξm would capture
this effect. However, a random coefficient on domestic status would alter patterns of
substitution in a way that might be expected to undermine the performance of the CES
approximation.

Some aspects of foreignness were already being incorporated through differences in

16Appendix C shows that logit models with small market shares have unitary pass-through rates. The
elasticity divides the rate by the markup.

17The fact that random coefficients make consumers much less likely to switch to the outside good than
in a homogeneous logit model is quantified in (Berry et al., 1995, Table VII).

18Birchall and Verboven (2022), examining the breakfast cereal industry, find that the random coefficients
model yields a non-monotonic relationship between elasticity and price.
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the observed attributes of foreign vs domestic varieties. Table 4 shows that the chief dif-
ference would come through higher-priced foreign cars, since the means of the other char-
acteristics are very similar. Consumer tastes for domestic brands could be heterogeneous,
even taking into account the fact that foreign cars are more expensive. As with other
random coefficients (see our Implication 1), the greater the variance of tastes, the greater
will be substitution within the import status relative to substitution between domestic
and imported varieties. The CES approximation may therefore overestimate the effect of
tariffs, even when it is calibrated to the correct average average own-price elasticity.

Table 4: Characteristics of car models in BLP data
Origin count price HP/weight air miles/USD size

Domestic 67 12.03 0.42 0.43 2.69 1.31
(6.44) (0.08) (0.5) (0.68) (0.17)

Foreign 64 16.14 0.48 0.48 2.79 1.2
(11.48) (0.1) (0.5) (0.58) (0.14)

Note: 1990 average levels of prices (in $1000) and the four model characteristics
used in Berry et al. (1999), with standard deviations in parentheses.

To investigate that potential concern, we rerun our simulations with a random coeffi-
cient on domestic status added to the other car characteristics. We then vary the standard
deviation of the random coefficient on domestic status to encompass the plausible range
of estimates. The key results are shown in figure 3, with details relegated to appendix H.
Figure 2 plots ∆SBLP and ∆SCES against the standard deviation of the random coefficient
on domestic status. Using vertical dotted lines, we call attention to four estimates, two
that we conducted using the PyBLP software made available by Conlon and Gortmaker
(2020), and two that are taken from Reynaert and Verboven (2014).

On the vertical axis (when evaluated at σ = 0), the heights correspond to the same
change in aggregate domestic market share as shown in Table 3: 8 p.p. for the full BLP
model (in blue), 7.73 for the CES approximation (in black), and 3.33 for the β-heterogeneity
setting (in red). Both blue and red lines are monotonically decreasing as expected, when
σ increases. For very large degrees of consumer heterogeneity regarding domestic status,
the approximation starts to deteriorate substantially. However, CES continues to fit very
closely the true DGP of BLP for the estimated values of σ using BLP data.

In the next section we proceed to a more complete investigation of the surprisingly
good fit of CES to full BLP, where we vary all the relevant dimensions in sequence. An-
other important difference is that the counterfactuals we report in Table 3 assume the
researcher knows the average own-price elasticity. In contrast, counterfactuals in the next
section take the standard approach of trade economists, and use tariff variation to estimate
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Figure 3: The impact of a random coefficient on Domestic status
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the elasticity of market shares to cost shocks.

5 Dissection via simulation: what makes CES work?

Our dissection exercises set up a simulated version of the BLP data generating process
that is sufficiently close to be a valid representation of the original version, while having
the flexibility needed to dig into the causes of the failures or successes of the CES approx-
imation. Another important component of our approach is to bring it closer to the actual
questions and methods of trade economists in that we estimate the key cost elasticity
parameter (η̆) required to run counterfactuals on trade costs variation.

5.1 Benchmark settings using estimated tariff elasticities

Our benchmark simulations involve the following steps:

1. Sample 90 varietiesm from the original BLP data with their four observed attributes
xm, together with their unobserved quality, ξm, and marginal cost, cm, that we backed
out using the inversion methods described in section 2.

2. Assign ten varieties to nine firms, with three firms in each of three countries.

3. Trade costs consist of an initial 10% tariff and an ad-valorem equivalent of distance
between countries, dAVE.

4. We calibrate three parameters to comply with three moments of the BLP data.

(a) α is chosen to set the average own price elasticity to 4,

(b) dAVE sets the domestic share equal to 68% (the domestic variety share of the
new car market in 1990 in the BLP data),

(c) β̄0 is adjusted so that the outside good share is 90%.

5. Compute the initial BLP equilibrium. This starts with using the first order condition
(3) to solve for prices, followed by (2) and (1) to obtain equilibrium market shares
smn in each country n.

6. Estimate the tariff elasticity, η̆, using equation (8).

7. We then raise the tariff on foreign cars by 10 percentage points and compute new
prices and ensuing s†mn, i.e. the new market shares for all firm-destination combina-
tions in the new equilibrium.
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8. Compute s′mn, the EHA counterfactual prediction, using equation (6). Then aggre-
gate over the domestic varieties in one country to compute ∆SCES, which we com-
pare to the true changes ∆SBLP.

We repeat the steps above 1000 times, reporting averages and standard deviations in the
next subsection.

To investigate which features of the BLP initial setup make the CES approximation
succeed or fail, we consider four modifications of the benchmark simulation described
above:

Aggregation: Sum the market shares of varieties from a common origin country to create
sin, which we use to estimate (9). The aggregate approximation uses equation (10).
This reflects the common limitation faced by researchers lacking firm/variety data.

Reduced outside good share: Increase the mean β0
h to generate smaller shares (50%, 10%)

of the outside good. This leads to higher market shares for the inside firms and thus
more scope for oligopoly forces.

Mixed CES: Each household spends yh on a preferred vehicle, with household choice
probabilities being the same as equation (2) except −αhpm is replaced by −αh ln pm.
In this specification sm is measured in values instead of quantities. In the enumer-
ated list describing the DGP, the same steps are involved except the two computa-
tions of equilibrium (steps 5 and 7) use the mixed CES equations to solve for the
equilibrium. Appendix section A gives a complete description of this setup.

Oligopoly estimation and EHA: Even without random coefficients, standard EHA is in-
correct because it does not capture the variable markups of oligopolists. This can be
fixed by modifying estimation to equation (A6) and adjusting EHA to the oligopoly
case shown in equation (A7)—both equations being displayed in Appendix A.

