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Preface

A free and open-source calculus @

Several fundamental ideas in calculus are more than 2000 years old. As a formal subdiscipline of math-
ematics, calculus was first introduced and developed in the late 1600s, with key independent contribu-
tions from Sir Isaac Newton and Gottfried Wilhelm Leibniz. Mathematicians agree that the subject has
been understood rigorously since the work of Augustin Louis Cauchy and Karl Weierstrass in the mid
1800s when the field of modern analysis was developed, in part to make sense of the infinitely small
quantities on which calculus rests. Hence, as a body of knowledge calculus has been completely under-
stood by experts for at least 150 years. The discipline is one of our great human intellectual achieve-
ments: among many spectacular ideas, calculus models how objects fall under the forces of gravity and
wind resistance, explains how to compute areas and volumes of interesting shapes, enables us to work
rigorously with infinitely small and infinitely large quantities, and connects the varying rates at which
quantities change to the total change in the quantities themselves.

While each author of a calculus textbook certainly offers her own creative perspective on the subject,
it is hardly the case that many of the ideas she presents are new. Indeed, the mathematics community
broadly agrees on what the main ideas of calculus are, as well as their justification and their importance;
the core parts of nearly all calculus textbooks are very similar. As such, it is our opinion that in the
21st century — an age where the internet permits seamless and immediate transmission of information
- no one should be required to purchase a calculus text to read, to use for a class, or to find a coherent
collection of problems to solve. Calculus belongs to humankind, not any individual author or publishing
company. Thus, the main purpose of this work is to present a new calculus text that is free. In addition,
instructors who are looking for a calculus text should have the opportunity to download the source files
and make modifications that they see fit; thus this text is open-source.

Because the text is free, any professor or student may use the electronic version of the text for no

charge. Presently, a.pdf copy of the text may be obtained by emailing Matt Boelkins atboelkinm@gvsu.

or by download from http://opencalculus.wordpress.com. Because the text is open-source,
any instructor may acquire the full set of source files, also by request via email to the author. In the fu-
ture, our goal is to have the text and its source files hosted by a professional organization that vets and
endorses free and open source materials.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un-
ported License. The graphic
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that appears throughout the text shows that the work is licensed with the Creative Commons, that the
work may be used for free by any party so long as attribution is given to the author(s), that the work and
its derivatives are used in the spirit of “share and share alike,” and that no party may sell this work or any
of its derivatives for profit. Full details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/3.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041,
USA.

Active Calculus: our goals

In Active Calculus, we endeavor to actively engage students in learning the subject through an activity-
driven approach in which the vast majority of the examples are completed by students. Where many texts
present a general theory of calculus followed by substantial collections of worked examples, we instead
pose problems or situations, consider possibilities, and then ask students to investigate and explore.
Following key activities or examples, the presentation normally includes some overall perspective and a
brief synopsis of general trends or properties, followed by formal statements of rules or theorems. While
we often offer a plausibility argument for such results, rarely do we include formal proofs. It is not the
intent of this text for the instructor or author to demonstrate to students that the ideas of calculus are
coherent and true, but rather for students to encounter these ideas in a supportive, leading manner that
enables them to begin to understand for themselves why calculus is both coherent and true.

This approach is consistent with the following goals:

» To have students engage in an active, inquiry-driven approach, where learners strive to construct
solutions and approaches to ideas on their own, with appropriate support through questions posed,
hints, and guidance from the instructor and text.

 To build in students intuition for why the main ideas in calculus are natural and true. Often, we
do this through consideration of the instantaneous position and velocity of a moving object, a
scenario that is common and familiar.

* To challenge students to acquire deep, personal understanding of calculus through reading the
text and completing preview activities on their own, through working on activities in small groups
in class, and through doing substantial exercises outside of class time.

* To strengthen students’ written and oral communicating skills by having them write about and
explain aloud the key ideas of calculus.

o020
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Features of the Text

Instructors and students alike will find several consistent features in the presentation, including:

Motivating Questions. At the start of each section, we list 2-3 motivating questions that provide
motivation for why the following material is of interest to us. One goal of each section is to answer
each of the motivating questions.

Preview Activities. Each section of the text begins with a short introduction, followed by a preview
activity. This briefreading and the preview activity are designed to foreshadow the upcoming ideas
in the remainder of the section; both the reading and preview activity are intended to be accessible
to students in advance of class, and indeed to be completed by students before a day on which a
particular section is to be considered.

Activities. A typical section in the text has three activities. These are designed to engage students
in an inquiry-based style that encourages them to construct solutions to key examples on their
own, working either individually or in small groups.

Exercises. There are dozens of calculus texts with (collectively) tens of thousands of exercises.
Rather than repeat standard and routine exercises in this text, we recommend the use of WeB-
WorK with its access to the National Problem Library and around 20,000 calculus problems. In this
text, there are approximately four challenging exercises per section. Almost every such exercise
has multiple parts, requires the student to connect several key ideas, and expects that the student
will do at least a modest amount of writing to answer the questions and explain their findings.
For instructors interested in a more conventional source of exercises, consider the freely avail-
able text by Gilbert Strang of MIT, available in .pdf format from the MIT open courseware site via
http://gvsu.edu/s/bh.

Graphics. As much as possible, we strive to demonstrate key fundamental ideas visually, and to en-
courage students to do the same. Throughout the text, we use full-color graphics to exemplify and
magnify key ideas, and to use this graphical perspective alongside both numerical and algebraic
representations of calculus.

Links to Java Applets. Many of the ideas of calculus are best understood dynamically; java applets
offer an often ideal format for investigations and demonstrations. Relying primarily on the work
of David Austin of Grand Valley State University and Marc Renault of Shippensburg University,
each of whom has developed a large library of applets for calculus, we frequently point the reader
(through active links in the .pdf version of the text) to applets that are relevant for key ideas under
consideration.

Summary of Key Ideas. Each section concludes with a summary of the key ideas encountered in
the preceding section; this summary normally reflects responses to the motivating questions that
began the section.


http://gvsu.edu/s/bh

How to Use this Text

This text may be used as a stand-alone textbook for a standard first semester college calculus course or as
a supplement to a more traditional text. Chapters 1-4 address the typical topics for differential calculus.
(Four additional chapters for second semester integral calculus are forthcoming.)

Electronically

Because students and instructors alike have access to the book in .pdf format, there are several advan-
tages to the text over a traditional print text. One is that the text may be projected on a screen in the
classroom (or even better, on a whiteboard) and the instructor may reference ideas in the text directly,
add comments or notation or features to graphs, and indeed write right on the text itself. Students can
do likewise, choosing to print only whatever portions of the text are needed for them. In addition, the
electronic version of the text includes live html links to java applets, so student and instructor alike may
follow those links to additional resources that lie outside the text itself. Finally, students can have ac-
cess to a copy of the text anywhere they have a computer, either by downloading the .pdf to their local
machine or by the instructor posting the text on a course web site.

Activities Workbook

Each section of the text has a preview activity and at least three in-class activities embedded in the dis-
cussion. As it is the expectation that students will complete all of these activities, it is ideal for them to
have room to work on them adjacent to the problem statements themselves. As a separate document,
we have compiled a workbook of activities that includes only the individual activity prompts, along with
space provided for students to write their responses. This workbook is the one printing expense that
students will almost certainly have to undertake.

There are also options in the source files for compiling the activities workbook with hints for each
activity, or even full solutions. These options can be engaged at the instructor’s discretion.

Community of Users

Because this text is free and open-source, we hope that as people use the text, they will contribute cor-

rections, suggestions, and new material. At this time, the best way to communicate such feedback is by

email to Matt Boelkins atboelkinm@gvsu.edu. We have also started thebloghttp://opencalculus.wordpre
at which we will post feedback received by email as well as other points of discussion, to which readers

may post additional comments and feedback.

Contributors

The following people have generously contributed to the development or improvement of the text. Con-
tributing authors have written drafts of at least one; contributing editors have offered feedback, infor-
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mation about typographical errors, or other suggestions to improve the exposition.

Contributing Authors:
David Austin GVSU
Steven Schlicker GVSU

Contributing Editors:
David Austin GVSU
Marcia Frobish ~ GVSU
Luis Sanjuan Conservatorio Profesional de Msica de Avila, Spain
Steven Schlicker GVSU
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Carroll College

The Carroll College mathematics faculty have added several features to this text. Primarily they have
added the Chapter 0 pre-requisite material as well as additional material on differential equations. Sub-
sequent chapters on discrete dynanimal systems and linear algebra are included for the Introduction to
Mathematical Modeling course (MA141). The voting questions included only in the activities booklet
come primarily from the NSF funded Project Math Vote grant. The question bank is housed at
http://mathquest.carroll.edu/ and was primarily built by Holly Zullo, Mark Paker, and Kelly Cline. The
primary contributors are

Contributing Editors:

Kelly Cline Carroll College
Phil Rose Carroll College
John Scharf Carroll College
Eric Sullivan Carroll College
Ted Wendt Carroll College
Charles Fortin Champlain Regional College in Quebec (Section 2.9)

The Carroll College courses will use roughly the following chapters:

e MA121: Differential Calculus

Chapter 0: Preliminaries

Chapter 1: Understanding Derivatives

Chapter 2: Computing Derivatives

Chapter 3: Using Derivatives

* MA122: Integral Calculus

Chapter 3: Using Derivatives
Chapter 4: The Definite Integral

Chapter 5: Finding Antiderivatives and Evaluating Integrals

Chapter 6: Using Definite Integrals

Chapter 7: Differential Equations (as time allows)

e MA131: Acclerated Calculus

Chapter 1: Understanding Derivatives

Chapter 2: Computing Derivatives

Chapter 3: Using Derivatives
Chapter 4: The Definite Integral

Chapter 5: Finding Antiderivatives and Evaluating Integrals

Chapter 6: Using Definite Integrals
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Chapter 0

Preliminaries: A Library of Functions

0.1 Functions, Slope, and Lines

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* What is a function and what do we mean by its domain and range?
* What is the slope of a line? What are linear functions and families of linear functions?

* What are difference equations and the delta notation and why are these useful?

Web Resources

1. Video: How to read a math textbook

N

. Khan Playlist: Linear Equations

w

. Khan Playlist: Functions

=

. Khan Playlist: Functions and Graphs

Introduction

We begin the study of calculus by reminding the reader of several pre-requisite topics. The study of cal-
culus depends on a thorough understanding of these topics and it is imperative that the reader become
as familiar as possible with these topics. In the present section we remind the reader about the concepts
of functions, slope, and lines ... but first, there are a few things that you should do to get your self ready
to use this text.


https://www.youtube.com/watch?v=AfoNnJ038zA&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=92
https://www.khanacademy.org/math/algebra/solving-linear-equations-and-inequalities
https://www.khanacademy.org/math/algebra/algebra-functions
https://www.khanacademy.org/math/algebra2/functions_and_graphs

2 0.1. FUNCTIONS, SLOPE, AND LINES

Preview Activity 0.1. This is the first Preview Activity in this text. Your job for this activity is to get to
know the textbook.

(a) Where is the full textbook stored? Find it and save a copy to your computer.
(b) What chapters of this text are you going to cover this semester. Have a look at your syllabus!
(c) There are a few appendices in the textbook. What are they and where are they?

(d) What are the differences between Preview Activities, Activities, Examples, Exercises, Voting Ques-
tions, and WeBWork? Which ones should you do before class, which ones will you likely do during
class, and which ones should you be doing after class?

(e) What materials in this text would you use to prepare for an exam and where do you find them?

(f) What should you bring to class every day?

Functions

Definition 0.1.

A function f defined on a set A, is a rule that assigns to each element x in A, exactly one
element, denoted f(x), from a set B.

The set A is called the domain of the function f. The range of f is the set of values of f(x) as x
takes on all the values of A. Another way to state it is that the range of f is the set of all y such
that y = f(x) for some x in A.

It is easy to give many common examples of functions:

 The area of a circle A is a function of the radius of the circle: A = 7t

The amount M in your savings account is a function of the rate of interest the bank pays.

Your miles per gallon in your car depends on many things, e.g. the speed at which you drive.

The pressure on a diver is a function of the depth of the diver under water.

Probably the most common method for representing a function is with a graph. If the domain of
function f is set A, then the graph of f is the collection of all ordered pairs of the form (x, f(x)) where x
comes from the domain A.

Activity 0.1.

The graph of a function f is shown below.
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0.1. FUNCTIONS, SLOPE, AND LINES

fx)
10 &
y

8 1

6 1

2 1
Il Il x\l
-1 1 W 5

-2

(a) What are the domain and range of f?

(b) Whatare f(-1), f(1), f3), f(5)?

Slope and Linear Functions

To find the equation of a non-vertical straight line, we need the concept of the slope of a line, which is a
measure of “steepness” of the line. We use the symbols Ax, Ay which mean respectively the “change in
x” and the “change in y”.

Definition 0.2.

The slope, m of a (non-vertical) linear function f which passes through any two points (x1, y1),
(x2, y2) can be found using the formula

"= Ay _y2=y _ f2)=f(x1) _ Rise
Ax  x2—x) X2 — X1 Run



4 0.1. FUNCTIONS, SLOPE, AND LINES

Recall that y

e if the line rises from left to right

then the slope is positive, _.x Positive Slope

° ifthe line falls fI‘OIn left to I‘ight then O LT CLEEE TR EEE TP PR ’,’ ....... > Zero Slope
the slope is negative,

¢ if the line is horizontal then the L

. > x
slope is zero, and P \
- Negative Slope

e if the line is vertical then the slope .-
is undefined. ke’

Depending on the information given there are several convenient forms of the equation of a line.

Given the definition of the slope
_Y2— N
m=22_21
X2 — X1

and letting (x, y) = (x2, y») be any arbitrary point we get the point-slope form of a linear function.

Definition 0.3.

If the linear function f has slope m and passes through the point (x;, y1), then the point-slope
form of the equation of a line is given by:

Yy—y1=m(x—x1).

An alternate form of a linear function which is probably very familiar to most readers is the slope-
intercept form of a line.

Definition 0.4.

If the linear function f has slope m and y-intercept b, then the slope-intercept form of the
equation of a line is given by:
y=mx+Dh.

In a calculus class the point-slope form is often the most useful. The symbols and geometry used in each
of the above definitions are shown in Figure 1.

Activity 0.2.
Find an equation of the line with the given information.

(a) The line goes through the points (-2,5) and (10, —1).
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0.1. FUNCTIONS, SLOPE, AND LINES

(x1,¥1)

(0,b)

\x

Figure 1: Anatomy of a linear function.

(b) The slope of the line is 3/5 and it goes through the point (2, 3).

(c) The y-intercept of the line is (0, —1) and the slope is —2/3.

Linear Functions From Data

A key feature of every linear function is the slope. When given a table of data that you suspect might rep-
resent a linear function the slope manifests itself as a constant common difference between successive
y-values.

Example 0.1. Consider the data in the table below.

X 5 6 7 8 9
y || 122 | 17.5 | 22.8 | 28.1 | 33.4

Demonstrate that this data is linear and write an equation that fits the data.

Solution. The common differences can be found for each successive y-values

X 5 6 7 8 9
y 12.2 17.5 22.8 28.1 33.4
: 17.5-12.2 _ 22.8-175 _ 28.1-22.8 _ 33.4-28.1 _
Common Difference ~6-5 5.3 =76 - 5.3 ~8—7 - 5.3 ~ 98 — 5.3 -




0.1. FUNCTIONS, SLOPE, AND LINES

The successive differences are clearly the same throughout the data set and the slope for this data set is
m = 5.3. Picking any convenient point, say (5,12.2), then allows us to write the equation of the line as

y—12.2=5.3(x-5).

This could be simplified to point-slope form, but there is typically no need for this algebraic simplifica-

tion.

Activity 0.3.

A simulation shows lifetime peptic ulcer rates per 100 population for different family incomes as given
in the following table.

’ Income ‘ Ulcer Rate

$4000
$8000
$12000
$16000
$20000
$24000
$28000
$32000
$36000
$40000
$44000
$48000
$52000
$56000
$60000

14.1
13.4
12.5
12
12.4
11.6
10.8
10.3
10.4
9.6
9.2
8.8
8.5
8.4
8.2

Ulcer Rate

N s~ OO

16
14
12
10

4

8

| | | | | | | | | | | |
12 16 20 24 28 32 36 40 44 48 52 56 60

Income (thousands of dollars)

This data does not represent a straight line, but it is close.

(@) Just by doing simple arithmetic, how can you tell the function is not a straight line?

(b) Make a scatter plot of the data. Do you think a linear model can be a good approximation?

Why or why not?

(c) Use just the first and the last data points, what is the equation of the straight line that these
two points determine? Graph this equation.

(d) Using the model in part (c), estimate the ulcer rate for an income of $26000.

(e) Using the modelin part (c), how likely is someone with an income of $100,000 will suffer from
peptic ulcers? Note your answer will be a percent and remember that the ulcer rate is given
per 100 people of population.

(f) Do you think it would be reasonable to apply this model to a person with an income of

$200,000? Why or why not?

© 020



0.1. FUNCTIONS, SLOPE, AND LINES

Example 0.2. The Old Farmer’s Almanac tells us that you can tell the temperature by counting the chirps
of a cricket. It is a linear function T = f(C) given by T (in degrees Fahrenheit)=# of chirps in 15 seconds
+40. We can approximate this with the formula

C
T=—+40
4

where C is the number of chirps/minute and T is in °F.

(a) If the chirp rate is 120 chirps/minute, what is the temperature?

(b) Suppose that crickets will not chirp if the temperature is below 56°F. We can also suppose
that crickets will not chirp above 136°F since that is the highest temperature ever recorded at
a weather station. With these parameters, what is the domain of this function?

Solution.

(a) If C =120 chirps/minute, substitute this into the function T(C) to obtain

120 .
T(120) = —=+40=30+40 =70°F

(b) To find the domain we need to find the appropriate values of C for the T(C) function. Solve
56 = C/4 +40 and get C = 64. Solve 136 = C/4 + 40 and get C = 384. So the domain of T(C) is
64 < chirps/minute < 384 or, in interval notation, [64,136].

Families of Linear Functions

We noted above that a linear function has the form y = f(x) = mx+b, where m is the slope of the line, and
b is the y-intercept. Since m and b can take on various values, taken together, they represent a family of
functions. For example, we could fix b = 2, and then draw the graphs of f(x) = mx + 2 for various values
of m; for example, m = —1,-2,2,1. Doing so would give the functions in the family f(x) = mx + 2 shown
in the left image of Figure 2.

Similarly, we could set m to be 2 and let b take on the values b = —1,1,4, -6 and we would get some
examples from the family of functions for y = f(x) = 2x + b shown in the right image of Figure 2.

From the right image in Figure 2 it should be clear to the reader that parallel lines have the same
slope. What can you say about the slopes of perpendicular lines? Here is the result that we state without
proof.
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— Theorem 0.1. N

Ifline ¢, has slope m; and line ¢, has slope m,, then

¢ lines ¢; and ¢, are parallel if the slopes are the same: m; = mjy, and

e lines ¢; and ¢, are perpendicular if the slopes are opposite reciprocals: m, = —mil.

/
— y=—Xx+2 —y=2x-1
clme- y=-2x+2 ---y=2x+1
...... y:x+2 ......y:2x+4
—_— y=2x+2 —y=2x-6

-10+*

Figure 2: Several members of the family of linear functions f(x) = mx+2 (left) and the family f(x) = 2x+b
(right).

