Math 104 section 108 Quiz #2 Column A	Date:	Grade:
First Name:	Last Name:	
Student-No:	Section:	

Short answer questions — you must show your work

- 1. 6 marks Each part is worth 2 marks.
 - (a) Prove that the equation $\ln x = \frac{1}{x}$ has a solution.

Solution: We define $f(x) = \ln(x) - \frac{1}{x}$ for x > 0. Since 1. $f(1) = \ln 1 - 1 = 0 - 1 = -1 < 0$ and 2. $f(e) = \ln e - \frac{1}{e} = 1 - \frac{1}{e} > 0$ and 3. f is continuous on [1, e]

then IVT implies the existence of 1 < c < e such that f(c) = 0.

(b) Differentiate the function $y = \frac{e^{x^3} - x^2}{\ln x}$. You do not need to simplify your answer. You may use any method taught in class.

Answer:

$$y' = \frac{(3x^2e^{x^3} - 2x)\ln x - \frac{e^{x^3} - x^2}{x}}{\ln^2 x}$$

Solution:

$$y' = \frac{(e^{x^3} - x^2)' \cdot (\ln x) - (e^{x^3} - x^2) \cdot (\ln x)'}{\ln^2 x}$$
$$= \frac{(e^{x^3} \cdot (x^3)' - 2x) \cdot (\ln x) - (e^{x^3} - x^2) \cdot \frac{1}{x}}{\ln^2 x}$$
$$= \frac{(3x^2 e^{x^3} - 2x) \ln x - \frac{e^{x^3} - x^2}{x}}{\ln^2 x}$$

(c) Write the line equation for the tangent of $f(x) = x^a$ at x = 1. Find a value *a* for which this tangent passes through the point (0, 0).

Answer: l(x) = a(x-1)+1, a = 1

Solution: We have f(1) = 1. The tangent formula is l(x) = f'(1)(x-1) + 1. We have $f'(x) = ax^{a-1}$ and hence f'(1) = a. Hence l(x) = a(x-1) + 1. For the second part we plug in x = 0 and l = 0 to get 0 = a(0-1) + 1 and hence a = 1.

Long answer question — you must show your work

2. 4 marks Compute the derivative of $f(x) = \sqrt{x^2 + 5}$ at x = 2 and write the line equation of the tangent line. You may only use the definition of the derivative.

Answer:
$$f'(3) = \frac{2}{3}, \ l(x) = \frac{2}{3}(x - 2) + 3$$

Solution:
$f(2) = \sqrt{2^2 + 5} = \sqrt{9} = 3$
$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$
$= \lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x - 2}$
$= \lim_{x \to 2} \frac{(\sqrt{x^2 + 5} - 3)(\sqrt{x^2 + 5} + 3)}{(x - 2)(\sqrt{x^2 + 5} + 3)}$
$=\lim_{x\to 2}\frac{(x^2+5)-3^2}{(x-2)(\sqrt{x^2+5}+3)}$
$= \lim_{x \to 2} \frac{x^2 - 4}{(x - 2)(\sqrt{x^2 + 5} + 3)}$
$= \lim_{x \to 2} \frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+5}+3)}$
$= \lim_{x \to 2} \frac{x+2}{\sqrt{x^2+5}+3} = \frac{2+2}{\sqrt{2^2+5}+3} = \frac{4}{6} = \frac{2}{3}$
$l(x) = \frac{2}{3}(x-2) + 3$