5.2 Benchmark case and decreasing outside good share

The benchmark results, depicted in the third line of Table 5 and in Figure 4(a), show that,
under BLP heterogeneity settings, EHA continues to predict Mixed Logit tariff counter-
factuals accurately. The CES approximation overpredicts the change in domestic market
share by only one third of a percentage point.19 A fundamental difference from the sim-
ulation reported in Table 3 is that we now estimate η rather than assuming the average

19Even though this simulation samples from the underlying car models and allocates them to nine firms
in three countries, it still retains the market structure of the original data: the average concentration ratio
(an untargeted moment) is 84% on average in our simulations, just below the 86% in the original data.
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own-price elasticity is known. The cross-country tariff variation in equation (8) estimates
η̆ = 4.29 on average. This is larger than the calibrated own-price elasticity of 4 because
α heterogeneity causes firms to pass on to consumers more than 100% of their costs in-
creases. The average pass-through rate and elasticity reported in the last two columns
of Table 5 are 1.65 and 1.14, respectively. This is because α heterogeneity creates a force
that selects consumers according to their individual elasticity, raising the pass-through
elasticity from around two thirds to a level just over unity.

As a consequence, the CES approximation works better with the BLP full dimensions
of consumer heterogeneity than in cases of no heterogeneity or only β heterogeneity (first
two lines of Table 5). This is the same pattern as depicted in Table 3. However, the bias of
the CES approximation now falls to less than one percentage point as opposed to about
four in the BLP data counterfactuals of Table 3. The primary reason is that the estimated
η̆ (shown in the fourth results column) falls to 2.64 and 2.26 in those cases respectively.
Recall from equation (16) that η̆ combines the effects of both own-price ( ∂ ln sm

∂ ln pm
) and pass-

through (∂ ln pm
∂ ln cm

) elasticities. By capturing the much lower pass-through implied by logit
demand, the estimation step gives the CES approximation greater flexibility to fit the
underlying true data generating process. Rich substitution under the form of β hetero-
geneity lowers the fit of the approximation, but the first order issue is the functional form
of demand.

Table 5: The role of consumer heterogeneity assumptions

Setting ∆S domestic varieties Trade elas (η̆) Passthrough
True CES Approx

micro macro micro macro rate elas

Logit 2.15 2.89 2.40 2.64 2.19 0.99 0.68
β heterogeneity 1.29 2.02 1.48 2.26 1.65 0.98 0.66
Mixed Logit 5.81 6.14 6.35 4.29 4.45 1.65 1.14
Note: Each row applies different heterogeneity settings to Logit demand. As in the
BLP data, the share of outside goods is calibrated to 90%, the share of domestic cars is
68%, and we set average εm to 4 for 1000 repetitions. The simulation has 9 firms with
10 models each; the combined market share of the top 5 firms is 84% (as compared to
86% in BLP).

Table 5 shows results using the aggregated gravity estimation described in section 3.
The third column reports the aggregate change in domestic market share, with the cor-
responding tariff elasticity—obtained from aggregated gravity equation (9)—reported in
the fifth column. In the benchmark Mixed Logit case, the macro estimate of η is large,
therefore amplifying the overprediction of the micro-based CES approximation (6.35 vs
6.14, when the true change is 5.81). In the other cases, the macro gravity estimate is
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smaller than when using micro flows. Since the micro ∆SCES overshoots, the macro ap-
proach has the surprising effect of improving the fit of the approximation.

Figure 4: Benchmark case and outside good share
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(a) Benchmark case (b) Increasing oligopoly
Note: As in the BLP data, the share of domestic cars is 68%, and we set average εm to 4. The simulation
has 9 firms with 10 models each; the combined market share of the top 5 firms is 84% (as compared to 86%
in BLP). The error bars are 1.96 standard deviations of the simulation outcomes for 1000 repetitions. Panel (a)
calibrates the OG share at 90%. OG shares of 50 and 10 in panel (b) yield larger market shares for the inside
firms.

Table 6: Decreasing the share of the outside good (OG)

OG Agg. ∆S Passthrough
(%) True Approx η̆ rate elas

90 5.81 6.14 4.29 1.65 1.14
50 6.88 7.04 4.78 1.78 1.19
10 7.90 7.72 5.14 1.90 1.21
Note: 1000 repetitions. The demand system is
mixed logit with both dimensions of heterogene-
ity in all 3 lines. OG shares of 50 and 10 yield
larger market shares for the inside firms.

Intuitively, the 90% outside good share in the BLP data should contribute to the good
performance of the monopolistic competition assumption used in the CES-MC counter-
factuals.20 Would CES-MC work as well for industries dominated by “inside” goods?

20The outside good share is so large in the baseline that it essentially wipes out oligopoly forces in the
DGP. One way to verify this is to modify the DGP to allocate each of the 90 car models to individual
firms. This moves the “true” prediction close to monopolistic competition. The results are so similar to the
benchmark case shown in figure 4(a) that we relegate them to the appendix figure F1(b) and table F2(b).
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Figure 4(b) shows that as we decrease the outside good share (from 90% on the left to
10% on the right), there is a greater increase in domestic market share, both for the true
(gray) and CES-approximated (blue) outcomes. In the case of BLP, this is because more
oligopoly power induces firms to adjust markups more, thus passing through a higher
multiple of the tariff increase.21 The pass-through elasticity can be seen to rise in Table 6
from 1.14 to 1.21. In the Exact Hat Algebra, the higher change comes from a larger es-
timated η; the tariff elasticity rises from 4.29 to 5.14. The true outcome rises faster than
the approximation, with CES first over-predicting and then under-predicting, but never
more than a fifth of a percentage point.

5.3 Mixed CES and oligopoly estimation

So far we have seen that CES-MC can approximate the aggregate predictions of the BLP
DGP quite precisely. Essentially, high variance in the αh price coefficients “solves” the
problem that the logit form leads to low pass-through. It is therefore illuminating to
move to random coefficients (and hence rich substitution) while holding the functional
form of household choice probabilities constant. We present the mixed CES results in Ta-
ble 7 and figure 5. The mixed CES has the advantage of containing homogeneous CES as
the limiting case when the variance of the βh and αh go to zero. In this case the only dif-
ference between the DGP and the CES approximation is the latter assumes monopolistic
competition.

In the first line of Table 7, the CES-MC approximation is almost perfect (up to round-
ing). This is because a market share of 90% for the outside good leaves little room for
oligopoly to make a noticeable difference. The micro and macro estimates of η are al-
most identical, allowing the aggregate counterfactual to fit extremely well. As before,
adding β-heterogeneity worsens the prediction, but now instead of improving the fit, α-
heterogeneity exacerbates the problem. However, the main takeaways from panel (a) of
Figure 5 are the stability of the BLP outcomes and the accuracy of the CES approximation
across all three heterogeneity settings.