Activity 0.4.

Write the equation of the line with the given information.

(a) Write the equation of a line parallel to the line y = %x + 3 passing through the point (3,4).

(b) Write the equation of a line perpendicular to the line y = %x + 3 passing through the point
(3,4).

(c) Write the equation of a line with y-intercept (0, —3) that is perpendicular to the line y = —3x—
1.

Equations, Functions, and Expressions

To conclude this first section we define three commonly misused mathematical terms.
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Definition 0.5.

A mathematical expression is a combination of numbers, variables, and operations (addition,
subtraction, multiplication, roots, etc). Several examples are:

e 2x+3

e Va’+b?

o mr?

Definition 0.6.

An equation is a mathematical statement containing an equal sign where the left and right-
hand sides of the equal sign are expressions in the same variable. Examples are:

e 3=5x-2
e x2—-2x+5=9

* V3x-2=19

Definition 0.7.

A function (as defined before) is a rule that associates a value x in the domain to a value y in
the range. Examples include:

e y=x*+3
e f(x)=3x—-4

s f(»=+/3y-2

It is easy for students to confuse the meanings of these three definitions, so here are some helpful
tips:

e If there is no equal sign then it is an expression.

» It makes sense to substitute a value into an expression, but saying that you're going to “solve” an
expression is meaningless.

e If it is an equation then it is meaningful to “solve” the equation. It is NOT meaningful to say that
you are going to “solve” a function or expression.
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¢ Afunction defines a rule that associates two variables.
* A function has an associated graph whereas expressions and equations do not.

Activity 0.5.

Classify each of the following as an expression, equation, or a function. For each function, classify it
as either linear or non-linear. Finally, for each linear function find the slope and y-intercept.

(@ y=6y-3
(b) y=6x-3
(c) 6x-3

(d) —4y+2x+8=0
(e) 12x=6y+4
(f) 12x=6y>+4
(8 vx+2

(h) y=vx+2

i x

G) x*+2x-3

k) x+2x-3=9

Summary

In this section, we encountered the following important ideas:

* A function assigns one y value to each x value.

* The slope of a linear function can be written as

Run X2 — X2

Rise -
m= _JY2=N

¢ Alinear function can be written in the forms

y=mx+b or y—-y =m(x—x)

e When examining linear data, the differences between successive y-values reveals the slope.

Exercises
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1. (modified from NCTM Illuminations) The table below displays data that relate the number of oil
changes per year and the cost of engine repairs. To predict the cost of repairs from the number of
oil changes, use the number of oil changes as the x variable and the engine repair cost as the y vari-

able.

Oil Changes Per Year | Cost of Repairs ($) ‘

3

SN W s O WO

—
N o

300
300
500
400
700
400
100
250
450
650
600
0
150

(a) Using graph paper make a plot of the data on appropriate axes.
(b) Do the data appear linear? Why or why not?

(c) Pick two representative points from the data and use them to write the equation of a line that
fits the data. Plot your line on top of your data and discuss how well your line fits the data.

(This may take a few attempts.)

(d) Despite how well your data fit a linear model, it is not entirely sensible to use a linear model

for this data. Why?
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0.2 Exponential Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ How can exponential functions be used to model growth and decay of populations, investments,
radioactive isotopes, and many other physical phenomena?

* How can we build exponential functions from data?

Web Resources

1. Khan Playlist: Exponential growth and decay

2. Khan Playlist: Modeling with exponential functions

Introduction

The exponential function is a powerful tool in the mathematician’s arsenal for modeling growth and de-
cay phenomena. The situations range from population modeling, to tracking drug levels in the blood
stream, to using carbon dating to estimate the age of an artifact. The common mathematical fact about
all of these situations is that the growth (or decay) rate is a constant multiple. For example, if we are
measuring exponential population growth then the ratio of two successive populations must be con-
stant. Linear functions have a similar behavior, except that in linear functions the difference between
two successive values is constant (the slope).

Preview Activity 0.2. Suppose that the populations of two towns are both growing over time. The town
of Exponentia is growing at a rate of 2% per year, and the town of Lineola is growing at a rate of 100 people
per year. In 2014, both of the towns have 2,000 people.

(a) Complete the table for the population of each of these towns over the next several years.

2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022
Exponentia | 2000
Lineola 2000

(b) Write a linear function for the population of Lineola. Interpret the slope in the context of this
problem.

(c) The ratio of successive populations for Exponentia should be equal. For example, dividing the
population in 2015 by that of 2014 should give the same ratio as when the population from 2016
is divided by the population of 2015. Find this ratio. How is this ratio related to the 2% growth
rate?
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(d) Based on your data from part (a) and your ratio in part (c), write a function for the population of
Exponentia.

(e) When will the population of Exponentia exceed that of Lineola?

Exponential Functions

Consider the example where the population of a bacteria colony is doubling every week. If in the first
week there are 100 bacteria, then there are 200 bacteria by the end of the second week, 400 by the end of
the third and so on. In Table 1 and Equation (1) we can see a simple way to model this type of growth.

Week Bacteria
0 100
1 100-2 =200
2 200-2 =100-22 =400
3 400-2 =100-23 = 800

Table 1: Bacteria population doubling

P(f) =100-2° (¢ = number of weeks) 1)

The time, ¢ in equation (1) is measured in weeks. It is easy to see that the ratio of the populations
for each successive week is constant at P(¢# + 1)/P(f) = 2. This is indicative of exponential growth. Of
course, this population growth could have been modeled using time measured in days instead. The
population still doubles every week so for this new model the value at ¢ = 7 should be double the value
at t = 0. Equation (2) shows this new model with only a slight modification adjusting for the new time
measurement.

P(1)=100-2"7 (= number of days) @)

This type of modeling and thought process can be used to describe most exponential growth and
decay situations. One general formula for an exponential function is

fx)=A-rkx, 3)

where A is some given initial value, r is the common ratio, and k is a constant given by the frequency in
which the common ratio is applied. In the previous population doubling example, A = 100, r = 2, and
k=1/7.
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~

A few simple guidelines should make it clear when an exponential function is modeling growth or
decay.

e If r > 1 then the function exhibits exponential growth.
e If0 < r < 1 then the function exhibits exponential decay.

 Ifa population is growing by p% per unit time, then r = 1+ p/100.

K  Ifa population is decreasing by p% per unit time, then r =1 — p/100. j

Activity 0.6.
Consider the exponential functions plotted in Figure 3
(@) Which of the functions have common ratio r > 1?
(b) Which of the functions have common ratio 0 < r < 1?

(c) Rank each of the functions in order from largest to smallest r value.

Figure 3: Exponential growth and decay functions

Example 0.3. One application to exponential decay is to calculate the intensity of radiation from ra-
dioactive isotopes. Most isotopes emit particles and decay into stable forms. We measure the rate of
decay from the particles by the isotope’s half-life, which is how long it takes half of the isotope to de-

cay. The half-life for Sodium-25 (Na?®) is almost exactly one minute. Write a function that models that
amount of Na?® over time.
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Solution. If you begin with 36 grams of Na?® then the number of grams remaining after ¢ minutes, S(z),
can be represented by the function

1 t
S(1) =36(5) ,

where ¢ is measured in minutes. Figure 4 shows this exponential decay function with an initial value of
36 and a value of 18 after 1 day.

40 S(#) (grams)

Figure 4: The grams of Sodium-25 remaining as a function of time. The blue point represents the initial
value (0,36) and the red point represents the value after 1 minute (1,18).

Activity 0.7.
A sample of Ni°® has a half-life of 6.4 days. Assume that there are 30 grams present initially.

(a) Write a function describing the number of grams of Ni 56 present as a function of time. Check
your function based on the fact that in 6.4 days there should be 50% remaining.

(b) What percent of the substance is present after 1 day?

(c) What percent of the substance is present after 10 days?

Activity 0.8.

[2, p.9] Uncontrolled geometric growth of the bacterium Escherichia coli (E. Coli) is the theme of the
following quote taken from the best-selling author Michael Crichton’s science fiction thriller, The An-
dromeda Strain:
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“The mathematics of uncontrolled growth are frightening. A single cell of the bacterium E.
coli would, under ideal circumstances, divide every twenty minutes. That is not particu-
larly disturbing until you think about it, but the fact is that that bacteria multiply geomet-
rically: one becomes two, two become four, four become eight, and so on. In this way it
can be shown that in a single day, one cell of E. coli could produce a super-colony equal in
size and weight to the entire planet Earth.”

(a) Write an equation for the number of E. coli cells present if a single cell of E. coli divides every
20 minutes.
(b) How many E. coli would there be at the end of 24 hours?

(c) The mass of an E. coli bacterium is 1.7 x 10712 grams, while the mass of the Earth is 6.0 x 10%7
grams. Is Michael Crichton’s claim accurate? Approximate the number of hours we should
have allowed for this statement to be correct?

Investments

Interest bearing bank accounts and investments follow exponential growth and decay models. In the
case of a savings account the interest is typically compounded several times per year. This means that
the investor is getting interest on their interest every time the bank computes the interest.

~

If the money is gaining p% interest compounded 7 times per year then the common ratio for the
exponential function is 1 + p/n. The exponent needs to reflect the fact that the interest occurs at
monthly intervals. This means that the exponential function is

t
A(t) =Ag (1 + %)n (f = number of years). (4)

In Equation (4), Ay is the initial investment, A(t) is the value of the investment over time, p is the
Kinterest rate, and n is the number of times the interest is compounded per year. j

Example 0.4. If $100 are invested into a bank account earning 2% interest compounded 12 times per
year, how much does the investor have at the end of 1 year? 5 years? at retirement age? How does this
change is we compound quarterly or daily instead of monthly?

Solution. In the present situation the function modeling the value of the investment is

0.02)1%¢
A(t):100(1+—) )
12
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Table 2 shows the value of the investment over the first 5 years. It is clear that this is very slow growth,
but it is exponential none the less. The common ratio in this case is r = (1 +0.02/12) = 1.0017, and this
means that you are really gaining 0.17% interest per month.

Year 0 1 2 3 4 5
Value | $100 | $102.02 | $104.08 | $106.18 | $108.32 | $110.51

Table 2: Value of $100 investment for the first 5 years

Assume that our investor was an 18 year old and extrapolate this to retirement age, let’s say 65 years
old. That is 47 years worth of interest, and the initial $100 investment becomes

12-47
A(47) =100 (1 + ?) ~ $256.

If the number of times the bank compounds the interest changes the function will still have essen-
tially the same form: A(#) = 100(1+ %) " In Table 3 the same investment is considered for several values
of n. While more compoundings per year generally gives a higher rate of return on the investment, the
impact is small for larger values of n.

Year 0 1 2 3 4 5 47
Value (n=1) $100 | $102.00 | $104.04 | $106.12 | $108.24 | $110.41 | --- | $253.63
Value (n =4) $100 | $102.02 | $104.07 | $106.17 | $108.31 | $110.49 | --- | $255.40
Value (n=12) | $100 | $102.02 | $104.08 | $106.18 | $108.32 | $110.51 | --- | $255.80

Value (n=365) | $100 | $102.02 | $104.08 | $106.18 | $108.33 | $110.52 | --- | $255.99

Table 3: Value of $100 investment for various values of 7.

Exponential Functions with Base e

Exponential functions are commonly written with a base of e = 2.718281828459045.... This may seem
like an arbitrary and bizarre choice at first glance, but we will see that this famous number (called Euler’s
Number !) plays a central role in Calculus.

Euler’s number can be derived from Equation (4) if we assume that a fictitious bank gives 100% in-
terest compounded infinitely many times per year on a one dollar investment. Mathematically this is
written as

1 n
e=1~(1+—) as n — oo. (5)
n

1Euler’s number is named after the famous 17" century mathematician Leonhard Euler. Euler was the first mathematician
to introduce the notion of a function, and he is responsible for a large amount of the development of Calculus.



18 0.2. EXPONENTIAL FUNCTIONS

n 1 10 100 1000 | --- 1010
(1+2)" | 2| 25935 | 2.7048 | 2.7169 | --- | 2.71828

Table 4: Approximations of Euler’s number, e, using equation (5) with various values of n

Any exponential function can be rewritten in terms of Euler’s number in the form

f(x) = A~ (6)

In Equation (6), k is called the continuous rate.

e If k>0 then f(x) = Ae®* models exponential growth.

e If k <0 then f(x) = Ae** models exponential decay.

Example 0.5. A population of a city is 5000 people and is doubling in size every 5 years. Use equations
(3) and (6) to write two different functions modeling this population.

Solution. If the population is doubling every 5 years we can use equation (3) to write
P(£) =5000-2""°.

In order to use equation (6) we need to find the value of “k”. This is done by using the fact that at year 5
the population will be 10000 and solving the equation

10000 = 5000 - &°F,

Rearranging we see that ¢ = 2. In order to solve this algebraic equation we need to use logarithms.
These important functions will be discussed in more detail in section 0.4. In this case we see that k =
In(2)/5 = 0.139. Therefore,

P(t) =5000- '3,

Since these two equations model the same population they must be identical. Indeed,
5000-2'/5 = 5000- (2/%)" = 5000 (1.149)",

and ,
5000- ek = 5000- (ek) ~5000- (1.149)".
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Summary

In this section, we encountered the following important ideas:

* An exponential function can be written in the form f(x) = Ark* or glx) = Aekx,

e In f(x), if k> 0and r > 1 then f(x) models exponential growth.

* In f(x),if k>0and 0 < r <1 then f(x) models exponential decay.
¢ In g(x), if k > 0 then g(x) models exponential growth.

* In g(x), if k < 0 then g(x) models exponential decay.

* Exponential functions have a constant common ratio for successive time values.

Exercises
1. Suppose that k() =A-r’. If h(3) = 4 and h(5) = 40,
(@) findr.
(b) find A.
(c) Does this function model exponential growth or decay? How can you tell?
2. The half-life of Br’” is 57 hours.
(a) Ifthe initial amount is 150 grams, find the amount remaining after 171 hours.
(b) Write an equation to predict the amount remaining after ¢ hours.
(c) Estimate within one hour how long it will take the amount to decrease to 10 grams.

3. Consider the data in Table 5

(a) Which (if any) of the functions could be linear? Explain how you know that these functions
are linear, and find formulas for these functions.

(b) Which (if any) of the functions could be exponential? Explain how you know that these func-
tions are linear, and find formulas for these functions.

x | f(x) | gl | h(x)
-2 12 16 37
-1 17 24 34
20 36 31
21 54 28
18 81 25

N = O

Table 5: Data tables for f(x), g(x), and h(x)
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0.3 Transformations of Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How can new functions be generated by shifts, stretches, and transformations of well-known func-
tions?

¢ How can we mathematically describe symmetric functions?

¢ How can we build inverse functions, and when do those functions exist?

Web Resources

1. Khan Playlist: Shifting and reflecting functions
2. Khan Playlist: Analyzing functions

3. Geogebra Applet for function transformations

Introduction

There are infinitely many functions that can be generated using the basic mathematical operations (ad-
dition, subtraction, multiplication, division, and exponentiation) along with simple functions such as
roots, exponentials, and trigonometric functions. In fact, we can build entire families of functions based
only on these simple building blocks.

Preview Activity 0.3. The goal of this activity is to explore and experiment with the function
F(x)=AfB(x-C))+D.

The values of A, B, C, and D are constants and the function f(x) will be henceforth called the parent
function. To facilitate this exploration, use the applet located at
http://www.geogebratube.org/student/m93018.

(a) Let’s start with a simple function. Let the parent function be f(x) = x2.

(1) FixB=1, C=0, and D = 0. Write a sentence or two describing the action of A on the
function F(x).

(2) FixA=1,B =1, and D = 0. Write a sentence of two describing the action of C on the
function F(x).

(3) FixA=1, B=1, and C = 0. Write a sentence of two describing the action of D on the
function F(x).
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(4) FixA=1, C =0, and D = 0. Write a sentence of two describing the action of B on the
function F(x).

(b) Test your conjectures with the functions f(x) = |x| (typed abs (x)), f(x) = x3, f(x) = sin(x),
f(x) = e* (typed exp (x) ), and any other function you find interesting.

Function Transformations

In Preview Activity 0.3 we experimented with the four main types of function transformations. You no
doubt noticed that the values of C and D shift the parent function and the values of A and B stretch the
parent function. More descriptively, if f(x) is a parent function and

F(x) =AfBx-C)+D

then the actions of each parameter are described in Table 6.

Parameter ‘ Action

Stretch the parent function vertically
Stretch the parent function horizontally
Shift the parent function horizontally
Shift the parent function vertically

COw»

Table 6: Actions of stretch- and shift-type transformations

Example 0.6. Consider the function f(x) in the left-hand plot of Figure 5. Plot 2 f(x), f(x) +1, f(x—1),
and f(2x).

Solution. You should notice the following features of these solutions:

* In g(x) =2f(x), the “2” simply doubled all of the y-values from f(x).

e In j(x) = f(2x), the “2” actually cut all of the x-values in half from f(x). This is potentially contrary
to what you might expect. Verify this by substituting values in for x.

* In h(x) = f(x) +1, the “+1” simply adds 1 unit to all of the y-values from f(x).

e In k(x) = f(x—1), the “-1” actually moves the graph of f(x) to the right. This is potentially contrary
to what you might expect. Verify this by substituting values in for x.
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2f ) flx)+1
f(x) flxl-1)
X /'I’ ‘\,' X ’Il “ "' x
[: (20 K

Figure 5: A function with transformations.

Activity 0.9.
Consider the function displayed in Figure 6.
(@) Plot —f(x) and f(x)—1.

(b) Define the function g(x) = —f(x) — 1. Does it matter which order you complete the tran-
formations from part (a) to result in g(x)? Plot the functions resulting from doing the two
transformation in part (a) in opposite orders. Which of these functions is g(x)?

Figure 6: Function transformation for Activity 0.9

Composition of Functions

When multiple transformations are applied in sequence, like in Activity 0.9, the resulting function is
actually the composition of function transformations. The concept of a composition encompasses more
than just transformations though. If f(x) and g(x) are functions where the range of g(x) is a subset

00
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of the domain of f(x) we can form a new function h(x) = f(g(x)). This literally means that you are
substituting g(x) in for every instance of the variable x in f(x). For example, if f(x) = x> and g(x) = e*
then h(x) = f(g(x)) = (e%)? and k(x) = g(f(x)) = ).

Example 0.7. If f(x) = x?> and g(x) = x— 1 then find f(g(3)), g(f(3)), f(g(x)), and g(f(x)).

Solution. To evaluate f(g(3)) we consider that g(3) = 2 and g(2) = 4. Therefore, f(g(3)) = 4. Similarly,
g(f(3)) = g(9) = 8. The function compositions f(g(x)) and g(f(x)) are f(g(x)) = (x — 1)2 and glf(x) =
x? — 1. Notice the difference between these resulting functions; the order that the composition takes
places matters!

Symmetry

There are many ways that a function can be symmetric, but two important symmetries are (1) reflective
symmetry over the y-axis, and (2) 180° rotational symmetry about the origin. A function that has reflec-
tive symmetry over the y-axis is called an even function and a function with rotational symmetry about
the origin is called an odd function. The reasoning for these names will be evident after completing
Activity 0.10.

Activity 0.10.
(a) Based on symmetry alone, is f(x) = x? an even or an odd function?

(b) Based on symmetry alone, is g(x) = x> an even or an odd function?
(c) Find f(—x) and g(—x) and make conjectures to complete these sentences:

e Ifafunction f(x) is even then f(-x) =

e Ifafunction f(x) is odd then f(—x) =

Explain why the composition f(—x) is a good test for symmetry of a function.

