Vowels are "stretchier" than consonants: A cross-linguistic corpus study of the segmental implementation of articulation rate

Melissa Wang,¹ Roger Yu-Hsiang Lo,¹ Noah Luntzlara,¹ Michelle Kamigaki-Baron¹ & Márton Sóskuthy¹

1. Introduction

•

0

SLOW SPEECH

FAST SPEECH

2. Methods

2.1 Corpora

2.2 Analysis

segment types? [1-4]

3. Results

American English

- slow articulation rates: Vs up to 1.5x longer than Cs

GAMM model predictions averaged across all four Ls

3.2 Comparing different manners of articulation

- non-continuant durations vary less than continuant durations
- Vs clearly stand apart

- - "stretchiness" primarily determined by temporal and aerodynamic complexity of segments
 - consequences; non-continuant Cs cannot

Secul Korean Taiwan Mandaria

Average segment duration (inverse articulation rate)

4. Conclusion

- Vs can shrink and stretch without

THE UNIVERSITY OF BRITISH COLUMBIA

analysis via Generalised Additive Mixed Models [8] in R [9]

articulation rate ≈ average segment duration within utterance

• How is variation in articulation rate implemented by different

Do yowels "stretch" more than consonants?

• English (Buckeye [5]), Kapampangan, Seoul Korean &

read speech (O) & spontaneous speech (O & B)

higher average segment duration \rightarrow slower speech

Taiwanese Mandarin (OoPS-Lab corpora)

B: 40 speakers; O: 20 speakers / language

processed using MFA [6] and PolyglotDB [7]

Articulatory mechanisms / aerodynamics dictate "stretchiness"

Do classes of consonants differ in their "stretchiness"?

С

- **3.1 Comparing Vowels and Consonants**
 - Vs undergo significantly greater duration adjustment than Cs
 - fast articulation rates: Vs same or shorter duration than Cs

Separate GAMM model predictions for each L

Kapampangan