Our last dissection investigates whether CES can predict the BLP outcome better if
the estimations and Exact Hat Algebra calculations are modified to account for oligopoly
(CES-OLY).22 Recall that in Table 7 (last row) the CES approximation has an upward bias
of about one percentage point. That is for the benchmark case where the inside firms

21The higher amount of markup adjustment as the inside good market shares increase is a general feature.
However, without α heterogeneity, the adjustments would be downward, leading to less complete pass-
through and lower aggregate changes.

22Specifically, we estimate equation (A6) and use equations (A7) and (A8) for Exact Hat Algebra.

28



Table 7: Mixed CES results
Setting ∆S domestic varieties Trade elas (η̆) Passthrough

True CES Approx
micro macro micro macro rate elas

CES 4.37 4.37 4.34 3.96 3.94 1.25 1.00
β heterogeneity 3.61 4.03 3.71 3.78 3.46 1.23 0.98
Mixed CES 4.00 4.90 4.75 4.13 4.02 1.44 1.04
Note: Each row applies different heterogeneity settings to CES demand. As in the
BLP data, the share of outside goods is calibrated to 90%, the share of domestic cars is
68%, and we set average εm to 4 for 1000 repetitions. The simulation has 9 firms with
10 models each; the combined market share of the top 5 firms is 84% (as compared to
86% in BLP).

Figure 5: Mixed CES and the oligopoly correction
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(a) Mixed CES (b) Oligopoly est/EHA
Note: 1000 repetitions. As in the BLP data, the share of outside goods is calibrated to 90%, the share of
domestic cars is 68%, and we set average εm to 4. The error bars in panel (a) are 1.96 standard deviations of
the simulation outcomes, but those in panel (b) are standard errors of the bias.
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Table 8: Adapting estimation & EHA to oligopoly helps

Agg. ∆S Trade Passthrough
Setting True Approx elas (η̆) rate elas

Monopolistic competition approximation
CES 3.74 4.04 3.64 1.23 0.97
β heterogeneity 3.48 4.02 3.62 1.23 0.97
Mixed CES 8.41 7.47 4.95 1.98 1.28

Oligopoly approximation
CES 3.75 3.75 4.00 1.23 0.97
β heterogeneity 3.52 3.73 3.96 1.23 0.97
Mixed CES 8.41 7.59 5.75 1.98 1.28
Note: 1000 repetitions. The outside good share is calibrated to 10%
(instead of the 90% in the BLP data). All settings are calibrated to
hold the average brand-level own price elasticity at 4.

have only a 10% share of the market. Here we maximize the role of oligopoly forces by
using the lowest setting for the outside good, 10%. Figure 5(b) shows the average bias
(the difference between the blue and gray lines in the preceding figures) in each hetero-
geneity setting.23 The CES-OLY counterfactual predicts perfectly with homogeneous con-
sumers, correcting the upward bias in monopolistic competition. With β heterogeneity,
the oligopoly adjustments on the estimation and counterfactual calculation reduce bias
without fully eliminating it.

The oligopoly adjustment offers the lowest improvement in the setting with α het-
erogeneity. As seen in Table 8, the reason for this is that CES-OLY estimates a larger
η̆ (5.75 instead of 4.95), which is going in the right direction because the pass-through
elasticity exceeds one. The EHA partially undoes this by imposing a change in markups
that entails incomplete pass-through (since it assumes CES under oligopoly). Thus, the
“mistake” that the monopolistic competition version of CES makes (omitting oligopoly
markup adjustment) is actually helpful in the presence of large amounts of α heterogene-
ity. The bottom line here is that the oligopoly markup adjustment helps—but only when
Marshall’s second law of demand holds. A DGP with super-passthrough, such as the
mixed CES case with high α heterogeneity, is hard for the CES oligopoly approximation
to fit.

23Another change is that the error bars in this figure correspond to standard errors for the mean rather
than standard deviations of outcomes as in the previous figures.
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6 Conclusion

A recurrent need in policy analysis is to predict the outcome of a cost shock (such as a
tax or subsidy) applied to a subset of competing products. Examples span the fields of
trade (e.g., tariffs on imported cars), environment (e.g., subsidies for electric vehicles),
and health (e.g., taxes on sugary drinks). Two major challenges are how to model market
structure and patterns of substitution between alternatives. Our most striking finding is
that a simple, and admittedly unrealistic, model—the constant elasticity of substitution
under monopolistic competition—is able to closely approximate aggregate outcomes of
the much richer go-to model of IO economists.

The CES approximation fits aggregate market share changes well when the pass-
through elasticity for cost shocks has an elasticity near one. Fajgelbaum and Khandelwal
(2022) survey the growing literature estimating this elasticity for tariff-generated costs
shocks (the focus of our paper). While early work on sugar and trucks found low rates
of tariff pass-through, five recent investigations of the price effects of the US-China trade
war estimate pass-through elasticities near one in both directions. Given these mixed
results in the literature, we recommend estimation of the pass-through elasticity as a di-
agnostic. A near unit elasticity suggests the CES approximation will provide a better fit
in a given application.

When pass-through elasticities differ from one, the CES approximation can still work
well with an estimated elasticity of how market shares respond to tariffs. There is some-
thing of a paradox here. When the DGP departs from CES monopolistic competition,
the coefficient on tariffs no longer estimates the structural demand elasticity. Instead, the
estimand becomes the mean of a product of two elasticities: demand and pass-through.
This combination of parameters can be thought of as a correction that mitigates the pass-
through problem in counterfactual predictions.

The results showing the good ability of the CES model to approximate models with
rich substitution do not necessarily apply in all contexts. For example, a prominent use of
the Berry et al. (1995) methodology is to compute the consequences of mergers. Flexible
substitution seems likely to play a larger role in counterfactual merger analysis than in
the cost shock analysis contained in this paper.
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Coşar, K., P. Grieco, S. Li, and F. Tintelnot (2018). What drives home market advantage?
Journal of International Economics 110, 135–150.

Conlon, C. and J. Gortmaker (2020). Best practices for differentiated products demand
estimation with PyBLP. The RAND Journal of Economics 51(4), 1108–1161.

Dekle, R., J. Eaton, and S. Kortum (2007). Unbalanced trade. American Economic Re-
view 97(2), 351–355.

Dingel, J. I. and F. Tintelnot (2021). Spatial economics for granular settings.

Dubois, P., R. Griffith, and M. O’Connell (2020). How well targeted are soda taxes? Amer-
ican Economic Review 110(11), 3661–3704.