(d) Classify each of the following functions as even, odd, or neither.

1
h(X)Z;, j)=e k@) =x*-xb n@=x>+x%

(e) For the figure below shows only half of the function f(x). Draw the left half so f(x) is even.
Draw the left half so f(x) is odd. Draw the left half so f(x) is neither even nor odd.
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Inverse Functions

We conclude this section by discussing an important question: If we know the action of a function is
it possible to undo that action? This question can be rephrased by saying: If we know the output of a
function can we tell exactly what the input was? The answer to these questions is that it depends on the
type of function.

Consider, for example, the function f(x) = x2. If we know that f(a) = 4 do we the value of a? Of
course not! It is obvious that f(2) = f(—2) = 4, so just by knowing the output of the function f(x) = x2
we cannot invert the function and find the input. What about the function g(x) = x32 If we know that
g(b) = 8 then there is only one unique value of b, b = 2, such that g(b) = 8. Therefore it seems like we can
invert the cubic function.

The act of reversing the action of a function can be explored geometrically. Indeed, in Figure 7 we see
that if we can simply switch the values of x and y we will get a plot that shows how to undo the action of
a function. Geometrically, switching the role of the x and the y in the function is the same as reflecting
over the line y = x.

The question that remains is when an inverse function actually exists. This is the same as asking:
“if I reflect over y = x is the end result a function?” The answer to this question is certain “no” if the
function is f(x) = x? (as seen in the left-hand plot of Figure 8), but if we restrict the domain on f(x) = x?
to 0 < x < oo then the result is a function (as seen in the right-hand plot of Figure 8). This leads us to the
following results:

 If a horizontal line passes through a function only once, then it has a unique inverse found by
interchanging the x and the y.

* The inverse of a function can be found geometrically by reflecting the graph of the function over
the line y = x.

Example 0.8. Find the inverse of the following functions. If necessary, restrict the domain on the func-
tion so that the inverse exists.
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Figure 7: Inverse functions. If (x, y) is on one end of one of the dashed segments, then (y, x) is on the
other side.

Figure 8: The left-hand plot shows that after reflecting f(x) = x? across y = x the result is not a function.
The right-hand plot shows that under a restriction of the domain the result can be a function.

@ fx)=x*+1
(b) gx)=ax+b

(©) h(x)=@2x+8)3

Solution.
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(a)

(b)

(9]

To find the inverse of f(x) we first interchange the x and y. Then we solve for y. That is:
Solvefor y: x=y*+1 = y=+Vx-1.

Obviously the resulting solution is two equations. By convention we choose the positive square
root and note that the inverse only makes sense if x = 1. Hence, in order for the inverse to make
sense we need a restriction on the domain of f(x): If 0 < x < co then any horizontal line only
crosses the graph of f(x) once, and hence the inverse exists and is unique.

flo=vx-1, x=1

Interchanging the x and y in this equation gives

x—b
—

Solvefor y: x=ay+b — y=

There is no need to restrict the domain of g(x) in this instance since the resulting equation is a

function.

x—-b 1 b

= —X——
a a

g )=

Interchanging the x and y in this equation gives
1/3 _ 8
2

In this instance there is no restriction on the domain of %(x) since (as in part (b)) the resulting
equation is a function.

X

Solve for y: x = (2y+8)3 = J=

1/3_8

2

hl ) ==

Finally, to tie the ideas of composition and inverses togehter we observe that if the inverse of a func-

tion switches the roles of x and y then the composition f~!(f(x)) should simply give x back. The logical
argument is as follows:

That is,

fmapsxtoy then f !mapsytox

Y fw) = x.

Similarly,

f'mapsxtoy then fmapsytox

which is written more compactly as

FUF ) = x.

These two equations provide a nice algebraic check when finding inverses.

Summary

In this section, we encountered the following important ideas:
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¢ A function can be transformed by F(x) = Af (B(x — C)) + D where C and D shift the function and A and
B stretch the function.

e If f(—x) = f(x) then f is an even function.
e If f(—x) = —f(x) then f is an odd function.

 To find the inverse of a function we switch the roles of the x and y variables. Geometrically this is the
same as reflecting over the line y = x. Occasionally it is essential to restrict the domain of the original
function in order for the inverse to exist.

¢ The composition of a function and its inverse is the original input:

fFF '@ =x and fl(fx)=x.

Exercises

1. The functions f(x) and g(x) are defined in the table below. Use these function values to answer the
following questions.

L x [[-3[-2]-1[0o]1[2]3]
fx) || 3 1 | -1|-3|-1|1|3
gx)||-2|-1|0 1 0 |12
(@ f(=3), (b)g®), (c)f(g(=3), (g(f@d), (e flg(f(=3))

(f) Write a list of value of f(—x) for x = —3,-2,...,2,3. Based on this listis f(x) an even function, and
odd function, or neither?

(g) Repeat part (f) for g(x).

2. Find the inverse of each of the following functions. If necessary state a restriction on the domain of
f(x) so that the inverse actually exists.

(@ f(x)=(@2x-3)?
(b) g(x)=x*>-2x+1
3. The plot on the left shows the function f(x) and the plot on the right shows g(x) = Af(B(x—C)) +D.
Find the appropriate values of A, B, C, and D.

1
A

=

o |/ gx




28

0.3. TRANSFORMATIONS OF FUNCTIONS

4. Use the function below to plot

@ f0)=3, (b flx+D, (©3zf®, @-f, and(e) 5

v
A

v
A

f

X)

0o
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0.4 Logarithmic Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ How can we “undo” the effects of exponentiation?

* How can we solve equations involving exponential expressions?

Web Resources

1. Khan Playlist: Logarithm basics
2. Khan Playlist: Properties of logarithms
3. Khan Playlist: Natural logarithms

4. Khan Playlist: Solving logarithmic equations

Introduction

In section 0.2 we studied exponential functions to model a variety of different settings. It is straightfor-
ward to verify that the graph of an exponential function passes the “horizontal line test” described in
section 0.3, and so we should expect exponential functions to have corresponding inverse functions. In
this section we will define the logarithm to be the inverse function for an exponential.

Preview Activity 0.4. Carbon-14 (*(Q) is a radioactive isotope of carbon that occurs naturally in the
Earth’s atmosphere. During photosynthesis, plants take in 1*C along with other carbon isotopes, and
the levels of 14C in living plants are roughly the same as atmospheric levels. Once a plant dies, it no
longer takes in any additional *C. Since '*C in the dead plant decays at a predictable rate (the half-life
of 1C is approximately 5,730 years), we can measure “C levels in dead plant matter to get an estimate
on how long ago the plant died. Suppose that a plant has 0.02 milligrams of *C when it dies.

(a) Write a function that represents the amount of ¢ remaining in the plant after ¢ years.

(b) Complete the table for the amount of 14 remaining ¢ years after the death of the plant.

t 0 1|5 10| 100 | 1000 | 2000 | 5730
14C Level | 0.02

(c) Suppose our plant died sometime in the past. If we find that there are 0.014 milligrams of 4C
present in the plant now, estimate the age of the plant to within 50 years.


https://www.khanacademy.org/math/algebra2/logarithms-tutorial/logarithm_basics/v/logarithms
https://www.khanacademy.org/math/algebra2/logarithms-tutorial/logarithm_properties
https://www.khanacademy.org/math/algebra2/logarithms-tutorial/natural_logarithm
https://www.khanacademy.org/math/algebra2/exponential_and_logarithmic_func/logarithmic-equations/v/solving-logarithmic-equations_dup_1
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Logarithms

Definition 0.8.

Let b > 0 with b # 1. The logarithm of x with base b is defined by
log,x=y ifandonlyif x=»b".

The expression log;, x represents the power to which b needs to be raised in order to get x.
Two frequently used logarithmic functions are log; , x (frequently written log x) and the natural
logarithm log, x (frequently written In x).

Note that we have specifically defined logarithms to be inverse functions for exponentials. For in-
stance, log;, 1000 = 3, since 10° = 1000. Logarithmic functions give us a way to re-write exponential
expressions and, more importantly, solve equations involving variables in an exponent.

Properties of Logarithms

Since logarithms and exponentials are inverse functions, many of the properties of logarithmic functions
can be deduced directly from the properties of exponential functions. For example, the domain of all
logarithmic functions is (0,00) and the range of all logarithmic functions is (—oco,00) because those are
the range and domain, respectively, of exponential functions. Similarly, logarithmic functions have a
vertical asymptote at x = 0 because exponential functions have a horizontal asymptote at y = 0.

y

Figure 9: Graphs of the functions y = e* and y =Inx.

The following properties of logarithms can be deduced from the properties of exponential functions
and the definition of the logarithm. These properties are especially useful in simplifying or solving loga-
rithmic and exponential equations.
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0.4. LOGARITHMIC FUNCTIONS

s ~

Properties of logarithms: For b >0, b # 1, and x, y > 0:
1. log,1=0
2. log,b=1
3. log, (xy) =log, x+log, y
4. log, (5) =log, x—log, ¥y

5. log, x" =rlog, x

6. log, b* =x
7. b'o8¥ = x
\ 8. log, x=log, yifandonlyif x =y j

Activity 0.11.

Without using a calculator or computer, match the functions e¥, In x, x2, and x''? to their graphs:

Without using a calculator or computer, match the functions log, x, log, x, logs x, and log,, x to their
graphs:
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Example 0.9. Find a value of x for which 3% = 13.

Solution. To isolate the variable x, we should take the logarithm of both sides. For convenience, let’s
choose to use the logarithm base 10.
log(3*) =log(13).

Applying logarithm property (5), we find
xlog3 =log13.
Solving algebraically for x yields
log13
X =
log3

NOTE: Our choice to use the logarithm base 10 was arbitrary. We could have chosen any base for our
logarithm to solve this equation.

~2.3347.

Example 0.10. In 1970, the population of the United States was approximately 205.1 million people.
Since that time, the population has grown at a continuous rate of approximately 1.05%. Assuming that
this growth rate continues, when would we expect the population of the United States to reach 350 mil-
lion?

Solution. Since the rate of growth of the population is proportional to the size of the population, we
should use an exponential model for this problem. That is, we want

P(t) =Pge’’

© 020
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where ¢ is the number of years after 1970, P(¢) is the population (in millions) of the United States at time
t, Py is the population (in millions) of the United States in 1970 (i.e. ¢ = 0) and r is the rate of growth of
the population. To determine when the population will reach 350 million, we must solve the equation

350 = 205.1¢%01057

To solve for t, we need to first solve for the exponential expression by itself and then use logarithms.
Dividing both sides of the equation by 205.1 gives

350 — g0:0105¢
205.1 '

Taking the natural logarithm of both sides gives

( 350
n

) _ ln(eO.()lOSt)
205.1 '

Applying logarithm property (6), we find

350
In =0.0105t¢.
205.1

Finally, solving algebraically for ¢ gives

1 ( 350
n

) =~ 50.9years.
0.0105 \205.1

Thus, we expect the population of the United States to reach 350 million in 2021 (approximately 51 years
after 1970).

Activity 0.12.

Solve each of the following equations for ¢, and verify your answers using a calculator.
(@ Int=4
(b) In(t+3)=4
(¢) In(t+3)=In4
(d In(t+3)+In(t) =In4
(e) el =4
) e*3=4
(g 2e'*3=4
(h) 2632 = 3el-1
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Activity 0.13.

Consider the following equation:
7" =24
(a) How many solutions should we expect to find for this equation?
(b) Solve the equation using the log base 7.
(c) Solve the equation using the log base 10.
(d) Solve the equation using the natural log.

(e) Most calculators have buttons for log,, and In, but none have a button for log,. Use your
previous answers to write a formula for log; x in terms oflogx or In x.

Activity 0.14.

In the presence of sufficient resources the population of a colony of bacteria exhibits exponential
growth, doubling once every three hours. What is the corresponding continuous (percentage) growth
rate?

<

Summary

In this section, we encountered the following important ideas:

* Alogarithmic function can be written in the form f(x) =log, x where b >0, b # 1, and x > 0.

* Logarithmic functions are defined to be inverse functions for exponentials. That is

log,x=y ifandonlyif x=»b".

* Solving equations that contain exponential expressions frequently requires the use of logarithms;
solving equations that contain logarithmic expressions frequently requires the use of exponentials.

Exercises

1.
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0.5 Trigonometric Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How can we model systems that vary in a smooth, wavelike cycle, rising and falling again and
again?

¢ How can we model the shape of waves in water, sound waves, radio waves, the motion of the tides
in and out over the course of a day, the shaking of an earthquake, or the varying time of sunrise
over the course of a year?

Web Resources

1. Khan Playlist: Radian measure and arc length
2. Khan Playlist: Trig on the unit circle

3. Khan Playlist: Trig functions of special angles
4. Khan Playlist: Inverse trig functions

5. Khan Playlist: Graphs of trig functions

6. Khan Playlist: Modeling with periodic functions

Introduction

You probably firstlearned about sines, cosines, and tangents when you were studying triangles. However,
these functions are amazingly useful in an enormous variety of contexts. These functions are so handy
that scientists and mathematicians always keep them in mind as part of our standard toolbox. We use
sines and cosines whenever we see anything that varies in a smooth wave cycle, going up and down by
the same amount, again and again on a regular basis.

Preview Activity 0.5. A tall water tower is swaying back and forth in the wind. Using an ultrasonic rang-
ing device, we measure the distance from our device to the tower (in centimeters) every two seconds
with these measurements recorded below.

Time (sec) 0 2 4 6 8 10 12 14 16 18 20
Distance (cm) | 309 | 23.1 | 14.7 | 12.3 | 17.7 | 26.7 | 32.3 | 30.1 | 21.8 | 13.9 | 12.6

(a) Use the coordinate plane below to create a graph of these data points.


https://www.khanacademy.org/math/trigonometry/unit-circle-trig-func/radians_tutorial/v/introduction-to-radians
https://www.khanacademy.org/math/trigonometry/unit-circle-trig-func/Trig-unit-circle
https://www.khanacademy.org/math/trigonometry/unit-circle-trig-func/trig-functions-special-angles
https://www.khanacademy.org/math/trigonometry/unit-circle-trig-func/inverse_trig_functions
https://www.khanacademy.org/math/trigonometry/trig-function-graphs/trig_graphs_tutorial/v/midline-amplitude-period
https://www.khanacademy.org/math/trigonometry/trig-function-graphs/modeling-periodic-functions
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40 5 .
Distance (cm)
35+
30+
25+
20+
15+

10+

‘ ‘ ‘ ‘ ‘ ‘ ‘ Time (s‘ec)‘
2 4 6 8 10 12 14 16 18 20

(b) What is the water tower’s maximum distance away from the device?
(c) What is the smallest distance measured from the tower to the device?

(d) If the water tower was sitting still and no wind was blowing, what would be the distance from the
tower to the device? We call this the tower’s equilibrium position.

(e) What is the maximum distance that the tower moves away from its equilibrium position? We call
this the amplitude of the oscillations.

(f) How much time does it take the water tower to sway back and forth in a complete cycle? We call
this the period of oscillation.

Measuring Angles with Radians

Sines, cosines, and tangents are very useful when studying triangles. The input into each of these func-
tions is an angle, and the output tells us the ratio of the lengths of the sides of the triangle. There are two
commonly used units for measuring angles, degrees and radians, and so there are two commonly used
versions of the trigonometric functions. There’s sin x where x is in degrees, and there’s sin x where x is in
radians. Calculus is a lot easier if we measure angles in radians, so that’s what we’ll use throughout this
course. If you ever have trouble getting the right numbers from your calculator, you may want to double
check that your calculator is in radian mode.

So, what is a radian?
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0.5. TRIGONOMETRIC FUNCTIONS

Definition 0.9.

A radian is a measure of angle which is defined so that if we have an angle with a size of one
radian on a unit circle (with a radius r = 1), then the length of the arc along the circumference

of the circle is also equal to one, as we see in Figure 10. Because the circumference of a circle
is 2mtr, this means that for one complete circle,

360° = 27 radians.

Similarly half a circle is

180° =  radians
and a right angle is

90° = g radians.

So one radian is

o

57.3° = = 1 radian.
y y
2 i =90°
n/2 radians = 90 1 radian = 57.3°
Arc Length =1
7 radians = 180° 0 ra\d)icans =0° ) s X
) 1 27 radians = 360° 1 ’
3n/2 radians = 270°

Figure 10: Common radian measures.

Because we define the radian in this way, this means that the arc length s along the circumference of
a circle with radius r over angle 6 can be calculated as

s=r10

as long as the angle 6 is measured in radians.
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Sine and Cosine on the Unit Circle

Let’s draw a unit circle with its center at the origin and think about a point moving along the circumfer-
ence of this circle. We start with the point on the x axis with coordinates (1,0), as shown in the figure
below, and define this location to be an angle of 8 = 0 radians. Then, we let this point move up, so that
our point is at an angle 6 above the x axis. The sine and cosine functions are defined so that they give us
the coordinates of our point:

x=cosO and y=sin0

y

A

(x,y) = (cosH, sin0)

y
(1,0)
> X

'S

This means that an angle of 8 = 2 carries us around one full circle and brings us back to our starting
point on the x axis again, with coordinates (1,0). That means that sin2n = sin0 = 0. Similarly 0 = 4n
carries us around two full circles, and 6 = 67 carries us around three full circles.

Next we can use the Pythagorean Theorem, and remember that our hypotenuse is equal to one to see
that
2 20 _
sin“0+cos“0=1

This is a very useful relationship!
Sine and Cosine as Functions
To get beyond trigonometry, rather than using the angle 0 as the input to our sine and cosine functions,

instead we will put our function input on the x axis. Then we can plot the output of on the y axis. This
produces the following graph:
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= sin(x)
1 1Y

[\S]
Nl= |

Here we can see that the range (output) of the sine function is the interval from —1 to +1. (sin x can never
equal 2!) The domain (input) of the sine function is extends from —oo to +o00, but the cycle repeats every
2m along the x axis. (Do you understand how the definition of sine on the unit circle makes both of these
facts true?)

The following terms will be very important when we describe functions like this:

* The period of a function is how far along the x axis it takes to complete one full cycle.

* The amplitude of a function is how far it goes on the y axis above and below its average value.

The function f(x) = sin x has a period of 2 and an amplitude of 1. If we plot both the sine and the cosine
functions together we see the following graph:

y
1 F-=_ S R
. . .
S~ y = sin(x) y=cos(x) .-
~
1 1 MR
2 ..
Y
.
A Y
. X
| A Yl Il
1 10 3
ZT[ zT[ ‘\\ ZT[
_1 | Sy
2 .
-~
-~
~
~\
_]_ -

From this we see that the function g(x) = cosx also has a period of 2n and an amplitude of 1. The
difference is that sin0 = 0, so the sine function starts at its average value, halfway between a peak and a
trough. On the other hand cos0 = 1, so the cosine function starts at a peak. This means that we can turn
a cosine function into a sine function and visa versa simply by shifting:

sin(x) = cos (x — g) and cos(x) =sin (x + g) .
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Sinusoidal Functions in the Real World

To model real data with the sine function, we must be able to change the amplitude, the period, and the
average value of our wave, to get what we call a sinusoidal function. Every sinusoidal function can be
written either of these two forms:

f(®) =Asin(B(t— 1))+ Cor f(t) =Asin(Bt+¢) +C

¢ Aisthe amplitude.

