104/184 Quiz 1 Practice	Date:	Grade:	
First Name:	Last Name:		
Student-No:	Section:		

Very short answer questions

1. 2 marks Each part is worth 1 mark. Please write your answers in the boxes.

(a)	Compute $\lim_{x \to 2} \frac{x^2 \cdot e^{3 \cdot x} + x \cdot \ln(x)}{\sqrt{x+1}}$.	
		Answer: $\frac{4 \cdot e^6 + 2 \cdot \ln(2)}{\sqrt{3}}$
	Solution: $\lim_{x \to 2} \frac{x^2 \cdot e^{3 \cdot x} + x \cdot \ln(x)}{\sqrt{x+1}} = \frac{4 \cdot e^6 + 2 \cdot \ln(2)}{\sqrt{3}}.$	

(b) What is the future value of \$250 invested for 8 months at a nominal interest rate of 4% compunded monthly?

Answer: $\$250 \cdot \left(1 + \frac{0.04}{12}\right)^8$

Solution: Direct substitution into $FV = PV \cdot \left(1 + \frac{i}{n}\right)^{nt}$, where PV = \$250, n = 12, $t = \frac{\$}{12} = \frac{2}{3}$ and i = 4% = 0.04.

Short answer questions — you must show your work

- 2. 4 marks Each part is worth 2 marks.
 - (a) Compute $\lim_{x \to 9} \frac{\sqrt{x-3}}{x-9}$.

Answer: $\frac{1}{6}$ Solution: We have $\frac{\sqrt{x}-3}{x-9} = \frac{(\sqrt{x}-3) \cdot (\sqrt{x}+3)}{(x-9) \cdot (\sqrt{x}+3)} = \frac{x-9}{(x-9) \cdot (\sqrt{x}+3)} = \frac{1}{\sqrt{x}+3}$ and hence $\lim_{x \to 9} \frac{\sqrt{x}-3}{x-9} = \lim_{x \to 9} \frac{1}{\sqrt{x}+3} = \frac{1}{6}.$

(b) You receive a loan with real interest rate of 2%, what is the nominal interest rate assuming it was compounded quarterly.

Answer: $i = 4 \cdot (e^{0.005} - 1)$

Solution: Substitute into the formulas for compounded interest and for continuous interest:

$$PV \cdot e^{rt} = FV = PV \cdot (1 + i/n)^{nt}, \quad r = 0.02, \quad n = 4, \quad i = ?$$

and the simplifying:

$$e^{0.02t} = (1 + i/4)^{4t}$$

$$0.02t = 4t \cdot \ln\left(1 + \frac{i}{4}\right)$$

$$\frac{0.02}{4} = \ln\left(1 + \frac{i}{4}\right)$$

$$e^{\frac{0.02}{4}} = 1 + \frac{i}{4}$$

$$i = 4 \cdot \left(e^{0.005} - 1\right).$$

Long answer question — you must show your work

3. 4 marks An umbrella factory sells 6,000 umbrellas a year at the cost of \$8 a piece. An umbrella sale last December showed that a decrease of \$1 in the price of an umbrella caused an increase in selling of 500 umbrellas a month.

Find the linear demand equation for the umbrellas. Use the notation p for price and q for the monthly demand.

(a) Answer: $q = -500 \cdot p + 10,000$

Solution: The linear demand curve is given by $q = A \cdot p + B$. The data we are given implies that

$$6,000 = A \cdot 8 + B$$
$$6,500 = A \cdot 7 + B$$

Substracting the two equations yield A = -500. Plugging A into the first equation we get

$$6,000 = -500 * 8 + B$$

and hence B = 10,000.

(b) Compute the maximal revenue of the factory.

Answer: \$50,000

Solution: The revenue is given by $R = p \cdot (-500 \cdot p + 10,000)$ whose zeros are at p = \$0 and p = \$20 and hence the maximal revenue will be \$50,000 when the price is \$10 a piece. In this case they sell 5,000 umbrellas a month.