Fajgelbaum, P. D. and A. K. Khandelwal (2022). The economic impacts of the US–China
trade war. Annual Review of Economics 14(1), 205–228.

Gandhi, A. and J.-F. Houde (2016). Measuring substitution patterns in differentiated prod-
ucts industries.

Gandhi, A. and J.-F. Houde (2019). Measuring substitution patterns in differentiated-
products industries. Working Paper 26375, National Bureau of Economic Research.

Goldberg, P. K. (1995). Product differentiation and oligopoly in international markets:
The case of the US automobile industry. Econometrica 63(4), 891–951.

Goldberg, P. K. and F. Verboven (2001). The evolution of price dispersion in the European
car market. The Review of Economic Studies 68(4), 811–848.

Grigolon, L., M. Reynaert, and F. Verboven (2018). Consumer valuation of fuel costs
and tax policy: Evidence from the European car market. American Economic Journal:
Economic Policy 10(3), 193–225.

Head, K. and T. Mayer (2019). Brands in motion: How frictions shape multinational
production. American Economic Review 109(9), 3073–3124.

Hottman, C. J., S. J. Redding, and D. E. Weinstein (2016). Quantifying the sources of firm
heterogeneity. The Quarterly Journal of Economics 131(3), 1291–1364.

33



Knittel, C. R. and K. Metaxoglou (2014). Estimation of random-coefficient demand mod-
els: Two empiricists’ perspective. Review of Economics and Statistics 96(1), 34–59.

Matsuyama, K. (2023). Non-CES aggregators: A guided tour. Annual Review of Eco-
nomics 15(1), ??–??

McFadden, D. and K. Train (2000). Mixed MNL models for discrete response. Journal of
Applied Econometrics 15(5), 447–470.
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Appendix

A Mixed CES

The most common setup for random coefficients models is the unit demand mixed logit
introduced in Berry (1994). More recently Björnerstedt and Verboven (2016), Piveteau
and Smagghue (2021), Adao et al. (2017), Redding and Weinstein (2019) have worked
with what the latter two papers refer to as mixed CES (MCES). The model assumes in-
dividual consumers have CES utility but that their price elasticity is heterogeneous. It is
micro-founded by starting with the variable consumption discrete choice model of An-
derson et al. (1992) (section 3.7), before extending it to include heterogeneity in the price
responsiveness parameter. As in the mixed logit, the MCES also allows for random co-
efficients on the consumers’ indirect utility derived from product attributes. The key
difference is that households spend constant income shares rather than buying a single
unit. Several well-known models can be thought of as special cases of mixed CES. As the
variance across households of price elasticity and preference for characteristics goes to
zero, mixed CES can reach three different limiting cases. First, with many single-variety
firms it becomes the Dixit-Stiglitz model which we have also referred to as CES-MC. Sec-
ond, with a small number of single-variety firms, the limiting case is a version of Atkeson
and Burstein (2008) with the upper level CES set to one. Finally with several large mul-
tiproduct firms, MCES converges on models used by Hottman et al. (2016) and Bernard
et al. (2018).

Birchall and Verboven (2022) estimate a random coefficients model that nests mixed
logit and mixed CES and find the best-fit parameter is midway between those two polar
cases. They also find that the simple logit predictions on how own price elasticities should
vary with price are flatly inconsistent with the evidence from the breakfast cereal industry.

A.1 The Mixed CES data generating process

Denoting household income with yh, the (indirect) utility of household h is given by

Umh = ln yh − α̃h ln pm +
K∑
k=0

β̃khx
k
m + ξ̃m + εmh. (A1)

With an outside good whose indirect utility is normalized to zero and εmh distributed
Gumbel with scale parameter 1/η, the choice probability of household h for model m
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takes the form:

Pmh =
exp(

∑K
k=0 β

k
hx

k
m − αh ln pm + ξm)

1 +
∑

i exp(
∑

k β
k
i x

k
i − αh ln pi + ξi)

. (A2)

where αh = ηα̃h, βh = ηβ̃h, and ξm = ηξ̃m. Note that the specification of the random
coefficients does not impose a relationship between αh and βh but it does imply that all
buyers view the unobserved quality ξm in the same way. We adopt this approach to paral-
lel the one taken by IO economists in the mixed logit models. An alternative, considered
by Redding and Weinstein (2019), places the household heterogeneity in the η parameter.
This has the consequence of making consumers who are more price sensitive also more
sensitive to differences in quality, both observed and unobserved. This approach is at-
tractive in many respects, but we have not pursued it in this version to limit the number
of permutations to consider.

Each individual spends yh on their preferred variety. Total expenditures on m are
therefore smY , where Y ≡

∑
h yh and sm is the variety’s market share—defined in value.

This market share is given by the expenditure-weighed average of the individual proba-
bilities from equation (2):

sm =

∑
h Pmhyh
Y

, (A3)

In the CES and β-heterogeneity cases, α̃h = 1 ∀h, and therefore αh = η. With both types
of heterogeneity active, α̃h = 1/yh where, as in BLP yh is log-normally distributed using
the distributional parameters from the BLP replication file. As before, we calibrate η to
match the average own-price elasticity of 4.

The multi-product firm’s profit maximization problem is very similar to that used in
the mixed logit case, but it is important to note that the market shares, sm are all measured
in values, rather than in units. Let εm ≡ − ∂ ln sm

∂ ln pm
denote the elasticity of value market share

with respect to own price and recalling that the Lerner index is Lm = (pm − cm)/pm, the
first order condition implies a price rule of

pm = cm ×
(εm + 1)[

εm − 1
sm

∑
(j 6=m)∈JF

∂ ln sj
∂ ln pm

Ljsj

] . (A4)

The formulas for own and cross price elasticities needed to compute prices are in section
B of this appendix. This computation is done with the same fixed point iteration as for
the mixed logit case.
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A.2 Homogeneous CES approximation with variable markups

This subsection generalizes EHA to allow for markups determined inside a CES multi-
product oligopoly such as that studied in Hottman et al. (2016) and Nocke and Schutz
(2018). The optimal markup in this CES-OLY approximation varies over both models
and markets. Assuming, as in BLP, that firms compete in prices (Bertrand), the markup
equation at the model level depends on market shares at the firm level:

µmn = µfn =
η(1− sfn) + 1

η(1− sfn)
, ∀m ∈ Jf , with sfn =

∑
m∈Jf ,

smn. (A5)