21
Period*

¢ Bisthe angular frequency, which determines the period, with B =
e Cis the average value.

* 1y is the shift along the ¢ axis, a time when f is at an average value and increasing

¢ is the shift in radians, the angle at which the oscillations begin j

-

The parameter B can be a little surprising. Because B is inversely related to the period, this means
that larger values of B result in a shorter period, and smaller values of B result in a longer period, as we
see in the graphs below:

sin(#) sin(2¢)

0.5+ 0.5+

= |
=
DN |
W
A
sl |
=
[\S1(e8)
ey
=
A

=05 ¢
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sin(3¢) sin(41)

0.5+ 0.5 +
n\dnfin A 4 g oo o g

-0.5 -0.5

-1+ -1+

Example 0.11. Suppose we measure the temperature every hour throughout a day and find that T varies
in a smooth sinusoidal pattern. We find that the average temperature is 60°, the amplitude is 20°, and
the period is 24 hours. The minimum temperature is at 4am, the maximum temperature is at 4pm, and
so it is at the average temperature and increasing at 10am. How would we model the temperature as a
sinusoidal function?

N
rol—

Solution. Given the information above we could model these temperatures with the following formula:
. [2m
T(#) =20sin (ﬂ(t - 10)) + 60.

A graph of the function looks like this:

100 T T T T T T T T T
80
&
QL 60
2
g
Q. 40
g
=
20+ a
0 |

| | | | | | | |
5 10 15 20 25 30 35 40 45 50
time (hours)
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Notice that the maximum temperature is 80° and the minimum temperature is 40°. We could tell this
directly from the formula, because output of the sine function varies between —1 and +1, and this is
multiplied by 20. As a result, the most we ever add to 60 is 20 to get a maximum temperature of 80, and
the most we ever subtract from 60 is 20, to get a minimum temperature of 40.

Activity 0.15.

Figure 11 gives us the voltage produced by an electrical circuit as a function of time.
50 | volts

40 +
30 +

20 +

10 |
‘ ‘ ‘ ‘ ‘ ‘ ‘ time (sec) ‘

W5 001 0015 Wo.oz&s 0.03 00 oa 0045 0.05

_10,

Figure 11: Voltage as a function of time.

(a) What is the amplitude of the oscillations?
(b) What is the period of the oscillations?

(c) What is the average value of the voltage?
(d) What is the shift along the ¢ axis, #p?

(e) Whatis a formula for this function?

Units

Whenever we use mathematics in the real world, most numbers have units, like meters, minutes, dollars,
pounds, or degrees. Units are a very useful tool that helps us understand the meaning of the numbers
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that we are using. For example, suppose we use the following sinusoidal function to model the water
level on a pier in the ocean as it changes due to the tides during a certain day.

w(t) =4.3sin(0.51¢+0.82) +10.6

This function isn’t very useful to us unless we know what units the input # must have (Minutes? Seconds?
Hours? Days?) and what units the output w will have (Centimeters? Feet? Meters? Yards?). In this case
t is in hours since midnight, and w is in feet. Now, we can evaluate the function at noon to find that the
water level is w(12) = 13.3 feet.

\

Here’s how units work in equations:

* If two numbers are equal, or if we add or subtract two numbers, they must have the same
units: 3 seconds plus 5 feet doesn’t make any sense.

 If we multiply or divide two numbers, both units go into the result: 6 meters divided by 2
K seconds equals a speed of 3 meters per second. j

The parameters in our water level function (A =4.3, B=0.51, ¢ = 0.82, C = 10.6) all have units, which
help us interpret their meaning. The sine, cosine, and tangent functions all take angles in radians as
their input, and return numbers with no units as output. C = 10.6 must be in feet, because we add it
to something else, and then it equals the output, which is in feet. Similarly A = 4.3 must also be in feet,
because the sine function does not have any units on its output. ¢ = 0.82 must be in radians, because
we add it to something else and use it as input to the sine function. Similarly 0.51¢ must be in radians.
However, we know that ¢ is in hours, so B = 0.51 must have units of radians per second.

Activity 0.16.

Suppose the following sinusoidal function models the water level on a pier in the ocean as it changes
due to the tides during a certain day.

w(t) =4.3sin(0.517+0.82) +10.6

(a) Using the formula above, make a table showing the water level every two hours for a 24 hour
period starting at midnight.

time (hours) 0/2|4/6(8|10|12 |14 |16 |18 |20 |22 | 24
water level (ft)

(b) Sketch a graph of this function using the data from your table in part (a).
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20 T T T T T T T T T T T
18
16 - -
14
12 —
10 - -

water level (ft)

S N B O
I
|

| | | | |
2 4 6 8 10 12 14 16 18 20 22 24
time (hours)

(c) What is the period of oscillation of this function?

(d) What time is high tide?

The Tangent Function

The tangent function has a completely different shape than the sine and cosine functions because it is
defined to be

aslongas cos0 # 0, so that we don’'t have a divide-by-zero problem. This means that the tangent function
is undefined at +m/2,+37n/2,---, and the function has vertical asymptotes at these points.

b

S PSP N S
A
|

S P U S S
A

Because the tangent function blows up to infinity, we don’t often fit tangent functions to real world data.
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Inverse Sine Function

Suppose we want to find the value of x so that sin x = 0.75. To find this, we use an inverse sine function,
written as either arcsin or sin™!. In this case sin~!0.75 = 0.848, because sin0.848 ~ 0.75. The range of the
sine function only goes from —1 to +1, so that means the domain of arcsin only goes from —1 to +1. Itis
impossible to find a solution to sin x = 3, because the sine function doesn’t go that high!

It is important to remember that the sine function repeats itself in the same pattern again and again,
every 2m, so x = 0.848 is not the only solution to sinx = 0.75. Another solution is x = 0.848 +2n = 7.13.
Another solution is x = 0.848 + 41 = 13.4.. And of course we could subtract multiples of 27 as well to get
x =0.848—-2m = —5.44. As aresult, we have the arcsin function output the value between —n/2 and +m/2.
This means that the arcsine function has a very limited domain and range, only existing for -1 < x <1
and —n/2<y=<m/2.

y= sin"!(x)

2=

— -

----{-m/2

Domain: -1 <x <1, Range: -n/2<y<m/2

Warning: Even though we write the inverse sine function as sin™! x, it is a completely different thing
than 1/sin x.

sin”!x #—
sinx

Inverse Cosine Function

We can define a similar inverse function for the cosine, which we call arccos or cos™. The domain of this
function is —1 < x < 1, and we choose the range tobe 0 < y < .
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y =cos ! (x)

Domain: -1=x=<1,Range:0<y=mn

Inverse Tangent Function
Recall that the tangent function has a range going all the way from negative infinity to positive infinity,

as x goes from —m/2 to +m/2. As a result, the inverse tangent function has a domain of —co < x < 0o, and
arange of —m/2 <y < m/2.

y =tan"!(x)

Domain: R, Range: —n/2 <y <m/2
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Summary

In this section, we encountered the following important ideas:

e Trigonometric functions are utilized to model periodic behavior such as tides, sound waves, or voltage
through an electrical circuit.

* Converting between radian measure and degree measure can be achieved by remembering that

27 radians = 360°

e for f(f) = Asin(B(t— 1))+ Cor f(t) =Asin(Br+ ) +C

¢ Aisthe amplitude.

¢ Bis the angular frequency, which determines the period, with B = Peﬁ[o I

e Cis the average value.

Iy is the shift along the ¢ axis, a time when f is at an average value and increasing

¢ is the shift in radians, the angle at which the oscillations begin

Exercises
1. What is the formula for a sinusoidal function that has a minimum at coordinates (3, 6) followed by a

maximum at (5,9)?

2. If we take a sinusoidal function f(t) = Asin(B(¢ — %)) + C and replace one of the parameters with a
another function, say a linear function, we can create more complicated shapes. Find formulas for
the function plotted in the following graphs.

Plot A
15 %

10 +
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Plot C PlotD
10 %
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3. The number of hours of daylight varies sinusoidally throughout the year. The maximum occurs on the
summer solstice, June 21, when we have 15 hours and 50 minutes of daylight. The minimum occurs
on the winter solstice, December 21, when we have only 8 hours and 33 minutes of daylight. Find the
formula for a function to describe this. The input to your function should be d, the number of days
since the beginning of the year, so that d = 5 on January 5. The output of your function should be the
amount of daylight, in minutes. Assume that this is not a leap year. Hint: Because we know the date
of maximum, it is easier to write this in terms of a cosine function.
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0.6 Powers, Polynomials, and Rational Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What are power, polynomial, and rational functions?
* How can be build polynomial functions from data?

e What microscopic/macroscopic behavior can we expect from polynomial and rational functions?

Web Resources

1. Khan Playlist: Polynomial and rational functions

2. Khan Playlist: Rational functions

Introduction

Polynomial functions play an important role in mathematics. They are generally simple to compute
(requiring only computations that can be done by hand) and can be used to model many real-world
phenomena. In fact, scientists and mathematicians frequently simplify complex mathematical models
by substituting a polynomial model that is "close enough" for their purposes.

In this section, we will study the graphs of select polynomial and rational functions to identify their
important features. The goal of this section is to build a mathematical intuition about how a small class
of ‘convenient’ functions behave so that later we can see how calculus can be used to determine the
behavior of arbitrary functions.

Preview Activity 0.6. Figure 12 shows the graphs of two different functions. Suppose that you were to
graph a line anywhere along each of the two graphs.

1. Isit possible to draw a line that does not intersect the graph of f? g?

2. Isitpossible to draw a line that intersects the graph of f an even number of times?

3. Isit possible to draw a line that intersects the graph of g an odd number of times?

4. What is the fewest number of intersections that your line could have with the graph of f? with g?
5. What is the largest number of intersections that your line could have with the graph of f? with g?

6. How many times does the graph of f change directions? How many times does the graph of g
change directions?


https://www.khanacademy.org/math/algebra2/polynomial_and_rational
https://www.khanacademy.org/math/algebra2/polynomial_and_rational/rational_funcs_tutorial/v/adding-and-subtracting-rational-expressions
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fx)

A

Figure 12: f(x) and g(x) for the preview activity.

Power Functions

Power functions are fundamental building blocks for many very useful functions. In their simplest form,
power functions describe situations when the dependent variable is directly proportional to a power of
the independent variable.

(Definition 0.10. )

A power function has the form

f(x) =kx", where k and » are constant.

For odd values of n, the graphs of x” are always increasing. For even values of n, the graphs of x"
decrease until x = 0 and then increase afterwards. See Figure 13 for several examples of power functions.
We can classify the end behavior of the graphs by describing what happens as x — oo and as x — —oo.
For odd n, x" — —oco as x — —oo and x” — oo as x — oco. Graphs of odd power functions go in opposite
directions on the left and right. For even n, x" — co as x — —oo and x" — oo as x — co. Graphs of even
power functions go in the same direction on the left and right.

Activity 0.17.
Power functions and exponential functions appear somewhat similar in their formulas, but behave

differently in many ways.

(a) Compare the functions f(x) = x? and g(x) = 2* by graphing both functions in several viewing
windows. Find the points of intersection of the graphs. Which function grows more rapidly
when x is large?
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_10 1

_10 €L

Figure 13: Positive odd powers of x (left) and positive even powers of x (right)

(b) Compare the functions f(x) = x'° and g(x) = 2* by graphing both functions in several viewing
windows. Find the points of intersection of the graphs. Which function grows more rapidly
when x is large?

(c) Make a conjecture: As x — oo, which dominates, x" or a*?

(d) Suppose you are offered a job that lasts one month. You have the option of being paid in one
of two ways: (1) One million dollars at the end of the month; or (2) One cent on the first day
of the month, two cents on the second day, four cents on the third day, and, in general, 2"}
cents on the n" day. Which option should you choose?

(e) How much different (shorter or longer) would the work period need to be for your answer to
the previous question change?

Polynomial Functions

[Deﬁnition 0.1 1.]

A polynomial function is a function of the form

1

px)=apx" +an_1x" 4+ a1 x + ag

where 7 is a nonnegative integer and a, # 0. Here n is the degree of the polynomial, and a;,
an-1, ..., ai, ap are the coefficients.
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When we study the graphs of functions, there are several common features we're interested in.

* How does the graph behave as x — oo and as x — —o0? (Does it grow without bound? Does it level
off? Does it oscillate?)

* Where does the graph cross the x-axis? How many times?

* Where does the graph change directions? How many times?

For many functions, these questions can be difficult to answer and require specialized mathematics
(like Calculus for example). For polynomials, though, there are some relatively simple results. First, the
end behavior of a polynomial is determined by its degree and the sign of the lead coefficient. Polynomials
with even degree behave like power functions with even degree, and polynomials with odd degree behave
like power functions like odd degree. Figures 14 and 15 demonstrate this for two different fourth degree
polynomials.

y=xt-2x3-12x% +3x-4

Figure 14: Local behavior of two fourth-degree polynomials. At this level, we can clearly see the differ-
ences between these two functions.

Theorem 0.2. 3

A polynomial of degree n has at most 7 real zeros and at most n — 1 turning points.

Theorem 0.3. N

Let p(x) be a polynomial. If x = a is a zero of p (i.e. p(a) =0), then (x — a) is a factor of p.

Theorems 0.2 and 0.3 are each fairly simple to state but very powerful. Theorem 0.2 gives us a quick
way to determine the degree of a polynomial from its graph and is frequently used to determine how
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160,000 4 160,000 4
—20  -10 0 10 20 -20 -10 0 10 20
y=x* y=x*-2x3-12x2+3x-4

Figure 15: Long-term behavior of two fourth-degree polynomials. At this scale, the two functions are
nearly indistinguishable.

many solutions to expect from certain types of equations. Theorem 0.3 provides us with a way to con-
struct polynomials that pass through specific points.

Activity 0.18.

For each of the following graphs, find a possible formula for the polynomial of lowest degree that fits
the graph.

Plot (a) Plot (b) Plot (¢)
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Rational Functions

[Deﬁnition 0. 12.]

A rational function is a ratio of two polynomial functions
f() =Px)/Qx)

where P and Q are polynomials. The domain is the set of all real numbers for which Q(x) #0

(Definition 0.13. )

A function f has a horizontal asymptote y = a if the distance between the f and the line
y = a becomes arbitrarily small when x becomes sufficiently large. Alternatively, a horizontal
asymptote is a line that a function approaches as x — oo or as x — —oo. A function f has a
vertical asymptote at a point x = b if the function becomes arbitrarily large as x — b.

The graphs of rational functions may have vertical asymptotes only where the denominator is zero.
However, there are many examples of rational functions that do not have a vertical asymptote even at a

2
1).

point where the denominator is zero. (For instance, try graphing the function f(x) =

Activity 0.19.
(a) Suppose f(x)=x?>+3x+2and g(x) = x—3.

1. What is the behavior of the function h(x) = % near x = —1? (i.e. what happens to h(x)

as x — —1?) near x = —2? near x = 3?

2. What is the behavior of the function h(x) = =—— near x = —1? near x = —2? near x = 3?

gx)
fx

(b) Suppose f(x) = x2-9and glx)=x-3.

1. What is the behavior of the function h(x) = m near x = —3? (i.e. what happens to h(x)

g(x)
as x — —3?) near x = 3?
2. What is the behavior of the function h(x) = % near x = —3? near x = 3?
(c) Suppose f(x) =sinx and g(x) = x.
1. Whatis f(0)? What is g(0)?
2. What is the behavior of the function h(x) = % near x = 0? (i.e. what happens to h(x)

as x — 0?)

3. What is the behavior of the function h(x) = @ near x = 0?

fx
@loEe)



0.6. POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS

<
Activity 0.20.
(a) Suppose f(x) = 3 +2x%2—x+7and glx) = X2 +4x+2.
1. Which function dominates as x — co?
2. What is the behavior of the function h(x) = % as x — oo?
3. What is the behavior of the function h(x) = % as x — oo?
(b) Suppose f(x) =2x*-5x3+8x?>-3x—1and g(x) =3x*-2x*+1
1. Which function dominates as x — co?
2. What is the behavior of the function h(x) = % as x — oo?
3. What is the behavior of the function h(x) = % as x — oo?
(c) Suppose f(x) = e* and g(x) = x'°.
1. Which function dominates as x — co as x — 0o?
2. What is the behavior of the function h(x) = % as x — oo?
3. What is the behavior of the function h(x) = % as x — oo?
<

Activity 0.21.

For each of the following functions, determine (1) whether the function has a horizontal asymptote,
and (2) whether the function crosses its horizontal asymptote.

x+3
(a) f(X)—m
242x-1
(b) g0 =———
x+1
(c) h(x)—m

(d) k(x)=e*sinx

Summary

In this section, we encountered the following important ideas:

* A polynomial of degree n has at most n real zeros and n — 1 turning points.
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The degree of a polynomial function determines the end behavior of its graph. If the degree of a
polynomial is even, then the end behavior is the same in both directions. If the degree of a polynomial
is odd, then the end behavior on the left is the opposite of the behavior on the right.

A rational function is a function of the form f(x) = %, where P(x) and Q(x) are both polynomials.

A rational function f(x) = % may have a vertical asymptote whenever Q(x) = 0.

The end behavior of the graph of a rational function is determined by the degrees of the polynomials
in the numerator and denominator. (See Activity 0.20).

Exercises

1.
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Chapter 1

Understanding the Derivative

1.1 How do we measure velocity?

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How is the average velocity of a moving object connected to the values of its position function?

* How do we interpret the average velocity of an object geometrically with regard to the graph of its
position function?

* How is the notion of instantaneous velocity connected to average velocity?

Web Resources

1. Video: Average velocity formula
2. Video: Alternative average velocity formula
3. Video: Instantaneous velocity

4. Khan Video: introduction to calculus

Introduction

Preview Activity 1.1. This is the first Preview Activity in this text. Your job for this activity is to get to
know the textbook.

(a) Where is the full textbook stored? Find it and save a copy to your computer.

57


https://www.youtube.com/watch?v=6HPe7iwr88k&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=1
https://www.youtube.com/watch?v=O_Z9osv6VGk&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=2
https://www.youtube.com/watch?v=j8kJubOTkME&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=3
https://www.khanacademy.org/math/differential-calculus/taking-derivatives/intro_differential_calc/v/newton-leibniz-and-usain-bolt
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(b) What chapters of this text are you going to cover this semester. Have a look at your syllabus!
(c) There are a few appendices in the textbook. What are they and where are they?

(d) What are the differences between Preview Activities, Activities, Examples, Exercises, Voting Ques-
tions, and WeBWork? Which ones should you do before class, which ones will you likely do during
class, and which ones should you be doing after class?

(e) What materials in this text would you use to prepare for an exam and where do you find them?

(f) What should you bring to class every day?

>

Calculus can be viewed broadly as the study of change. A natural and important question to ask
about any changing quantity is “how fast is the quantity changing?” It turns out that in order to make the
answer to this question precise, substantial mathematics is required.

We begin with a familiar problem: a ball being tossed straight up in the air from an initial height.
From this elementary scenario, we will ask questions about how the ball is moving. These questions will
lead us to begin investigating ideas that will be central throughout our study of differential calculus and
that have wide-ranging consequences. In a great deal of our thinking about calculus, we will be well-
served by remembering this first example and asking ourselves how the various (sometimes abstract)
ideas we are considering are related to the simple act of tossing a ball straight up in the air.

Preview Activity 1.2. Suppose that the height s of a ball (in feet) at time ¢ (in seconds) is given by the
formula s(¢) = 64— 16(z — 1).

(a) Construct an accurate graph of y = s(¢) on the time interval 0 < ¢ < 3. Label at least six distinct
points on the graph, including the three points that correspond to when the ball was released,
when the ball reaches its highest point, and when the ball lands.

(b) In everydaylanguage, describe the behavior of the ball on the time interval 0 < ¢ < 1 and on time
interval 1 < ¢ < 3. What occurs at the instant £ = 1?

(c) Consider the expression
s(1) —s(0.5)

1-0.5
Compute the value of AV|g 5 1;. What does this value measure geometrically? What does this value
measure physically? In particular, what are the units on AV(y5,1;?

AVip51) =

Position and average velocity

Any moving object has a position that can be considered a function of time. When this motion is along a
straight line, the position is given by a single variable, and we usually let this position be denoted by s(t),
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which reflects the fact that position is a function of time. For example, we might view s(¢) as telling the
mile marker of a car traveling on a straight highway at time ¢ in hours; similarly, the function s described
in Preview Activity 1.2 is a position function, where position is measured vertically relative to the ground.

Not only does such a moving object have a position associated with its motion, but on any time in-
terval, the object has an average velocity. Think, for example, about driving from one location to another:
the vehicle travels some number of miles over a certain time interval (measured in hours), from which
we can compute the vehicle’s average velocity. In this situation, average velocity is the number of miles
traveled divided by the time elapsed, which of course is given in miles per hour. Similarly, the calcula-
tion of Ap 5,1 in Preview Activity 1.2 found the average velocity of the ball on the time interval [0.5,1],
measured in feet per second.

[Deﬁnition 1.14.]

In general, we make the following definition: for an object moving in a straight line whose
position at time ¢ is given by the function s(¢), the average velocity of the object on the interval
fromt=atot=Db,denoted AV, p, is given by the formula

s(b) —s(a)

AVigp = ——

Note well: the units on AV|, j) are “units of s per unit of #,” such as “miles per hour” or “feet
per second.”

Activity 1.1.

The following questions concern the position function given by s(f) = 64 — 16(¢ — 1), which is the
same function considered in Preview Activity 1.2.

(a) Compute the average velocity of the ball on each of the following time intervals: [0.4,0.8],
[0.7,0.8], [0.79,0.8], [0.799,0.8], [0.8,1.2], [0.8,0.9], [0.8,0.81], [0.8,0.801]. Include units for
each value.

(b) Ontheprovided graph in Figure 1.1, sketch the line that passes through the points A = (0.4, s(0.4))
and B = (0.8, 5(0.8)). What is the meaning of the slope of this line? In light of this meaning,
what is a geometric way to interpret each of the values computed in the preceding question?

(c) Use a graphing utility to plot the graph of s(f) = 64 — 16(¢ — 1)? on an interval containing the
value ¢ = 0.8. Then, zoom in repeatedly on the point (0.8, s(0.8)). What do you observe about
how the graph appears as you view it more and more closely?

(d) What do you conjecture is the velocity of the ball at the instant ¢ = 0.82 Why?
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feet

sec

04 08 1.2

Figure 1.1: A partial plot of s(#) =64 —16(¢ — 1)2.

Instantaneous Velocity

Whether driving a car, riding a bike, or throwing a ball, we have an intuitive sense that any moving object
has a velocity at any given moment — a number that measures how fast the object is moving right now.
For instance, a car’s speedometer tells the driver what appears to be the car’s velocity at any given instant.
In fact, the posted velocity on a speedometer is really an average velocity that is computed over a very
small time interval (by computing how many revolutions the tires have undergone to compute distance
traveled), since velocity fundamentally comes from considering a change in position divided by a change
in time. But if we let the time interval over which average velocity is computed become shorter and
shorter, then we can progress from average velocity to instantaneous velocity.

Informally, we define the instantaneous velocity of a moving object at time ¢ = a to be the value that
the average velocity approaches as we take smaller and smaller intervals of time containing ¢ = a to
compute the average velocity. We will develop a more formal definition of this momentarily, one that
will end up being the foundation of much of our work in first semester calculus. For now, it is fine to
think of instantaneous velocity this way: take average velocities on smaller and smaller time intervals,
and if those average velocities approach a single number, then that number will be the instantaneous
velocity at that point.

Activity 1.2.

Each of the following questions concern s(f) = 64 — 16(¢ — 1)2, the position function from Preview
Activity 1.2.

(a) Compute the average velocity of the ball on the time interval [1.5,2]. What is different between
this value and the average velocity on the interval [0,0.5]?

(b) Use appropriate computing technology to estimate the instantaneous velocity of the ball at
t = 1.5. Likewise, estimate the instantaneous velocity of the ball at = 2. Which value is
greater?
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(c) How is the sign of the instantaneous velocity of the ball related to its behavior at a given point
in time? That is, what does positive instantaneous velocity tell you the ball is doing? Negative
instantaneous velocity?

(d) Without doing any computations, what do you expect to be the instantaneous velocity of the
ball at £ = 1?2 Why?

<

At this point we have started to see a close connection between average velocity and instantaneous
velocity, as well as how each is connected not only to the physical behavior of the moving object but
also to the geometric behavior of the graph of the position function. In order to make the link between
average and instantaneous velocity more formal, we will introduce the notion of limit in Section 1.2. As
a preview of that concept, we look at a way to consider the limiting value of average velocity through the
introduction of a parameter. Note that if we desire to know the instantaneous velocity at t = a of a moving
object with position function s, we are interested in computing average velocities on the interval [a, b]
for smaller and smaller intervals. One way to visualize this is to think of the value b as being b = a + h,
where £ is a small number that is allowed to vary. Thus, we observe that the average velocity of the object
on the interval [a, a + h] is
sta+h) —s(a)

—

with the denominator being simply h because (a+ h) — a = h. Initially, it is fine to think of & being a small
positive real number; but it is important to note that we allow h to be a small negative number, too, as
this enables us to investigate the average velocity of the moving object on intervals prior to t = a, as well
as following ¢ = a. When h <0, AV}, 4+ 1) measures the average velocity on the interval [a + h, al.

AV[a,a+h] =

To attempt to find the instantaneous velocity at ¢ = a, we investigate what happens as the value of &
approaches zero. We consider this further in the following example.

Example 1.1. For a falling ball whose position function is given by s(f) = 16 — 16¢> (where s is measured
in feet and ¢ in seconds), find an expression for the average velocity of the ball on a time interval of the
form [0.5,0.5+ h] where —0.5 < i < 0.5 and h # 0. Use this expression to compute the average velocity on
[0.5,0.75] and [0.4,0.5], as well as to make a conjecture about the instantaneous velocity at £ = 0.5.

Solution. We make the assumptions that —0.5 < h < 0.5 and & # 0 because h cannot be zero (otherwise
there is no interval on which to compute average velocity) and because the function only makes sense
on the time interval 0 < ¢ < 1, as this is the duration of time during which the ball is falling. Observe that
we want to compute and simplify

s(0.5+ h)—s(0.5)

AV(05,0.5+h] = 05+h)-05

The most unusual part of this computation is finding (0.5 + h). To do so, we follow the rule that defines
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the function s. In particular, since s(t) = 16 — 1612, we see that

s(05+h) = 16—16(0.5+h)?
= 16-16(0.25+ h+ h?)
= 16—4-16h-16k*
= 12-16h-16h°.

Now, returning to our computation of the average velocity, we find that

s(0.5+ h) —s(0.5)

AVios05+h (0.5+h)—0.5
_ (12-16h—16h%) — (16— 16(0.5)%)
B 05+h—-0.5
_ 12-16h—16h*—12
- h
_ -16h-16h*
= —

At this point, we note two things: first, the expression for average velocity clearly depends on ki, which it
must, since as h changes the average velocity will change. Further, we note that since £ can never equal
zero, we may further simplify the most recent expression. Removing the common factor of % from the
numerator and denominator, it follows that

AV(9505+h = —16—16h.

Now, for any small positive or negative value of h, we can compute the average velocity. For instance, to
obtain the average velocity on [0.5,0.75], we let & = 0.25, and the average velocity is —16 — 16(0.25) = —20
ft/sec. To get the average velocity on [0.4,0.5], we let & = —0.1, which tells us the average velocity is
—16 - 16(-0.1) = —14.4 ft/sec. Moreover, we can even explore what happens to AViy 505+ as h gets
closer and closer to zero. As h approaches zero, —16/h will also approach zero, and thus it appears that
the instantaneous velocity of the ball at ¢t = 0.5 should be —16 ft/sec.

Activity 1.3.

For the function given by s(f) = 64 — 16(f — 1)2 from Preview Activity 1.2, find the most simplified
expression you can for the average velocity of the ball on the interval [2,2 + h]. Use your result to
compute the average velocity on [1.5,2] and to estimate the instantaneous velocity at ¢ = 2. Finally,
compare your earlier work in Activity 1.1.

<

Summary

In this section, we encountered the following important ideas:
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Figure 1.2: The graph of position function s together with the line through (a, s(a)) and (b, s(b)) whose
slopeis m = %. The line’s slope is the average rate of change of s on the interval [a, b].

* The average velocity on [a, b] can be viewed geometrically as the slope of the line between the points
(a,s(a)) and (b, s(b)) on the graph of y = s(¢), as shown in Figure 1.2.

* Given a moving object whose position at time ¢ is given by a function s, the average velocity of the

object on the time interval [a, b] is given by AV, 1} = %. Viewing the interval [a, b] as having the
form [a, a + h], we equivalently compute average velocity by the formula AV(, 445 = w

* The instantaneous velocity of a moving object at a fixed time is estimated by considering average
velocities on shorter and shorter time intervals that contain the instant of interest.

Exercises

1. A bungee jumper dives from a tower at time ¢ = 0. Her height h (measured in feet) at time ¢ (in
seconds) is given by the graph in Figure 1.3.

In this problem, you may base your answers on estimates from the graph or use the fact that the
jumper’s height function is given by s(#) = 100 cos(0.75¢) - e~%2* + 100.

(a) What is the change in vertical position of the bungee jumper between ¢t =0 and ¢ = 15?

(b) Estimate the jumper’s average velocity on each of the following time intervals: [0,15], [0,2],
[1,6], and [8,10]. Include units on your answers.

(c) On what time interval(s) do you think the bungee jumper achieves her greatest average ve-
locity? Why?

(d) Estimate the jumper’s instantaneous velocity at ¢ = 5. Show your work and explain your rea-
soning, and include units on your answer.

(e) Among the average and instantaneous velocities you computed in earlier questions, which
are positive and which are negative? What does negative velocity indicate?
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Figure 1.3: A bungee jumper’s height function.

2. Adiver leaps from a 3 meter springboard. His feet leave the board at time ¢ = 0, he reaches his maxi-
mum height of 4.5 m at ¢ = 1.1 seconds, and enters the water at ¢ = 2.45. Once in the water, the diver
coasts to the bottom of the pool (depth 3.5 m), touches bottom at ¢ = 7, rests for one second, and then
pushes off the bottom. From there he coasts to the surface, and takes his first breath at ¢ = 13.

(a) Let s(t) denote the function that gives the height of the diver’s feet (in meters) above the water
at time ¢. (Note that the “height” of the bottom of the pool is —3.5 meters.) Sketch a carefully
labeled graph of s(¢) on the provided axes in Figure 1.4. Include scale and units on the vertical
axis. Be as detailed as possible.

" "
2 4 6 8 10 12 2 4 6 8 10 12

Figure 1.4: Axes for plotting s(¢) in part (a) and v(¢) in part (c) of the diver problem.
(b) Based on your graph in (a), what is the average velocity of the diver between ¢ = 2.45 and
t = 7? Is his average velocity the same on every time interval within [2.45,7]?

(c) Letthe function v(¢) represent the instantaneous vertical velocity of the diver at time ¢ (i.e. the
speed at which the height function s(t) is changing; note that velocity in the upward direction
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(d)

is positive, while the velocity of a falling object is negative). Based on your understanding of
the diver’s behavior, as well as your graph of the position function, sketch a carefully labeled
graph of v(t) on the axes provided in Figure 1.4. Include scale and units on the vertical axis.
Write several sentences that explain how you constructed your graph, discussing when you
expect v(t) to be zero, positive, negative, relatively large, and relatively small.

Is there a connection between the two graphs that you can describe? What can you say about
the velocity graph when the height function is increasing? decreasing? Make as many obser-
vations as you can.

3. According to the U.S. census, the population of the city of Grand Rapids, MI, was 181,843 in 1980;
189,126 in 1990; and 197,800 in 2000.

(a)
(b)

(©

(d)

(e)

(9

Between 1980 and 2000, by how many people did the population of Grand Rapids grow?
In an average year between 1980 and 2000, by how many people did the population of Grand
Rapids grow?

Just like we can find the average velocity of a moving body by computing change in position
over change in time, we can compute the average rate of change of any function f. In partic-
ular, the average rate of change of a function f over an interval [a, b] is the quotient

fb) - f(a)
b-a
What does the quantity W measure on the graph of y = f(x) over the interval [a, b]?

Let P(#) represent the population of Grand Rapids at time ¢, where ¢ is measured in years from
January 1, 1980. What is the average rate of change of P on the interval ¢t = 0 to ¢ = 20? What
are the units on this quantity?

If we assume the population of Grand Rapids is growing at a rate of approximately 4% per
decade, we can model the population function with the formula

P(r) = 181843(1.04) /10,

Use this formula to compute the average rate of change of the population on the intervals
(5,101, [5,9], [5,8], [5,7], and [5, 6].

How fast do you think the population of Grand Rapids was changing on January 1, 1985? Said
differently, at what rate do you think people were being added to the population of Grand
Rapids as of January 1, 1985? How many additional people should the city have expected in
the following year? Why?

4. (Source: SIMIODE) Water is being drained from a hole near the bottom of a cylindrical tank. Ac-
cording to Torrecelli’s Law it can be shown that the rate at which the height & of the water changes is
proportional to the square root of the height. This can be written with average rates of change as:

Ah
average rate of change of the height = A7 ~K-Vh (1.1)

where K is a constant that depends on gravity as well as the size of the hole and the shape of the tank.


http://www.simiode.org
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- Outflow

(a) Using the video demonstration of Torrecelli’s Law found here:
https:/ /www.youtube.com/watch?v=gsNdsuQ1ZCo&app=desktop
and, using the pause button to your advantage, create a table of time vs. the height of the
water in the container. Use as many data points as you feel necessary.

] Time (sec) \ Height (cm) ‘

(b) Use your data to estimate the value of K in the experiment shown in the video. Be sure to
include a discussion of units of K and discuss which parts of this experiment are being de-
scribed by K?

(Hint: Given equation (1.1), what should a plot of v// (on the x axis) vs % (on the y axis) look
like? How would you find K from this plot?)

(c) Two more experiments were performed with different cylinders and different sized drain holes.
Find the values of K for each of these experiments, and from the data make comparisons be-
tween the sizes of the cylinders and the sizes of the holes for the three experiments.

Experiment #1 Experiment #2
Time (sec) ‘ Height (cm) Time (sec) ‘ Height (cm)
0 35 0 13
8 30 0.58 12
16 25 1.35 11
25 20 1.95 10
35.5 15 2.85 9
48.7 10 3.65 8
66.8 5 4.55 7
5.55 6
6.55 5
7.55 4
8.55 3
10.45 2
13.45 1

(d) Discussion: What would happen if this experiment were run on a different, non-cylindrical,
tank? Provide a detail
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1.2 The notion of limit

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ What is the mathematical notion of /imit and what role do limits play in the study of functions?

¢ What is the meaning of the notation )lcln}l flx) =12

* How do we go about determining the value of the limit of a function at a point?

¢ How does the notion of limit allow us to move from average velocity to instantaneous velocity?

Web Resources

1. Video: Limits
2. Video: Limits of functions using graphing tools
3. Video: Limits of functions using tables

4. Video: Limits of functions using spreadsheets

[5)]

. Khan Playlist: Limits

Introduction

Functions are at the heart of mathematics: a function is a process or rule that associates each individ-
ual input to exactly one corresponding output. Students learn in courses prior to calculus that there are
many different ways to represent functions, including through formulas, graphs, tables, and even words.
For example, the squaring function can be thought of in any of these ways. In words, the squaring func-
tion takes any real number x and computes its square. The formulaic and graphical representations go
hand in hand, as y = f(x) = x? is one of the simplest curves to graph. Finally, we can also partially repre-
sent this function through a table of values, essentially by listing some of the ordered pairs that lie on the
curve, such as (-2,4), (-1,1), (0,0), (1,1), and (2,4).

Functions are especially important in calculus because they often model important phenomena —the
location of a moving object at a given time, the rate at which an automobile is consuming gasoline at a
certain velocity, the reaction of a patient to the size of a dose of a drug — and calculus can be used to study
how these output quantities change in response to changes in the input variable. Moreover, thinking
about concepts like average and instantaneous velocity leads us naturally from an initial function to
a related, sometimes more complicated function. As one example of this, think about the falling ball
whose position function is given by s(f) = 64 — 161> and the average velocity of the ball on the interval


https://www.youtube.com/watch?v=GZzJOAUOqLI&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=4
https://www.youtube.com/watch?v=5TFu_sh_orM&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=5
https://www.youtube.com/watch?v=GdBIiRzaTAQ&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=6
https://www.youtube.com/watch?v=uAepmkpG34A&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=7
https://www.khanacademy.org/math/differential-calculus/limits_topic
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[1, x]. Observe that
s(x)—s(1) _ (64—-16x%)—(64—16) 16—16x*

AV =
[1,] x—-1 x—-1 x—1

Now, two things are essential to note: this average velocity depends on x (indeed, AV 4 is a function
of x), and our most focused interest in this function occurs near x = 1, which is where the function is
not defined. Said differently, the function g(x) = % tells us the average velocity of the ball on the
interval from ¢t =1 to ¢ = x, and if we are interested in the instantaneous velocity of the ball when ¢ =1,
we'd like to know what happens to g(x) as x gets closer and closer to 1. At the same time, g(1) is not
defined, because it leads to the quotient 0/0.

This is where the idea of limits comes in. By using a limit, we’ll be able to allow x to get arbitrarily
close, but not equal, to 1 and fully understand the behavior of g(x) near this value. We'll develop key lan-
guage, notation, and conceptual understanding in what follows, but for now we consider a preliminary
activity that uses the graphical interpretation of a function to explore points on a graph where interesting
behavior occurs.

Preview Activity 1.3. Suppose that g is the function given by the graph below. Use the graph to answer
each of the following questions.

(a) Determine the values g(-2), g(—1), g(0), g(1), and g(2), if defined. If the function value is not
defined, explain what feature of the graph tells you this.

(b) For each of the values a = -1, a =0, and a = 2, complete the following sentence: “As x gets closer
and closer (but not equal) to a, g(x) gets as close as we want to J

(c) What happens as x gets closer and closer (but not equal) to a = 1? Does the function g(x) get as
close as we would like to a single value?

Figure 1.5: Graph of y = g(x) for Preview Activity 1.3.
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The Notion of Limit

Limits can be thought of as a way to study the tendency or trend of a function as the input variable
approaches a fixed value, or even as the input variable increases or decreases without bound. We put
off the study of the latter idea until further along in the course when we will have some helpful calculus
tools for understanding the end behavior of functions. Here, we focus on what it means to say that “a
function f has limit L as x approaches a.” To begin, we think about a recent example.