The markup converges to (η+1)/η as firm-level market shares go to zero.24 Except in that
limit case, there is no closed-form solution to the market share equation and estimation
requires an iterative procedure to estimate η. Start with a guess of η0. Since we observe
firm market share sfn, we can compute the equilibrium markup µ0

fn using equation (A5).
This markup is passed to the left-hand-side, and combined with the log of market shares
to yield the following regression for the kth iteration

ln smn + ηk lnµkfn = −ηk+1 ln τi(m)n + FEm + FEn + υmn, (A6)

The coefficient on trade costs provides a new estimate ηk+1, with which we can recalculate
markups. The process iterates from k = 0 until ηk+1 = ηk (within tolerance) at which point
we have an estimate η̌, consistent with Bertrand oligopoly pricing.25

Once the estimate η̌ is obtained, one can also work with Exact Hat Algebra to compute
counterfactual market shares that account for changes in markups. The changes in market
shares for the inside goods (m > 1) are

ŝmn =
(µ̂mnτ̂i(m)n)−η̌

s0n +
∑

j∈J sjn(µ̂jnτ̂i(j)n)−η̌
. (A7)

The change in markup is computed as

µ̂mn = µ̂fn =
1

µfn

η̌[1− ŝfnsfn] + 1

η̌[1− ŝfnsfn]
, ∀m ∈ Jf , with ŝfn =

∑
m∈Jf , ŝmnsmn

sfn
, (A8)

24The reason the limiting monopolistic competition markup is no longer η/(η − 1) is that we have now
switched to using value market shares. Thus η is no longer a quantity-price elasticity but a value-price
elasticity. The redefinition of η changes the markup formula.

25Breinlich et al. (2021) estimate an equation similar to (A6), using the Cournot equivalent of equation
(A5) to construct the markup adjustment term. They however use calibrated (or separately estimated from
an auxiliary regression) values of the needed parameters rather than internally estimate like we do in (A6).
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We have all the elements to iterate over the EHA predictions. Start with ŝmn = 1, ag-
gregate to obtain the firm-level market shares ŝfn. Using initial markup (A5), one can
retrieve its change from (A8). The new vector of market share changes is finally obtained
with (A7). The process stops when the vector of ŝmn stops changing.

B Derivatives and elasticities with random coefficients

B.1 Mixed logit

Since the individual partial effect of a change in pm is

∂Pmh
∂pm

= −αhPmh(1− Pmh),

we obtain the partial derivative of market share with respect to price:

∂sm
∂pm

=

∑
h
∂Pmh

∂pm

N
= −

∑
h αhPmh(1− Pmh)

N
.

The own price elasticity is:

∂ ln sm
∂ ln pm

= −pm
sm
×
∑

h αhPmh(1− Pmh)
N

= −pm
∑
h

ωmhαh(1−Pmh), with ωmh ≡
Pmh∑
h Pmh

.

Model m’s own elasticity therefore is a weighted average of the individual household
elasticities, which write

∂ lnPmh
∂ ln pm

= −αh(1− Pmh)pm.

The weight ωmh applied to each of those elasticities is the share of each household in
total sales of the model. Note that in the individual elasticity, a low pm will be associated
with a high purchasing probability Pmh, both contributing to a lowering of ∂ lnPmh

∂ ln pm
. The

individual response to price increases is therefore unambiguously concave, getting more
and more pronounced as the price goes up. At the model level, however, a composition
effect enters the picture. Low price models are preferred by low income individuals which
are assumed to have a larger sensitivity for prices (a high αh). Those low price models
therefore face high αh households with larger weight ωmh, which raises the overall price
elasticity. This introduces an element of convexity, which can dominate the individual-
level concavity.

Let us turn to cross-price effects: the impact of an increase in the price of model m on

38



demand for j. The partial effect of m’s price on Pjh is

∂Pjh
∂pm

= αhPjhPmh,

which yields

∂sj
∂pm

=

∑
h
∂Pjh

∂pm

N
=

∑
h αhPjhPmh

N
.

The cross-price elasticity is then

∂ ln sj
∂ ln pm

= pm
∑
h

ωjhαhPmh, with ωjh ≡
Pjh∑
h Pjh

.

Again, this is a weighted average of the individual choice probability cross elasticities,

∂ lnPjh
∂ ln pm

= αhPmhpm.

B.2 Mixed CES

The individual partial effect of a change in pm is

∂Pmh
∂pm

= −αh
pm

Pmh(1− Pmh),

The partial derivative of market share with respect to price is

∂sm
∂pm

=

∑
h
∂Pmh

∂pm
yh

Y

The own price elasticity is:

∂ ln sm
∂ ln pm

= −
∑
h

ωmhαh(1− Pmh), with ωmh ≡
Pmhyh∑
h Pmhyh

. (B9)

Model m’s own elasticity therefore is a weighted average of the individual elasticities,

∂ lnPmh
∂ ln pm

= −αh(1− Pmh),

where the weight ωmh is the share of each household in total sales of the model.
Turning to cross-price effects: the impact of an increase in the price of model m on
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demand for j. The partial effect of m’s price on Pjh is

∂Pjh
∂pm

=
αh
pm

PjhPmh,

which yields a partial derivative of market share as

∂sj
∂pm

=

∑
h
∂Pjh

∂pm
yh

Y
=

∑
h αhPjhPmhyh

pmY
.

Lastly, multiplying by pm/sj , where sj = (
∑

h Pjhyh)/Y , the cross price elasticity is

∂ ln sj
∂ ln pm

=

∑
h αhPjhPmhyh

sjY
=
∑
h

ωjhαhPmh with ωjh ≡
Pjhyh∑
h Pjhyh

. (B10)

Again, this is a weighted average of the individual choice probability cross-elasticities,

∂ lnPjh
∂ ln pm

= αhPmh.

C Pass-through rates and elasticities

The derivation of theoretical pass-through starts from FOC for model m:

sm + (pm − cm)
∂ ln sm
∂ ln pm

= pm − (pm − cm)εm = 0,

with εm ≡ − ∂ ln sm
∂ ln pm

> 0 being the own price elasticity. Implicit differentiation gives

∂pm
∂cm

=
−εm

−εm + 1− (pm − cm) ∂εm
∂pm

.

Using the first order condition to replace (pm − cm) = pm/εm, the pass-through rate sim-
plifies to

∂pm
∂cm

=
εm

εm − 1 + Em
, where Em ≡

∂ ln εm
∂ ln pm

. (C11)

Em is the super-elasticity of demand, i.e. the elasticity of own price elasticity with respect
to a change in own price.26 Under CES demand and monopolistic competition, εm is a
constant. Hence, Em = 0, and the pass-through rate is a constant equal to ε/(ε − 1). The

26Bulow and Pfleiderer (1983) appear to have been the first to show, in their equation (3’), the relationship
between the pass-through rate and this measure of the curvature of the demand curve; Mrázová and Neary
(2017) consider the role of curvature in many different families of demand curves.
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pass-through elasticity is

∂ ln pm
∂ ln cm

=
εm

εm − 1 + Em
× cm
pm

=
εm − 1

εm − 1 + Em
. (C12)

The sign of Em is therefore the determinant of whether the pass-through elasticity is
greater or smaller than one. In the Dixit-Stiglitz case, Em = 0 implies a unitary pass-
through elasticity.

Under homogeneous logit, εm = αpm(1 − sm), and Em = [1 + αpmsm] . Since α > 0,
the super-elasticity is positive (greater than one, its value when the market share of m
approaches 0) and the pass-through elasticity (PTE) is less than one. Substitution into
equation (C11) implies a pass-through rate (PTR) of 1 − sm. With large outside good
shares sm ≈ 0, so the PTR ≈ 1 the PTE is ≈ cm/pm < 1.

The mixed logit case is more complex. Recall that BLP demand at the household-
model level implies ∂Pmh

∂pm
= −αhPmh(1− Pmh), and therefore the following own elasticity:

εm =
pm
sm
Xm, with Xm ≡

∑
h αhPmh(1− Pmh)

N
= −∂sm

∂pm
.

Taking the derivative of εm with respect to price,

∂εm
∂pm

=
Xm

sm
+
∂Xm

∂pm

pm
sm
− pmXm

s2
m

∂sm
∂pm

.

Using ∂sm
∂pm

= −Xm, one can re-write

∂εm
∂pm

=
Xm

sm

[
1 +

∂Xm

∂pm

pm
Xm

+
pmXm

sm

]
=
Xm

sm

[
1 +

∂ lnXm

∂ ln pm
+ εm

]
.

Hence the super-elasticity is

Em =
∂εm
∂pm

pm
εm

=

[
1 + εm +

∂ lnXm

∂ ln pm

]
,

where ∂ lnXm

∂ ln pm
is the elasticity of the slope of demand to a change in price. One therefore

needs to study how Xm varies with pm

∂ lnXm

∂ ln pm
=

∑
h
∂Pm

∂pm
αh(1− 2Pmh)
N

pm
Xm

= − pm
Xm

∑
h α

2
hPmh(1− Pmh)(1− 2Pmh)

N
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hence,
∂ lnXm

∂ ln pm
= −pm

∑
h α

2
hPmh(1− Pmh)(1− 2Pmh)∑

h αhPmh(1− Pmh)
,

and the super-elasticity is

Em =

[
1 + εm − pm

∑
h α

2
hPmh(1− Pmh)(1− 2Pmh)∑

h αhPmh(1− Pmh)

]
,

D Exact Hat Algebra for CES

Here we derive the Exact Hat Algebra formula using an inversion method inspired by
Berry (1994). The core idea is to retrieve the unobserved mean utility parameter of each
variety based on observed market shares.

The EHA approach starts with a specification of CES equilibrium market shares (5),
combined with constant markups µmn = µ = η/(η − 1), yielding

smn =

(
τi(m)n/ϕmn

Pn

)−η
, where Pn ≡

 |J |∑
j=0

(τi(j)n/ϕjn)−η

−1/η

. (D13)

The above equation is a slight generalization of equation (5) in the text, where we follow
the IO tradition of normalizing the outside good (j = 0) to have an indirect utility of one.

In the counterfactual equilibrium, we maintain the unobservable ϕmn unchanged, and
obtain new market shares denoted with s′mn:

s′mn =

(
τ ′i(m)n/ϕmn

P ′n

)−η
, where P ′n ≡

 |J |∑
j=0

(τ ′i(j)n/ϕjn)−η

−1/η

. (D14)

Recalling that x̂ ≡ x′/x,

s′mn =

(
τ̂i(m)nτi(m)n/ϕmn

P̂nPn

)−η
, where P̂nPn =

 |J |∑
j=0

(τ̂i(j)nτi(j)n/ϕjn)−η

−1/η

. (D15)

Let us denote geometric means over all choices (|J | car models and the outside good) by
x̃ ≡ exp((|J |+ 1)−1

∑|J |
j=0 lnxj). We can invert the market share equation to obtain :

τi(m)n/ϕmn = s−1/η
mn ×Kn, where Kn ≡

τ̃ns̃
1/η
n

ϕ̃n
. (D16)
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With CES demand, the unobservable determinants of model-destination competitiveness,
τi(m)n/ϕmn, can be expressed as a power function of observable market share smn and of
a market specific constant Kn (that will cancel when computing new market shares). The
definition of Kn follows the approach of Hottman et al. (2016) using geometric means,
although there is an equivalent approach using the outside good as a normalization.

We can then replace this expression in the counterfactual market share to obtain

s′mn =

(
τ̂i(m)ns

−1/η
mn Kn

P̂nPn

)−η
, where P̂nPn =

 |J |∑
j=0

(τ̂i(j)ns
−1/η
jn Kn)−η

−1/η

. (D17)

Kn factors out of P̂nPn and cancels with the Kn in the numerator. Since smn has a power
of 1 it can be passed to the denominator of the left-hand-side (yielding ŝ = s′/s), so that
we finally obtain the CES EHA expression for the proportional change in market shares:

ŝmn = s′mn/smn =
τ̂−ηi(m)n∑|J |

j=0 sjnτ̂
−η
i(j)n

=
τ̂−η̆i(m)n

s0n +
∑

j∈J sjnτ̂
−η̆
i(j)n

, (D18)

where the last equality imposes that, in our counterfactuals, there is no change in the
trade costs applied to the outside good.

For completeness, we briefly sketch the typical method used by trade economists to
derive EHA. Starting from equation (D15), and using the market share equation (D13)

s′mn = smn

(
τ̂i(m)n

P̂n

)−η
, where P̂n =

 |J |∑
j=0

sjnτ̂
−η
i(j)n

−1/η

. (D19)

Dividing both sides by smn, yields (D18).