In Preview Activity 1.3, you saw that for the given function g, as x gets closer and closer (but not
equal) to 0, g(x) gets as close as we want to the value 4. At first, this may feel counterintuitive, because
the value of g(0) is 1, not 4. By their very definition, limits regard the behavior of a function arbitrarily
close to a fixed input, but the value of the function at the fixed input does not matter. More formally', we
say the following.

[Deﬁnition 1. 15.]

Given a function f, a fixed input x = 4, and a real number L, we say that f has limitL as x
approaches a, and write
)lcim fx)=L
—a

provided that we can make f(x) as close to L as we like by taking x sufficiently close (but not
equal) to a. If we cannot make f(x) as close to a single value as we would like as x approaches
a, then we say that f does not have a limit as x approaches a.

For the function g pictured in Figure 1.5, we can make the following observations:
lim g(x)=3, limg(x) =4, and lim g(x) =1,
x—-1 x—0 x—2

but g does not have a limit as x — 1. When working graphically, it suffices to ask if the function ap-
proaches a single value from each side of the fixed input, while understanding that the function value
right at the fixed input is irrelevant. This reasoning explains the values of the first three stated limits. In
a situation such as the jump in the graph of g at x = 1, the issue is that if we approach x =1 from the
left, the function values tend to get as close to 3 as we'd like, but if we approach x = 1 from the right,
the function values get as close to 2 as we'd like, and there is no single number that all of these function
values approach. This is why the limit of g does not exist at x = 1.

For any function f, there are typically three ways to answer the question “does f have a limitat x = a,
and if so, what is the limit?” The first is to reason graphically as we have just done with the example from
Preview Activity 1.3. If we have a formula for f(x), there are two additional possibilities: (1) evaluate the
function at a sequence of inputs that approach a on either side, typically using some sort of computing

IWhat follows here is not what mathematicians consider the formal definition of a limit. To be completely precise, it is
necessary to quantify both what it means to say “as close to L as we like” and “sufficiently close to a.” That can be accomplished
through what is traditionally called the epsilon-delta definition of limits. The definition presented here is sufficient for the
purposes of this text.
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technology, and ask if the sequence of outputs seems to approach a single value; (2) use the algebraic
form of the function to understand the trend in its output as the input values approach a. The first
approach only produces an approximation of the value of the limit, while the latter can often be used to
determine the limit exactly. The following example demonstrates both of these approaches, while also
using the graphs of the respective functions to help confirm our conclusions.

Example 1.2. For each of the following functions, we'd like to know whether or not the function has a
limit at the stated a-values. Use both numerical and algebraic approaches to investigate and, if possible,
estimate or determine the value of the limit. Compare the results with a careful graph of the function on
an interval containing the points of interest.

4—x?
x+2

(@ flx)= ia=-1,a=-2
1 J-[ . — —
(b) g(x) —sm(;), a=3,a=0

Solution. We first construct a graph of f along with tables of values near a = —1 and a = -2.

x| fx) x| [
0929 -1.9 | 3.9
-0.99 | 2.99 -1.99 | 3.99
-0.999 | 2.999 -1.999 | 3.999
-0.9999 | 2.9999 -1.9999 | 3.9999
1.1 | 3.1 21141
-1.01 | 3.01 -2.01 | 4.01
-1.001 | 3.001 -2.001 | 4.001 A
-1.0001 | 3.0001 -2.0001 | 4.0001
3 1 1

Fi 1.6: Tabl d h f = .
igure ables and graph for f(x) 12

From the left table, it appears that we can make f as close as we want to 3 by taking x sufficiently
close to —1, which suggests that lim1 f(x) = 3. This is also consistent with the graph of f. To see this
oo

a bit more rigorously and from an algebraic point of view, consider the formula for f: f(x) = ‘;x; . The
numerator and denominator are each polynomial functions, which are among the most well-behaved
functions that exist. Formally, such functions are continuous®, which means that the limit of the function

at any point is equal to its function value. Here, it follows that as x — -1, (4 — x%) - (4-(-1)% =3, and

2See Section 1.7 for more on the notion of continuity.
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(x+2) = (-14+2) =1, s0as x — —1, the numerator of f tends to 3 and the denominator tends to 1, hence
3

li =—-=3.

xl»n;ll f&) 1

The situation is more complicated when x — —2, due in part to the fact that f(-2) is not defined. If
we attempt to use a similar algebraic argument regarding the numerator and denominator, we observe
thatas x — -2, (4—x%) — (4—(-2)%) =0, and (x+2) — (—2+2) =0, so as x — —2, the numerator of f tends
to 0 and the denominator tends to 0. We call 0/0 an indeterminate form and will revisit several important
issues surrounding such quantities later in the course. For now, we simply observe that this tells us there
is somehow more work to do. From the table and the graph, it appears that f should have a limit of 4 at
x = —2. To see algebraically why this is the case, let’s work directly with the form of f(x). Observe that

2

xll»n—lz f(x) xll»n;12 xX+2
2-x)2+x)
m —-.
x—-2 x+2

At this point, it is important to observe that since we are taking the limit as x — —2, we are considering x
values that are close, but not equal, to —2. Since we never actually allow x to equal —2, the quotient ?TJZC
has value 1 for every possible value of x. Thus, we can simplify the most recent expression above, and
now find that

lim f(x)= lim 2-x.
xX—=2 x——2

Because 2 — x is simply a linear function, this limit is now easy to determine, and its value clearly is 4.
Thus, from several points of view we've seen that lim2 fx) =4.
X

Next we turn to the function g, and construct two tables and a graph.

x| gx) x | gx)
2.9 | 0.84864 010
2.99 | 0.86428 -0.01 |0 2
2.999 | 0.86585 -0.001 | 0 g
2.9999 | 0.86601 -0.0001 | 0 /\ f\
3.1 | 0.88351 010 \3_/[1 \/q s
3.01 | 0.86777 0.01 | 0
3.001 | 0.86620 0.001 | 0 9
3.0001 | 0.86604 0.0001 | 0

Figure 1.7: Tables and graph for g(x) = sin (E)
X

First, as x — 3, it appears from the data (and the graph) that the function is approaching approxi-
mately 0.866025. To be precise, we have to use the fact that % — %, and thus we find that g(x) = sin(%) —

sin(%) as x — 3. The exact value of sin(%) is ‘/75, which is approximately 0.8660254038. Thus, we see that

lim g(x) = 3
x—>3g T2
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As x — 0, we observe that 3 does not behave in an elementary way. When x is positive and approach-
ing zero, we are dividing by smaller and smaller positive values, and ¥ increases without bound. When
x is negative and approaching zero, 7 decreases without bound. In this sense, as we get close to x =0,
the inputs to the sine function are growing rapidly, and this leads to wild oscillations in the graph of g. It
is an instructive exercise to plot the function g(x) = sin (%) with a graphing utility and then zoom in on
x = 0. Doing so shows that the function never settles down to a single value near the origin and suggests
that g does not have a limit at x =0.

How do we reconcile this with the righthand table above, which seems to suggest that the limit of
g as x approaches 0 may in fact be 0? Here we need to recognize that the data misleads us because
of the special nature of the sequence {0.1,0.01,0.001,...}: when we evaluate g(107%), we get g(107%) =

sin (#) = sin(10%m) = 0 for each positive integer value of k. But if we take a different sequence of values

approaching zero, say {0.3,0.03,0.003, ...}, then we find that

)=sin(10kﬂ) v3

= — = 0.866025.
2

L
g(3-107% = sin( —_—
3-107k

That sequence of data would suggest that the value of the limit is ‘/7§ Clearly the function cannot have

two different values for the limit, and this shows that g has no limit as x — 0.

An important lesson to take from Example 1.2 is that tables can be misleading when determining the
value of a limit. While a table of values is useful for investigating the possible value of a limit, we should
also use other tools to confirm the value, if we think the table suggests the limit exists.

Activity 1.4.

Estimate the value of each of the following limits by constructing appropriate tables of values. Then
determine the exact value of the limit by using algebra to simplify the function. Finally, plot each
function on an appropriate interval to check your result visually.

2

X
(a) lim
x—1 X —

2+x)3 -
x—0

(c) lim
x—0

vVx+1-1
X

<

This concludes a rather lengthy introduction to the notion of limits. It is important to remember that
our primary motivation for considering limits of functions comes from our interest in studying the rate
of change of a function. To that end, we close this section by revisiting our previous work with average
and instantaneous velocity and highlighting the role that limits play.
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Instantaneous Velocity

Suppose that we have a moving object whose position at time ¢ is given by a function s. We know that the
average velocity of the object on the time interval [a, b] is AV, ) = W. We define the instantaneous
velocity at a to be the limit of average velocity as b approaches a. Note particularly that as b — a, the
length of the time interval gets shorter and shorter (while always including a). In Section 1.3, we will
introduce a helpful shorthand notation to represent the instantaneous rate of change. For now, we will
write IV,-, for the instantaneous velocity at ¢ = a, and thus

s(b) - s(a)

IVi—, = lim AV = lim
t=a b—a [a,b] b—a b-a

Equivalently, if we think of the changing value b as being of the form b = a + h, where h is some small
number, then we may instead write

s(a+ h)—s(a)

IVi—, = lim AV =lim
t=a he0 [a,a+h] hoo h

Again, the most important idea here is that to compute instantaneous velocity, we take a limit of average
velocities as the time interval shrinks. Two different activities offer the opportunity to investigate these
ideas and the role of limits further.

Activity 1.5.

Consider a moving object whose position function is given by s(¢) = t?, where s is measured in meters
and ¢ is measured in minutes.

(a) Determine a simplified expression for the average velocity of the object on the interval [3,3 +
hl.

(b) Determine the average velocity of the object on the interval [3,3.2]. Include units on your
answer.

(c) Determine the instantaneous velocity of the object when ¢ = 3. Include units on your answer.

<

The closing activity of this section asks you to make some connections among average velocity, instan-
taneous velocity, and slopes of certain lines.

Activity 1.6.

For the moving object whose position s at time ¢ is given by the graph below, answer each of the
following questions. Assume that s is measured in feet and ¢ is measured in seconds.

(@) Use the graph to estimate the average velocity of the object on each of the following intervals:
[0.5,1], [1.5,2.5], [0,5]. Draw each line whose slope represents the average velocity you seek.

(b) How could you use average velocities and slopes of lines to estimate the instantaneous veloc-
ity of the object at a fixed time?
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Figure 1.8: Plot of the position function y = s(¢) in Activity 1.6.

(c) Use the graph to estimate the instantaneous velocity of the object when ¢ = 2. Should this
instantaneous velocity at ¢t = 2 be greater or less than the average velocity on [1.5,2.5] that
you computed in (a)? Why?

Summary

In this section, we encountered the following important ideas:

¢ Limits enable us to examine trends in function behavior near a specific point. In particular, taking a
limit at a given point asks if the function values nearby tend to approach a particular fixed value.

¢ When we write ;lcmb f(x) =L, we read this as saying “the limit of f as x approaches a is L,” and this

means that we can make the value of f(x) as close to L as we want by taking x sufficiently close (but
not equal) to a.

* If we desire to know Jlg_rg f (x) for a given value of a and a known function f, we can estimate this value
from the graph of f or by generating a table of function values that result from a sequence of x-values
that are closer and closer to a. If we want the exact value of the limit, we need to work with the function
algebraically and see if we can use familiar properties of known, basic functions to understand how
different parts of the formula for f change as x — a.

* The instantaneous velocity of a moving object at a fixed time is found by taking the limit of average
velocities of the object over shorter and shorter time intervals that all contain the time of interest.

Exercises

16— x*

1. Consider the function whose formula is f(x) = — 1
X2 —

(a) What is the domain of f?
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(b) Use a sequence of values of x near a = 2 to estimate the value of liné f(x), if you think the limit
X—
exists. If you think the limit doesn't exist, explain why.
(c) Use algebra to simplify the expression lf{_’f and hence work to evaluate lim,_., f(x) exactly,
if it exists, or to explain how your work shows the limit fails to exist. Discuss how your findings
compare to your results in (b).

(d) True or false: f(2) = —8. Why?

(e) True or false: lf{_’ff = —4— x?. Why? How is this equality connected to your work above with

the function f?

(f) Based on all of your work above, construct an accurate, labeled graph of y = f(x) on the in-
4

16 —x
terval [1, 3], and write a sentence that explains what you now know about lirr% TR
x—2 X°—
2. Letg(x) = x+3]
) g = x+3°

(a) What is the domain of g?
(b) Use a sequence of values near a = —3 to estimate the value of lim,_._3 g(x), if you think the
limit exists. If you think the limit doesn't exist, explain why.

(c) Use algebra to simplify the expression % and hence work to evaluate lim,_._3 g(x) exactly,

if it exists, or to explain how your work shows the limit fails to exist. Discuss how your findings
compare to your results in (b). (Hint: |a| = a whenever a = 0, but |a| = —a whenever a < 0.)
(d) True or false: g(—3) = —1. Why?
(e) True or false: —% = —1. Why? How is this equality connected to your work above with the
function g?

(f) Based on all of your work above, construct an accurate, labeled graph of y = g(x) on the in-

terval [-4, —2], and write a sentence that explains what you now know about lirn3 g(x).
Py

3. For each of the following prompts, sketch a graph on the provided axes of a function that has the
stated properties.

(@) y = f(x)such that
* f(-2)=2and xlir{lzf(x) =1
e f(-1)=3and xlinjlf(x) =3
¢ f(1)is not defined and }CIIH fx)=0

e f(2)=1and lirr; f(x) does not exist.
X—

(b) y = g(x) such that
* g(-2)=3,g(-1)=-1,g(1)=-2,and g(2) =3
e At x=-2,-1,1 and 2, g has a limit, and its limit equals the value of the function at that
point.
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* g(0) is not defined and lirr(l) g(x) does not exist.
X—

Figure 1.9: Axes for plotting y = f(x) in (a) and y = g(x) in (b).
4. A bungee jumper dives from a tower at time ¢ = 0. Her height s in feet at time ¢ in seconds is given by

s(t) = 100co0s(0.751) - e~ 92% +100.

(a) Write an expression for the average velocity of the bungee jumper on the interval
(1,1+h].

(b) Use computing technology to estimate the value of the limit as # — 0 of the quantity you
found in (a).

(c) What is the meaning of the value of the limit in (b)? What are its units?
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1.3 The derivative of a function at a point

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How is the average rate of change of a function on a given interval defined, and what does this
quantity measure?

¢ How is the instantaneous rate of change of a function at a particular point defined? How is the
instantaneous rate of change linked to average rate of change?

e What is the derivative of a function at a given point? What does this derivative value measure?
How do we interpret the derivative value graphically?

* How are limits used formally in the computation of derivatives?

Web Resources

1. Video: Quick review & the derivative of a function at a point
2. Video: The derivative of a function at a point

3. Video: The derivative of a function at a point using graphs

Introduction

An idea that sits at the foundations of calculus is the instantaneous rate of change of a function. This
rate of change is always considered with respect to change in the input variable, often at a particular
fixed input value. This is a generalization of the notion of instantaneous velocity and essentially allows
us to consider the question “how do we measure how fast a particular function is changing at a given
point?” When the original function represents the position of a moving object, this instantaneous rate
of change is precisely velocity, and might be measured in units such as feet per second. But in other
contexts, instantaneous rate of change could measure the number of cells added to a bacteria culture
per day, the number of additional gallons of gasoline consumed by going one mile per additional mile
per hour in a car’s velocity, or the number of dollars added to a mortgage payment for each percentage
increase in interest rate. Regardless of the presence of a physical or practical interpretation of a function,
the instantaneous rate of change may also be interpreted geometrically in connection to the function’s
graph, and this connection is also foundational to many of the main ideas in calculus.

In what follows, we will introduce terminology and notation that makes it easier to talk about the
instantaneous rate of change of a function at a point. In addition, just as instantaneous velocity is defined
in terms of average velocity, the more general instantaneous rate of change will be connected to the
more general average rate of change. Recall that for a moving object with position function s, its average


https://www.youtube.com/watch?v=0zpQnwVaU28&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=8
https://www.youtube.com/watch?v=fQ5yelPpFk0&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=9
https://www.youtube.com/watch?v=0DJPSYeLFpc&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=10
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velocity on the time interval ¢ = a to t = a+ h is given by the quotient

sta+h)-s(a)

Av[a,a+h] = n

In a similar way, we make the following definition for an arbitrary function y = f(x).

[Deﬁnition 1.16.]

For a function f, the average rate of change of f on the interval [a, a + h] is given by the value

fla+h) - f(a)

AViga+h = n

Equivalently, if we want to consider the average rate of change of f on [a, b], we compute

fb) - f(a)
b-a

It is essential to understand how the average rate of change of f on an interval is connected to its graph.

AV[a’b] =

Preview Activity 1.4. Suppose that f is the function given by the graph below and that a and a + & are
the input values as labeled on the x-axis. Use the graph in Figure 1.10 to answer the following questions.

a a-+h

Figure 1.10: Plot of y = f(x) for Preview Activity 1.4.

(a) Locate and label the points (a, f(a)) and (a + h, f(a+ h)) on the graph.

(b) Construct a right triangle whose hypotenuse is the line segment from (a, f(a)) to
(a+ h, f(a+ h)). What are the lengths of the respective legs of this triangle?

(c) What is the slope of the line that connects the points (a, f(a)) and (a + h, f(a+ h))?
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(d) Write a meaningful sentence that explains how the average rate of change of the function on a
given interval and the slope of a related line are connected.

The Derivative of a Function at a Point

Just as we defined instantaneous velocity in terms of average velocity, we now define the instantaneous
rate of change of a function at a point in terms of the average rate of change of the function f over related
intervals. In addition, we give a special name to “the instantaneous rate of change of f at a,” calling this
quantity “the derivative of f at a,” with this value being represented by the shorthand notation f’(a).
Specifically, we make the following definition.

[Deﬁnition 1.17.]

Let f be a function and x = a a value in the function’s domain. We define the derivative of f
with respect to x evaluated at x = a, denoted f'(a), by the formula

v flath) - f(a)
f(a)=lim n ’

provided this limit exists.

Aloud, we read the symbol f’'(a) as either “ f-prime at a” or “the derivative of f evaluated at x = a.” Much
of the next several chapters will be devoted to understanding, computing, applying, and interpreting
derivatives. For now, we make the following important notes.

* The derivative of f at the value x = a is defined as the limit of the average rate of change of f on
the interval [a, a + h] as h — 0. It is possible for this limit not to exist, so not every function has a
derivative at every point.

* We say that a function that has a derivative at x = a is differentiable at x = a.

* The derivative is a generalization of the instantaneous velocity of a position function: when y = s(¢)
is a position function of a moving body, s’ (a) tells us the instantaneous velocity of the body at time
r=a.

* Because the units on w are “units of f per unit of x,” the derivative has these very same

units. For instance, if s measures position in feet and ¢t measures time in seconds, the units on s'(a)
are feet per second.

* Because the quantity w represents the slope of the line through (a, f(a)) and

(a+h, f(a+ h)), when we compute the derivative we are taking the limit of a collection of slopes of
lines, and thus the derivative itself represents the slope of a particularly important line.
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While all of the above ideas are important and we will add depth and perspective to them through addi-
tional time and study, for now it is most essential to recognize how the derivative of a function at a given
value represents the slope of a certain line. Thus, we expand upon the last bullet item above.