E Approximate Hat Algebra

The CES-OLY approach just described computes pass-through of cost changes into prices
based on strong assumptions about conduct. We also consider a third approach to coun-
terfactuals in CES that is agnostic on market structure and instead relies on empirical
estimates of the pass-through elasticity. Let ρ̆ = |JF |−1

∑
m∈JF ∂ ln pmn/∂ ln cmn, be an

estimate of the average rate at which foreign varieties pass through increases in their
marginal costs. What we refer to as “approximate” hat algebra (AHA) computes the
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counterfactual as

ŝmn =
s′mn
smn

=
[1 + (τ̂i(m)n − 1)ρ̆]−η̆

s0n +
∑

j∈J sjn[1 + (τ̂i(j)n − 1)ρ̆]−η̆
. (E20)

This is not exact since almost any model of imperfect pass-through will have differential
pass-through across models and markets, rather than the scalar ρ̆ used here.

Table E1: Counterfactual 10% tariff using the BLP data

Quantity shares Pass-through
Agg. ∆S rate elasticity

Setting True EHA AHA Avg. Avg. # 1

Mixed Logit 8.00 7.73 8.57 1.57 1.13 1.12
Logit 3.85 7.73 5.39 1.00 0.67 0.62
β het. 3.33 7.73 5.27 0.98 0.65 0.57
Note: CES EHA uses η = 4.05. AHA (approximate hat
algebra) uses η = 4.05 and the average pass-through elas-
ticity as in equation (E20). ∆S is the change in aggre-
gate share of domestic models in new car market. PT rate
= ∂pm/∂cm. The “BLP” row is the original version of the
model where both types of consumer heterogeneity are
active. “Logit” sets αh = α (holding avg own price elas
constant) and βh = β. “β het.” only sets αh = α.

The pass-through issue suggests a relatively easy way to improve the counterfactu-
als assuming the CES model is true. Supposing one has a good estimate of the average
pass-through elasticity, equation (E20) shows how to incorporate this moment to give
an approximation to a more complex model of variable markups. These counterfactuals
appear in the AHA column, showing the mean change in domestic market share and the
average bias. As expected, AHA reduces the bias for the logit and for β heterogeneity. The
halving of bias we see in those cases is not replicated in the BLP setting. Since EHA was
already very accurate, AHA’s increase in pass-through leads to overshooting the target.

F Random coefficient logit with monopolistic competition

Of the two key features of the BLP setup, rich substitution and multiproduct oligopoly,
we have so far emphasized the former. How detrimental to the CES approximation is
it to assume Dixit-Stiglitz market structure? In the first line of Table F2, we assign each
of the 90 models to an individual firm. Hence, the market structure moves close to mo-
nopolistic competition for the “true” prediction. Note that the pass-through rate is 1, as
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predicted by monopolistic competition under logit demand. The pass-through elasticity
equals the pass-through rate divided by markup µ, hence smaller than 1 (it averages at
0.69 over our 1000 replications). The CES-MC prediction of unitary elasticity implies an
overprediction of the reaction of foreign firms and of domestic market share increase. In
the second line of Table F2, the niche market power created by β-heterogeneity reinforces
that overestimation of the change in market share.

Figure F1: Random coefficient logit with monopolistic competition
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Note: As in the BLP data, the share of outside goods is calibrated to 90%, the share of domestic cars is 68%,
and we set average εm to 4. The simulation has 90 firms with 1 model each; the combined market share
of the top 5 firms is 34% (as compared to 86% in BLP). The error bars are 1.96 standard deviations of the
simulation outcomes for 1000 repetitions.

Table F2: Random coefficient logit with monopolistic competition
Setting Agg. ∆S Tariff Passthrough

True Approx elas (η̆) rate elas

Logit 2.16 2.88 2.65 1.00 0.69
β heterogeneity 1.53 2.44 2.55 1.00 0.68
Mixed Logit 6.54 6.96 4.87 1.72 1.21
Note: As in the BLP data, the share of outside goods is calibrated to
90%, the share of domestic cars is 68%, and we set average εm to 4
for 1000 repetitions. The simulation has 90 firms with 1 model each;
the combined market share of the top 5 firms is 34% (as compared
to 86% in BLP).
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G Exact Hat Algebra for logit

The derivation starts from an adapted version of the equation in Anderson et al. (1992,
p. 45). Let us first state the market share equation for m in n under logit (no consumer
heterogeneity):

smn =
exp(

∑K
k=0 β

kxkm − αpmn + ξmn)

1 +
∑

j exp(
∑

k β
kxkj − αpjn + ξjn)

. (G21)

Denote the change in m’s price in n as ∆pmn = p′mn−pmn, the counterfactual market share
of m is

s′mn =
smn(exp(−α∆pmn))

s0n +
∑

j sjn(exp(−α∆pjn))
.

Denoting the proportional change x̂ = x′/x and with the additive markups pmn = cmn +

µmn implied by logit demand, we obtain

ŝmn =
exp(−α[∆cmn + ∆µmn])

s0n +
∑

j sjn[exp(−α[∆cjn + ∆µjn])]
. (G22)

The most natural counterfactual tariff change under logit demand is a specific duty of
d dollars per unit, in which case ∆cmn = di(m)n, i being the country where firm m is
located. In the monopolistic competition case, the markup is constant, and equation (G22)
is enough to compute the new equilibrium based on three requirements: initial market
shares, the structural parameter driving price response (α), and the policy change d. With
ad valorem tariff rate of t per dollar, the change in unit costs becomes ∆cmn = ti(m)ncm.
This makes the cost change variety-specific. With price, characteristics, and market share
data, cm can be obtained by inversion of the first order condition (and assuming there is
an estimate of α). This increases the informational requirements relative to the CES case
or the logit case with specific duties.

With non-atomistic varieties, we have to account for endogeneous markup adjust-
ment. Under Bertrand oligopoly, the additive markup of m only depends on the market
share of firm f to which m belongs (Nocke and Schutz, 2018, study more generally the
properties under which the market share of a multi-product firm is sufficient to compute
its markup and ensuing market power):

µmn = µfn =
1

α(1− sfn)
, ∀m ∈ Jf , with sfn =

∑
m∈Jf ,

smn. (G23)
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The change in markup is computed as

∆µmn =
1

α̌

[
1

1− ŝfnsfn
− 1

1− sfn

]
, ∀m ∈ Jf , with ŝfn =

∑
m∈Jf , ŝmnsmn

sfn
. (G24)

Combining (G22) with (G24), the elements needed to compute ŝm are the initial observed
initial market shares s, the policy change d, and α. With these formulae for ŝmn and µ̂mn in
hand, the rest of the Exact Hat Algebra algorithm proceeds as with the CES case, iterating
until a fixed point is reached.