As we move from an average rate of change to an instantaneous one, we can think of one point as
“sliding towards” another. In particular, provided the function has a derivative at (a, f(a)), the point
(a+ h, f(a+ h)) will approach (a, f(a)) as h — 0. Because this process of taking a limit is a dynamic one,
it can be helpful to use computing technology to visualize what the limit is accomplishing. While there
are many different options®, one of the best is a java applet in which the user is able to control the point
that is moving. See the examples referenced in the footnote here, or consider building your own, perhaps
using the fantastic free program Geogebra®.

In Figure 1.11, we provide a sequence of figures with several different lines through the points (a, f(a))
and (a + h, f(a+ h)) that are generated by different values of h. These lines (shown in the first three fig-
ures in magenta), are often called secant lines to the curve y = f(x). A secant line to a curve is simply a
line that passes through two points that lie on the curve. For each such line, the slope of the secant line
ism= w, where the value of & depends on the location of the point we choose. We can see in
the diagram how, as h — 0, the secant lines start to approach a single line that passes through the point
(a, f(a)). In the situation where the limit of the slopes of the secant lines exists, we say that the resulting
value is the slope of the tangent line to the curve. This tangent line (shown in the right-most figure in

green) to the graph of y = f(x) at the point (a, f(a)) is the line through (a, f(a)) whose slope is m = f’'(a).

[Deﬁnition 1.18.]

A secant lineto a curve y = f(x) is a line that passes through two points that lie on the curve.
(See the first three plots in Figurer 1.11)

e If (a, f(a) and (b, f (b)) are on the curve, then the slope of the secant line is

m:f(b)—f(a).
b—a

e If (a, f(a)) is on the curve, and another point located / units away from a is on the curve,
then the slope of the secant line between these two points is

I flath)-fla) fla+h)-f(a)
 (a+h)-a h ’

3For a helpful collection of java applets, consider the work of David Austin of Grand Valley State University at
http://gvsu.edu/s/5r, and the particularly relevant example atht tp: //gvsu.edu/s/5s. Forapplets that have been
built in Geogebra, a nice example is the work of Marc Renault of Shippensburg University at http://gvsu.edu/s/5p, with
the example at http://gvsu.edu/s/5q being especially fitting for our work in this section. There are scores of other ex-
amples posted by other authors on the internet.

4 Available for free download from http: //geogebra.org.
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[Deﬁnition 1.19.]

A tangent line to a curve y = f(x) is a line that passes through only one point locally (see the
green line on the fourth image of Figure 1.11).

* The tangent line goes through the point (a, f(a)).
* The slope of the tangent line to the curve at the point (a, f(a)) is

m = lim —f(a )= @
h—0 h

if the limit exists.
e If the limit exists, then the slope of the tangent line at the point (a, f(a)) is the derivative

m = lim —f(a th-j@

h—0 h =fa).

Figure 1.11: A sequence of secant lines approaching the tangent line to f at (a, f(a)).

As we will see in subsequent study, the existence of the tangent line at x = a is connected to whether
or not the function f looks like a straight line when viewed up close at (a, f(a)), which can also be seen
in Figure 1.12, where we combine the four graphs in Figure 1.11 into the single one on the left, and then
we zoom in on the box centered at (a, f (a)), with that view expanded on the right (with two of the secant
lines omitted). Note how the tangent line sits relative to the curve y = f(x) at (a, f (a)) and how closely it
resembles the curve near x = a.

At this time, it is most important to note that f’(a), the instantaneous rate of change of f with respect
to x at x = a, also measures the slope of the tangent line to the curve y = f(x) at (a, f(a)). The following
example demonstrates several key ideas involving the derivative of a function.
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Figure 1.12: A sequence of secant lines approaching the tangent line to f at (a, f(a)). At right, we zoom
in on the point (a, f(a)). The slope of the tangent line (in green) to f at (a, f(a)) is given by f’(a).

Example 1.3. For the function given by f(x) = x — x?, use the limit definition of the derivative to com-

pute f'(2). In addition, discuss the meaning of this value and draw a labeled graph that supports your
explanation.

Solution. From the limit definition, we know that

. fR+h)-f(2)

@ = lim L& T@

re e h

Now we use the rule for f, and observe that f(2) =2-22 = -2 and f(2+h) = (2+ h) — (2+ h)?. Substituting
these values into the limit definition, we have that

o R+R) -2+ - (-2)
R

Observe that with / in the denominator and our desire to let 7 — 0, we have to wait to take the limit (that
is, we wait to actually let h approach 0). Thus, we do additional algebra. Expanding and distributing in
the numerator,
2+h—4-4h-h>+2

3 .

’ ! 2 — 1’“]
! 2 — l‘ .

Next, we observe that there is a common factor of 4 in both the numerator and denominator, which
allows us to simplify and find that

!/ I _q_
f') = lim(-3-h).

Finally, we are able to take the limit as i — 0, and thus conclude that f'(2) = -3.
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\m = f'(2)
<—

2

Figure 1.13: The tangent line to y = x — x?% at the point (2,-2).

Now, we know that f’(2) represents the slope of the tangent line to the curve y = x — x> at the point
(2,-2); f'(2) is also the instantaneous rate of change of f at the point (2, —2). Graphing both the function
and the line through (2, -2) with slope m = f’(2) = —3, we indeed see that by calculating the derivative,
we have found the slope of the tangent line at this point, as shown in Figure 1.3.

The following activities will help you explore a variety of key ideas related to derivatives.
Activity 1.7.
Consider the function f whose formulais f(x) =3 —2x.
(a) What familiar type of function is f? What can you say about the slope of f at every value of x?

(b) Compute the average rate of change of f on the intervals [1,4], [3,7], and [5,5 + h]; simplify
each result as much as possible. What do you notice about these quantities?

(c) Use the limit definition of the derivative to compute the exact instantaneous rate of change of
f with respect to x at the value a = 1. That is, compute f’(1) using the limit definition. Show
your work. Is your result surprising?

(d) Without doing any additional computations, what are the values of f'(2), f'(n), and f'(-v/2)?
Why?

Activity 1.8.

A water balloon is tossed vertically in the air from a window. The balloon’s height in feet at time ¢ in
seconds after being launched is given by s(#) = —16¢2 + 16 + 32. Use this function to respond to each
of the following questions.
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(a) Sketch an accurate, labeled graph of s on the axes provided in Figure 1.14. You should be able
to do this without using computing technology.

32 1

16 +

Figure 1.14: Axes for plotting y = s(¢) in Activity 1.8.

(b) Compute the average rate of change of s on the time interval [1,2]. Include units on your
answer and write one sentence to explain the meaning of the value you found.

(c) Use the limit definition to compute the instantaneous rate of change of s with respect to time,
t, at the instant a = 1. Show your work using proper notation, include units on your answer,
and write one sentence to explain the meaning of the value you found.

(d) Onyour graph in (a), sketch two lines: one whose slope represents the average rate of change
of s on [1,2], the other whose slope represents the instantaneous rate of change of s at the
instant a = 1. Label each line clearly.

(e) For what values of a do you expect s'(a) to be positive? Why? Answer the same questions
when “positive” is replaced by “negative” and “zero.”

Activity 1.9.

A rapidly growing city in Arizona has its population P at time ¢, where ¢ is the number of decades after
the year 2010, modeled by the formula P(¢) = 25000¢/°. Use this function to respond to the following
questions.

(a) Sketch an accurate graph of P for £ = 0 to ¢ =5 on the axes provided in Figure 1.15. Label the
scale on the axes carefully.

(b) Compute the average rate of change of P between 2030 and 2050. Include units on your an-
swer and write one sentence to explain the meaning (in everyday language) of the value you
found.

(c) Use the limit definition to write an expression for the instantaneous rate of change of P with
respect to time, ¢, at the instant a = 2. Explain why this limit is difficult to evaluate exactly.

o020
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Figure 1.15: Axes for plotting y = P(¢) in Activity 1.9.

(d) Estimate the limit in (c) for the instantaneous rate of change of P at the instant a = 2 by using
several small i values. Once you have determined an accurate estimate of P’(2), include units
on your answer, and write one sentence (using everyday language) to explain the meaning of
the value you found.

(e) Onyour graph above, sketch two lines: one whose slope represents the average rate of change
of P on [2,4], the other whose slope represents the instantaneous rate of change of P at the
instant a = 2.

(f) In a carefully-worded sentence, describe the behavior of P'(a) as a increases in value. What
does this reflect about the behavior of the given function P?

<
Summary
In this section, we encountered the following important ideas:
. . . f(b)-f(a) .
* The average rate of change of a function f on the interval [a, b] is ————. The units on the average
-a

rate of change are units of f per unit of x, and the numerical value of the average rate of change
represents the slope of the secant line between the points (a, f(a)) and (b, f (b)) on the graph of y =
f(x). If we view the interval as being [a, a + h] instead of [a, b], the meaning is still the same, but the
fla+h) - f(a)

—

» The instantaneous rate of change with respect to x of a function f at a value x = a is denoted f'(a)
(read “the derivative of f evaluated at a” or “ f-prime at a”) and is defined by the formula
fla+h)-f(a)
h )
provided the limit exists. Note particularly that the instantaneous rate of change at x = a is the limit
of the average rate of change on [a,a+ h] as h — 0.

average rate of change is now computed by

o=y
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* Provided the derivative f’(a) exists, its value tells us the instantaneous rate of change of f with respect
to x at x = a, which geometrically is the slope of the tangent line to the curve y = f(x) at the point
(a, f(a)). We even say that f'(a) is the slope of the curve y = f(x) at the point (a, f(a)).

* Limits are the link between average rate of change and instantaneous rate of change: they allow us to
move from the rate of change over an interval to the rate of change at a single point.

Exercises
1. Consider the graph of y = f(x) provided in Figure 1.16.
(@) On the graph of y = f(x), sketch and label the following quantities:

* the secantline to y = f(x) on the interval [-3,—1] and the secant line to y = f(x) on the
interval [0, 2].

* the tangentline to y = f(x) at x = —3 and the tangent line to y = f(x) at x = 0.

Figure 1.16: Plot of y = f(x).

(b) What is the approximate value of the average rate of change of f on [-3,—-1]? On [0,2]? How
are these values related to your work in (a)?

(c) What is the approximate value of the instantaneous rate of change of f at x = —3? At x = 0?
How are these values related to your work in (a) and (b)?

2. For each of the following prompts, sketch a graph on the provided axes in Figure 1.17 of a function
that has the stated properties.

(@) y= f(x)such that

 the average rate of change of f on [-3,0] is —2 and the average rate of change of f on
(1,3]is 0.5, and

e theinstantaneous rate of change of f at x = —1is —1 and the instantaneous rate of change
of fatx=2is1.
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(b) y = g(x) such that
. g(3)—5g(—2) —0and g(l)—zg(—l) ~ 1 and
. g’(2) =1and g'(—l) =0

Figure 1.17: Axes for plotting y = f(x) in (a) and y = g(x) in (b).

3. Suppose that the population, P, of China (in billions) can be approximated by the function P(#) =
1.15(1.014)" where t is the number of years since the start of 1993.

(a) According to the model, what was the total change in the population of China between Jan-
uary 1, 1993 and January 1, 2000? What will be the average rate of change of the population
over this time period? Is this average rate of change greater or less than the instantaneous
rate of change of the population on January 1, 2000? Explain and justify, being sure to include
proper units on all your answers.

(b) According to the model, what is the average rate of change of the population of China in the
ten-year period starting on January 1, 2012?

(c) Write an expression involving limits that, if evaluated, would give the exact instantaneous rate
of change of the population on today’s date. Then estimate the value of this limit (discuss how
you chose to do so) and explain the meaning (including units) of the value you have found.

(d) Find an equation for the tangent line to the function y = P(#) at the point where the z-value is
given by today’s date.

4. The goal of this problem is to compute the value of the derivative at a point for several different func-
tions, where for each one we do so in three different ways, and then to compare the results to see that
each produces the same value.

For each of the following functions, use the limit definition of the derivative to compute the value of
f'(a) using three different approaches: strive to use the algebraic approach first (to compute the limit
exactly), then test your result using numerical evidence (with small values of /), and finally plot the
graph of y = f(x) near (a, f(a)) along with the appropriate tangent line to estimate the value of f'(a)
visually. Compare your findings among all three approaches.
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@ f(x)=x*-3x,a=2
b) f=1a=1

() f(x)=sin(x), a=
d f)=vx,a=1
e) fxy=2—-|x-1,a=1
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1.4 The derivative function

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How does the limit definition of the derivative of a function f lead to an entirely new (but related)
function f'?

» What is the difference between writing f'(a) and f'(x)?
» How is the graph of the derivative function f’(x) connected to the graph of f(x)?

* What are some examples of functions f for which f” is not defined at one or more points?

Web Resources

1. Video: Quick review & the derivative function

2. Video: Limit definition of a derivative

3. Video: Sketching a derivative graph

4. GeoGebra Applets:
(a) The derivative function,
(b) Derivative drawing experimentation applet
(c) David Austin’s Site: http://gvsu.edu/s/5r
(d) Marc Renault’s Site: http://gvsu.edu/s/5p.

(e) Khan Playlist: Secant lines and slope

Introduction

Given a function y = f(x), we now know that if we are interested in the instantaneous rate of change of
the function at x = a, or equivalently the slope of the tangent line to y = f(x) at x = a, we can compute
the value f’(a). In all of our examples to date, we have arbitrarily identified a particular value of a as
our point of interest: a = 1, a = 3, etc. But it is not hard to imagine that we will often be interested in
the derivative value for more than just one a-value, and possibly for many of them. In this section, we
explore how we can move from computing simply f’(1) or f’(3) to working more generally with f’(a), and
indeed f’(x). Said differently, we will work toward understanding how the so-called process of “taking
the derivative” generates a new function that is derived from the original function y = f(x). The following
preview activity starts us down this path.


https://www.youtube.com/watch?v=Fzrkq1r-sAI&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=11
https://www.youtube.com/watch?v=62mySLhhfaQ&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=12
https://www.youtube.com/watch?v=TSgyDembmXg&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-&index=13
http://gvsu.edu/s/5D
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_try_to_graph.html
http://gvsu.edu/s/5r
http://gvsu.edu/s/5p
https://www.khanacademy.org/math/differential-calculus/taking-derivatives/secant-line-slope-tangent
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Preview Activity 1.5. Consider the function f(x) =4x— x2.

(a) Use the limit definition to compute the following derivative values: f’(0), f'(1), f'(2), and f’(3).

(b) Observe that the work to find f’(a) is the same, regardless of the value of a. Based on your work
in (a), what do you conjecture is the value of f’(4)? How about f'(5)? (Note: you should not use
the limit definition of the derivative to find either value.)

(c) Conjecture a formula for f’(a) that depends only on the value a. That is, in the same way that
we have a formula for f(x) (recall f(x) = 4x — x?), see if you can use your work above to guess a
formula for f’(a) in terms of a.

How the derivative is itself a function

In your work in Preview Activity 1.5 with f(x) = 4x— x?, you may have found several patterns. One comes
from observing that f/(0) = 4, f'(1) =2, f'(2) =0, and f'(3) = —2. That sequence of values leads us
naturally to conjecture that f'(4) = —4 and f'(5) = —6. Even more than these individual numbers, if we
consider the role of 0, 1, 2, and 3 in the process of computing the value of the derivative through the limit
definition, we observe that the particular number has very little effect on our work. To see this more
clearly, we compute f’(a), where a represents a number to be named later. Following the now standard
process of using the limit definition of the derivative,

m fla+h) - f(a)

/ _
) = h—0 h
. 4(a+h)-(a+h)?-(4a-a®
= lim
h—0 h
. da+4h-a®-2ha-h?>-4a+ a®
= lim
h—0 h
. 4h-2ha- h?
= lim—
h—0 h
. h(d-2a-h)
= lim ——
h—0 h

= lim@-2a-h).
h—0

Here we observe that neither 4 nor 2a depend on the value of h,soas h — 0, (4—2a—h) — (4—2a). Thus,
f'(a)=4-2a.

This observation is consistent with the specific values we found above: e.g., f'(3) =4—-2(3) = —2. And
indeed, our work with a confirms that while the particular value of a at which we evaluate the derivative
affects the value of the derivative, that value has almost no bearing on the process of computing the
derivative. We note further that the letter being used is immaterial: whether we call it a, x, or anything
else, the derivative at a given value is simply given by “4 minus 2 times the value.” We choose to use x
for consistency with the original function given by y = f(x), as well as for the purpose of graphing the
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derivative function, and thus we have found that for the function f(x) = 4x - x2, it follows that f'x) =
4-2x.

Because the value of the derivative function is so closely linked to the graphical behavior of the origi-
nal function, it makes sense to look at both of these functions plotted on the same domain. In Figure 1.18,

(0,4)
4Q
3 4
(1,2)
2 Q
]_ 4
(2,0)
1 2\ 3 4
_]_ 4
(37 _2)
24 1Y
3l y=f'(z)
44 Q
(47 _4)

Figure 1.18: The graphs of f(x) = 4x — x? (at left) and f’(x) = 4 — 2x (at right). Slopes on the graph of f
correspond to heights on the graph of f’.

on the left we show a plot of f(x) = 4x — x together with a selection of tangent lines at the points we've
considered above. On the right, we show a plot of f'(x) = 4 — 2x with emphasis on the heights of the
derivative graph at the same selection of points. Notice the connection between colors in the left and
right graph: the green tangent line on the original graph is tied to the green point on the right graph in
the following way: the slope of the tangent line at a point on the lefthand graph is the same as the height
at the corresponding point on the righthand graph. That is, at each respective value of x, the slope of the
tangent line to the original function at that x-value is the same as the height of the derivative function at
that x-value. Do note, however, that the units on the vertical axes are different: in the left graph, the ver-
tical units are simply the output units of f. On the righthand graph of y = f’(x), the units on the vertical
axis are units of f per unit of x.

Of course, this relationship between the graph of a function y = f(x) and its derivative is a dynamic
one. An excellent way to explore how the graph of f(x) generates the graph of f’(x) is through a web
applet. See, for instance, the applet ht tp: //gvsu.edu/s/5D, via the sites of Austin and Renault®.

In Section 1.3 when we first defined the derivative, we wrote the definition in terms of a value a to
find f’(a). As we have seen above, the letter a is merely a placeholder, and it often makes more sense to

Spavid Austin, http: //gvsu.edu/s/5r; Marc Renault, http: //gvsu.edu/s/5p.


http://gvsu.edu/s/5D
http://gvsu.edu/s/5r
http://gvsu.edu/s/5p
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use x instead. For the record, here we restate the definition of the derivative.

[Deﬁnition 1.20.]

Let f be a function and x a value in the function’s domain. We define the derivative of f with

h) —
respect to x at the value x, denoted f’(x), by the formula f’(x) = }lirr(l) M, provided
this limit exists.

We now may take two different perspectives on thinking about the derivative function: given a graph
of y = f(x), how does this graph lead to the graph of the derivative function y = f’(x)? and given a

formula for y = f(x), how does the limit definition of the derivative generate a formula for y = f'(x)?
Both of these issues are explored in the following activities.
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Activity 1.10.

For each given graph of y = f(x), sketch an approximate graph of its derivative function, y = f’(x), on
the axes immediately below. The scale of the grid for the graph of f is 1 x 1; assume the horizontal
scale of the grid for the graph of f” is identical to that for f. If necessary, adjust and label the vertical
scale on the axes for the graph of f.