We can estimate α with an iterative procedure following the logic of the mixed CES
case seen in appendix A. We start by taking logs of (G21) in the case of specific tariffs
where pmn = µfn + cm + di(m)n:

ln smn = −αdi(m)n − αµfn + FEm + FEn + ξmn,

where the structural interpretation of fixed effects are FEm =
∑K

k=0 β
kxkm − αcm, and

FEn = − log
[
1 +

∑
j exp(

∑
k β

kxkj − αpjn + ξjn)
]
. Start with a guess called α0. With firm

market share sfn, we can compute the equilibrium markup µ0
fn using equation (G23). This

markup is passed on the left-hand-side, and combined with the log of market shares to
yield the following regression for the lth iteration

ln smn + αlµlfn = −αl+1di(m)n + FEm + FEn + ξmn. (G25)

The coefficient on per-unit trade costs d provides a new estimate αl+1, with which we can
recalculate markups. The process iterates from l = 0 until αl+1 = αl (within tolerance) at
which point we have an estimate α̌, consistent with Bertrand oligopoly pricing.

H Random coefficient on domestic status

We augment the BLP estimation to include a random coefficients using the PyBLP pack-
age described in Conlon and Gortmaker (2020). This package includes the original BLP
data and the authors provided us the code to estimate the best practices specification (op-
timal instruments and 10,000 scrambled Halton draws). Our Table H3 first shows the
published parameters from Berry et al. (1995) and then reproduces the best practices re-
sults in Conlon and Gortmaker (2020) Table 8, column 3. In the third column we show
the new estimation results. Several parameters change when adding domestic status. The
key estimate for our purposes is that the standard deviation (σ) for the domestic status
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random coefficient is just 0.028. We also conducted the estimation using the differentia-
tion instruments, introduced by Gandhi and Houde (2019). As seen in the fourth column,
this procedure gives larger heterogeneity, 0.34, in the demand for domestic cars. These
results, using the original BLP car data, are lower than those obtained by Reynaert and
Verboven (2014) using data for nine European countries from 1998 to 2010. They estimate
a standard deviation parameter of 0.72 in one specification and 1.72 in another.27

Table H3: BLP estimated parameters (CG2020)

Variable Base Domestic RC
IV: BLP1999 CG2020 CG2020 Diff. IV

β constant -7.061 -6.679 -6.079 -3.861
β HP/weight 2.883 2.774 2.798 5.133
β air 1.521 0.572 -0.454 1.683
β miles per USD -0.122 0.340 0.172 0.078
β size 3.460 3.920 3.114 4.289
β domestic NA NA 0.164 -0.589
σ constant 3.612 2.962 1.731 2.441
σ HP/weight 4.628 1.388 0.311 2.030
σ air 1.818 1.424 2.696 0.079
σ miles per USD 1.050 0.072 0.015 0.258
σ size 2.056 0.231 0.180 3.413
σ domestic NA NA 0.028 0.336
term on price (α) -43.501 -45.898 -39.374 -76.581
γ constant 0.952 2.785 2.406 2.127
γ log(HP/weight) 0.477 0.731 0.583 0.231
γ air 0.619 0.528 0.549 0.431
γ log(miles per gallon) -0.415 -0.651 -0.479 -0.323
γ log(size) -0.046 -0.472 0.249 0.776
γ domestic NA NA -0.304 -0.348
γ trend 0.019 0.018 0.021 0.021

mean own elas. -3.93 -3.45 -2.92 -5.17

27Reynaert and Verboven (2014) obtain the mean domestic bias is 0.85, much larger than our 0.164 with
best practices and -0.589 with differentiation instruments.
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Table H4: Counterfactual 10% tariff using the BLP data

Elasticities Pass-through Agg. ∆S
Setting εm Em rate elas. True EHA

BLP 1999 published parameters
BLP 4.05 -0.49 1.57 1.13 8 7.73
Logit 4.05 1.00 1.00 0.67 3.85 7.73
β het. 4.02 1.03 0.98 0.65 3.33 7.73

CG2020 Baseline
BLP 3.43 -0.24 1.56 1.07 6.41 6.63
Logit 3.43 1.00 1.00 0.61 3.00 6.63
β het. 3.41 1.01 0.98 0.60 2.78 6.63

CG2020 Baseline + Domestic RC
BLP 2.95 -0.15 1.64 1.05 5.06 5.77
Logit 2.95 1.00 0.99 0.54 2.33 5.77
β het. 2.94 1.01 0.97 0.54 2.25 5.77

Diff. IV + Domestic RC
BLP 5.07 -0.42 1.41 1.08 9.48 9.47
Logit 5.07 1.00 1.00 0.73 5.20 9.47
β het. 5.05 1.02 0.99 0.72 4.65 9.47
Note: CES EHA uses the average own price elasticity (column
1) for η. ∆S is the change in aggregate share of domestic mod-
els in new car market. PT rate = ∂pm/∂cm. The “BLP” row is
the original version of the model where both types of consumer
heterogeneity are active. “Logit” sets αh = α (holding avg own
price elas constant) and βh = β. “β het.” sets αh = α but allows
for heterogeneity on the β for all attributes (including constant).
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Table H5: Effects of increasing SD on domestic, for general and targeted tariffs

Elasticities Pass-through Agg. ∆S
Setting εm Em rate elas. True EHA

BLP 1999 published parameters
BLP 4.05 -0.49 1.57 1.13 8 7.73
Logit 4.05 1.00 1.00 0.67 3.85 7.73
β het. 4.02 1.03 0.98 0.65 3.33 7.73

BLP 1999 + RV2014 (ii) Domestic RC
BLP 4.05 -0.48 1.56 1.12 7.57 7.73
Logit 4.05 1.00 1.00 0.67 3.85 7.73
β het. 4.01 1.04 0.98 0.65 3.18 7.73

BLP 1999 + RV2014 (i) Domestic RC
BLP 4.05 -0.47 1.51 1.07 6.27 7.74
Logit 4.05 1.00 1.00 0.67 3.86 7.74
β het. 4.01 1.04 0.99 0.65 2.73 7.74
Note: CES EHA uses the average own price elasticity (column
1) for η. ∆S is the change in aggregate share of domestic mod-
els in new car market. PT rate = ∂pm/∂cm. The “BLP” row is
the original version of the model where both types of consumer
heterogeneity are active. “Logit” sets αh = α (holding avg own
price elas constant) and βh = β. “β het.” sets αh = α but allows
for heterogeneity on the β for all attributes (including constant).
RV2014 (i)/(ii) Domestic RC refers to the standard deviation of
the random coefficient on domestic status taken from column (i)
or (ii) in Table 6 of Reynaert and Verboven (2014).
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