/—\ g —
T

I g
X X

P q
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r s

x x
r! s

x x
w z

Write several sentences that describe your overall process for sketching the graph of the derivative
function, given the graph the original function. What are the values of the derivative function that
you tend to identify first? What do you do thereafter? How do key traits of the graph of the derivative
function exemplify properties of the graph of the original function?

<

o020
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For a dynamic investigation that allows you to experiment with graphing f’ when given the graph of
f,see
http://webspace.ship.edu/msrenault/ GeoGebraCalculus/derivative_try_to_graph.html.®

Now, recall the opening example of this section: we began with the function y = f(x) = 4x — x> and
used the limit definition of the derivative to show that f’(a) = 4 —2a, or equivalently that f'(x) =4 —2x.
We subsequently graphed the functions f and f’ as shown in Figure 1.18. Following Activity 1.10, we now
understand that we could have constructed a fairly accurate graph of f'(x) without knowing a formula
for either f or f’. At the same time, it is ideal to know a formula for the derivative function whenever it is
possible to find one.

In the next activity, we further explore the more algebraic approach to finding f’(x): given a formula
for y = f(x), the limit definition of the derivative will be used to develop a formula for f’(x).

Activity 1.11.

For each of the listed functions, determine a formula for the derivative function. For the first two,
determine the formula for the derivative by thinking about the nature of the given function and its
slope at various points; do not use the limit definition. For the latter four, use the limit definition. Pay
careful attention to the function names and independent variables. It is important to be comfortable
with using letters other than f and x. For example, given a function p(z), we call its derivative p’(z).

@ fx)=1
b) g =t
© pla)=2z*
d gl =5
(e) F(t) =1
® Gy =y
<
Summary

In this section, we encountered the following important ideas:

* The limit definition of the derivative, f’(x) =limy,_q w, produces a value for each x at which

the derivative is defined, and this leads to a new function whose formula is y = f’(x). Hence we talk
both about a given function f and its derivative f’. It is especially important to note that taking the
derivative is a process that starts with a given function (f) and produces a new, related function (f).

* There is essentially no difference between writing f’(a) (as we did regularly in Section 1.3) and writing
f'(x). In either case, the variable is just a placeholder that is used to define the rule for the derivative
function.

6Marc Renault, Calculus Applets Using Geogebra.


http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_try_to_graph.html
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* Given the graph of a function y = f(x), we can sketch an approximate graph of its derivative y =
f'(x) by observing that heights on the derivative’s graph correspond to slopes on the original function’s
graph.

¢ In Activity 1.10, we encountered some functions that had sharp corners on their graphs, such as the
shifted absolute value function. At such points, the derivative fails to exist, and we say that f is not
differentiable there. For now, it suffices to understand this as a consequence of the jump that must
occur in the derivative function at a sharp corner on the graph of the original function.

Exercises

1. Let f be a function with the following properties: f is differentiable at every value of x (thatis, f has a
derivative at every point), f(-2) =1, and f'(-2)=-2, f'(-1)=-1, f'(0) =0, f'(1) =1, and f'(2) = 2.

(@) On the axes provided at left in Figure 1.19, sketch a possible graph of y = f(x). Explain why
your graph meets the stated criteria.

(b) On the axes at right in Figure 1.19, sketch a possible graph of y = f’(x). What type of curve
does the provided data suggest for the graph of y = f'(x)?

(c) Conjecture a formula for the function y = f(x). Use the limit definition of the derivative to
determine the corresponding formula for y = f/(x). Discuss both graphical and algebraic
evidence for whether or not your conjecture is correct.

Figure 1.19: Axes for plotting y = f(x) in (a) and y = f'(x) in (b).

2. Consider the function g(x) = x2—x+3.
(a) Use the limit definition of the derivative to determine a formula for g’(x).

(b) Use a graphing utility to plot both y = g(x) and your result for y = g’(x); does your formula
for g’(x) generate the graph you expected?

(c) Use the limit definition of the derivative to find a formula for /' (x) where h(x) = 5x% —4x + 12.



1.4. THE DERIVATIVE FUNCTION

(d) Compare and contrast the formulas for g’(x) and /’'(x) you have found. How do the constants
5, 4, 12, and 3 affect the results?

3. For each graph that provides an original function y = f(x) in Figure 1.20, your task is to sketch an
approximate graph of its derivative function, y = f’(x), on the axes immediately below. View the scale
of the grid for the graph of f as being 1 x 1, and assume the horizontal scale of the grid for the graph
of f’ is identical to that for f. If you need to adjust the vertical scale on the axes for the graph of f’,
you should label that accordingly.

\ f/\ ‘/\

T\

\ \/A/\Aw
VARERrAY

f f

Figure 1.20: Graphs of y = f(x) and grids for plotting the corresponding graph of y = f’(x).
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4. Let g be a continuous function (that is, one with no jumps or holes in the graph) and suppose that a
graph of y = g'(x) is given by the graph on the right in Figure 1.21.

2 2
—0 Q————0
-2 2 -2 2
o—0 o—
-2 -2

Figure 1.21: Axes for plotting y = g(x) and, at right, the graph of y = g’(x).

(a) Observe that for every value of x that satisfies 0 < x < 2, the value of g’(x) is constant. What
does this tell you about the behavior of the graph of y = g(x) on this interval?

(b) On what intervals other than 0 < x < 2 do you expect y = g(x) to be a linear function? Why?

(c) Atwhich values of x is g’(x) not defined? What behavior does this lead you to expect to see in
the graph of y = g(x)?

(d) Suppose that g(0) = 1. On the axes provided at left in Figure 1.21, sketch an accurate graph of
y=8.
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1.5 Interpreting, estimating, and using the derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

 In contexts other than the position of a moving object, what does the derivative of a function
measure?

» What are the units on the derivative function f’, and how are they related to the units of the origi-
nal function f?

¢ What is a central difference, and how can one be used to estimate the value of the derivative at a
point from given function data?

¢ Given the value of the derivative of a function at a point, what can we infer about how the value of
the function changes nearby?

Web Resources

1. Video: Quick review & interpreting, estimating, and using the derivative
2. Video: Estimating the derivative

3. Video: Estimating derivatives using spreadsheets

4. Khan Playlist: Intro to derivatives and interpretations

5. Khan Playlist: Visualizing derivatives

Introduction

An interesting and powerful feature of mathematics is that it can often be thought of both in abstract
terms and in applied ones. For instance, calculus can be developed almost entirely as an abstract collec-
tion of ideas that focus on properties of arbitrary functions. At the same time, calculus can also be very
directly connected to our experience of physical reality by considering functions that represent mean-
ingful processes. We have already seen that for a position function y = s(t), say for a ball being tossed
straight up in the air, the ball’s velocity at time ¢ is given by v(¢) = s'(¢), the derivative of the position
function. Further, recall that if s(¢) is measured in feet at time ¢, the units on v(f) = s'(t) are feet per
second.

In what follows in this section, we investigate several different functions, each with specific physi-
cal meaning, and think about how the units on the independent variable, dependent variable, and the
derivative function add to our understanding. To start, we consider the familiar problem of a position
function of a moving object.


https://www.youtube.com/watch?v=XZa0uNu6Uyk&index=14&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=wWdijnTdkTk&index=15&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=CJ_OZ-Uxs3o&index=16&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.khanacademy.org/math/differential-calculus/taking-derivatives/derivative_intro
https://www.khanacademy.org/math/differential-calculus/taking-derivatives/visualizing-derivatives-tutorial
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Preview Activity 1.6. One of the longest stretches of straight (and flat) road in North America can be
found on the Great Plains in the state of North Dakota on state highway 46, which lies just south of the
interstate highway I-94 and runs through the town of Gackle. A car leaves town (at time ¢ = 0) and heads
east on highway 46; its position in miles from Gackle at time ¢ in minutes is given by the graph of the
function in Figure 1.22. Three important points are labeled on the graph; where the curve looks linear,
assume that it is indeed a straight line.

) (104,106.8)
1001
(57,63.8)
601 (68,63.8)
201
e e .t
20 40 60 80 100

Figure 1.22: The graph of y = s(¢), the position of the car along highway 46, which tells its distance in
miles from Gackle, ND, at time ¢t in minutes.

(a) Ineveryday language, describe the behavior of the car over the provided time interval. In partic-
ular, discuss what is happening on the time intervals [57,68] and [68,104].

(b) Find the slope of the line between the points (57,63.8) and (104,106.8). What are the units on
this slope? What does the slope represent?

(c) Find the average rate of change of the car’s position on the interval [68,104]. Include units on
your answer.

(d) Estimate the instantaneous rate of change of the car’s position at the moment ¢ = 80. Write a
sentence to explain your reasoning and the meaning of this value.

Units of the derivative function

As we now know, the derivative of the function f at a fixed value x is given by
fx+h)-f(x)
h )
and this value has several different interpretations. If we set x = a, one meaning of f’(a) is the slope of
the tangent line at the point (a, f(a)).

o020
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In alternate notation, we also sometimes equivalently write % or % instead of f’(x), and these no-

tations helps us to further see the units (and thus the meaning) of the derivative as it is viewed as the
instantaneous rate of change of f with respect to x. Note that the units on the slope of the secant line,
w, are “units of f per unit of x.” Thus, when we take the limit to get f’(x), we get these same
units on the derivative f’(x): units of f per unit of x. Regardless of the function f under consideration
(and regardless of the variables being used), it is helpful to remember that the units on the derivative

function are “units of output per unit of input,” in terms of the input and output of the original function.

For example, say that we have a function y = P(¢), where P measures the population of a city (in
thousands) at the start of year ¢ (where ¢ = 0 corresponds to 2010 AD), and we are told that P'(2) = 21.37.
What is the meaning of this value? Well, since P is measured in thousands and ¢ is measured in years, we
can say that the instantaneous rate of change of the city’s population with respect to time at the start of
2012 is 21.37 thousand people per year. We therefore expect that in the coming year, about 21,370 people
will be added to the city’s population.

Toward more accurate derivative estimates

It is also helpful to recall, as we first experienced in Section 1.3, that when we want to estimate the value
of f’(x) at a given x, we can use the difference quotient w with a relatively small value of h. In
doing so, we should use both positive and negative values of / in order to make sure we account for the
behavior of the function on both sides of the point of interest. To that end, we consider the following
brief example to demonstrate the notion of a central difference and its role in estimating derivatives.

Example 1.4. Suppose that y = f(x) is a function for which three values are known: f(1) = 2.5, f(2) =

3.25, and f(3) = 3.625. Estimate f'(2).

Solution. We know that f’(2) = limy,_ w But since we don't have a graph for y = f(x) nor a

formula for the function, we can neither sketch a tangent line nor evaluate the limit exactly. We can’t

even use smaller and smaller values of & to estimate the limit. Instead, we have just two choices: using

h=-1or h=1, depending on which point we pair with (2, 3.25).
So, one estimate is

J)-f@2) 25-3.25
1-2 -1

fl@e) = =0.75.

The other is
712 = f@-f2 _ 3.625-3.25 — 0.375.
3-2 1
Since the first approximation looks only backward from the point (2, 3.25) and the second approximation
looks only forward from (2,3.25), it makes sense to average these two values in order to account for

behavior on both sides of the point of interest. Doing so, we find that

, 0.75+0.375
f@= — = 0.5625.
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The intuitive approach to average the two estimates found in Example 1.4 is in fact the best possible
estimate to f’(2) when we have just two function values for f on opposite sides of the point of interest.
To see why, we think about the diagram in Figure 1.23, which shows a possible function y = f(x) that
satisfies the data given in Example 1.4. On the left, we see the two secant lines with slopes that come from
computing the backward difference % = 0.75 and from the forward difference % =0.375. Note
how the first such line’s slope over-estimates the slope of the tangent line at (2, f(2)), while the second
line’s slope underestimates f'(2). On the right, however, we see the secant line whose slope is given by
the central difference

f@-f1) 3.625-2.5 1.125
3-1 2 2

=0.5625.

Note that this central difference has the exact same value as the average of the forward difference and
backward difference (and it is straightforward to explain why this always holds), and moreover that the
central difference yields a very good approximation to the derivative’s value, in part because the secant
line that uses both a point before and after the point of tangency yields a line that is closer to being
parallel to the tangent line.

A ERERARRRIV SRRREAE

Figure 1.23: At left, the graph of y = f(x) along with the secant line through (1,2.5) and (2,3.25), the
secant line through (2,3.25) and (3, 3.625), as well as the tangent line. At right, the same graph along with
the secant line through (1,2.5) and (3, 3.625), plus the tangent line.

In general, the central difference approximation to the value of the first derivative is given by

fla+h) - fla-h)

/ ~
fla)= oh

and this quantity measures the slope of the secant line to y = f(x) through the points (a—h, f(a— h)) and
(a+ h, f(a+ h)). Anytime we have symmetric data surrounding a point at which we desire to estimate
the derivative, the central difference is an ideal choice for so doing.

o020
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The following activities will further explore the meaning of the derivative in several different contexts
while also viewing the derivative from graphical, numerical, and algebraic perspectives.

Activity 1.12.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at various points
in time is taken and recorded in the following table. Time ¢ is measured in minutes.

FELON

0 70

15 || 180.5
30 || 251
45 || 296
60 || 324.5
75 || 342.8
90 || 354.5

(a) Use a central difference to estimate the instantaneous rate of change of the temperature of
the potato at ¢ = 30. Include units on your answer.

(b) Use a central difference to estimate the instantaneous rate of change of the temperature of
the potato at ¢ = 60. Include units on your answer.

(c) Without doing any calculation, which do you expect to be greater: F'(75) or F'(90)?2 Why?

(d) Suppose it is given that F(64) = 330.28 and F'(64) = 1.341. What are the units on these two
quantities? What do you expect the temperature of the potato to be when ¢t = 65? when ¢ = 667
Why?

(e) Write a couple of careful sentences that describe the behavior of the temperature of the potato
on the time interval [0,90], as well as the behavior of the instantaneous rate of change of the
temperature of the potato on the same time interval.

Activity 1.13.

A company manufactures rope, and the total cost of producing r feet of rope is C(r) dollars.
(a) What does it mean to say that C(2000) = 800?
(b) What are the units of C'(r)?

(c) Suppose that C(2000) = 800 and C’(2000) = 0.35. Estimate C(2100), and justify your estimate
by writing at least one sentence that explains your thinking.

(d) Which of the following statements do you think is true, and why?
* C'(2000) < C'(3000)

e C/(2000) = C'(3000)
e C'(2000) > C'(3000)
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(e) Suppose someone claims that C'(5000) = —0.1. What would the practical meaning of this
derivative value tell you about the approximate cost of the next foot of rope? Is this possible?
Why or why not?

o020
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Activity 1.14.

Researchers at a major car company have found a function that relates gasoline consumption to speed
for a particular model of car. In particular, they have determined that the consumption C, in liters per
kilometer, at a given speed s, is given by a function C = f(s), where s is the car’s speed in kilometers
per hour.

(a) Data provided by the car company tells us that £(80) = 0.015, £(90) = 0.02, and f(100) = 0.027.
Use this information to estimate the instantaneous rate of change of fuel consumption with
respect to speed at s = 90. Be as accurate as possible, use proper notation, and include units
on your answer.

(b) By writing a complete sentence, interpret the meaning (in the context of fuel consumption)
of “f(80) =0.015.”

(c) Write at least one complete sentence that interprets the meaning of the value of f'(90) that
you estimated in (a).

<

In Section 1.4, we learned how use to the graph of a given function f to plot the graph of its derivative,
f’. Tt is important to remember that when we do so, not only does the scale on the vertical axis often
have to change to accurately represent f’, but the units on that axis also differ. For example, suppose
that P(£) = 400 — 330203/ tells us the temperature in degrees Fahrenheit of a potato in an oven at time
t in minutes. In Figure 1.24, we sketch the graph of P on the left and the graph of P’ on the right.

°F °F /min
400 16
004 ¥ =0 12
| /
200 s\y =21
100 4
min min

20 40 60 80 20 40 60 80

Figure 1.24: Plot of P(¢) =400 — 330e79-037 gt left, and its derivative P’(¢) at right.

Note how not only are the vertical scales different in size, but different in units, as the units of P are °F,
while those of P’ are °F/min. In all cases where we work with functions that have an applied context, it is
helpful and instructive to think carefully about units involved and how they further inform the meaning
of our computations.
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Summary

In this section, we encountered the following important ideas:

* Regardless of the context of a given function y = f(x), the derivative always measures the instanta-
neous rate of change of the output variable with respect to the input variable.

 The units on the derivative function y = f’(x) are units of f per unit of x. Again, this measures how
fast the output of the function f changes when the input of the function changes.

* The central difference approximation to the value of the first derivative is given by

_flath)-fla—h)

!
ra 2h

and this quantity measures the slope of the secant line to y = f(x) through the points (a - h, f(a— h))
and (a+ h, f(a+ h)). The central difference generates a good approximation of the derivative’s value
any time we have symmetric data surrounding a point of interest.

* Knowing the derivative and function values at a single point enables us to estimate other function
values nearby. If, for example, we know that f'(7) = 2, then we know that at x = 7, the function f is
increasing at an instantaneous rate of 2 units of output for every one unit of input. Thus, we expect
f(8) to be approximately 2 units greater than f (7). The value is approximate because we don’'t know
that the rate of change stays the same as x changes.

Exercises

1. A cup of coffee has its temperature F (in degrees Fahrenheit) at time ¢ given by the function F(#) =
75+ 110e %9 where time is measured in minutes.

(a) Use a central difference with & = 0.01 to estimate the value of F'(10).

(b) What are the units on the value of F'(10) that you computed in (a)? What is the practical
meaning of the value of F'(10)?

(c) Which do you expect to be greater: F'(10) or F'(20)2 Why?

(d) Write a sentence that describes the behavior of the function y = F'(¢) on the time interval
0 < t = 30. How do you think its graph will look? Why?

2. The temperature change T (in Fahrenheit degrees), in a patient, that is generated by a dose g (in
milliliters), of a drug, is given by the function T = f(q).

(a) What does it mean to say f(50) = 0.75? Write a complete sentence to explain, using correct
units.

(b) A person’s sensitivity, s, to the drug is defined by the function s(gq) = f’(q). What are the units
of sensitivity?

o020
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(c) Suppose that f’(50) = —0.02. Write a complete sentence to explain the meaning of this value.
Include in your response the information given in (a).

3. The velocity of a ball that has been tossed vertically in the air is given by v(#) = 16 —32¢, where v is
measured in feet per second, and ¢ is measured in seconds. The ball is in the air from ¢ = 0 until ¢ = 2.

(a) When is the ball’s velocity greatest?
(b) Determine the value of v/(1). Justify your thinking.

(c) What are the units on the value of v'(1)?2 What does this value and the corresponding units
tell you about the behavior of the ball at time 7 =12

(d) What is the physical meaning of the function v'()?

4. The value, V, of a particular automobile (in dollars) depends on the number of miles, m, the car has
been driven, according to the function V = h(m).

(a) Suppose that £(40000) = 15500 and h(55000) = 13200. What is the average rate of change of &
on the interval [40000,55000], and what are the units on this value?

(b) In addition to the information given in (a), say that /£(70000) = 11100. Determine the best
possible estimate of /'(55000) and write one sentence to explain the meaning of your result,
including units on your answer.

(c) Which value do you expect to be greater: /4'(30000) or /'(80000)2 Why?

(d) Write a sentence to describe the long-term behavior of the function V = h(m), plus another
sentence to describe the long-term behavior of h'(m). Provide your discussion in practical
terms regarding the value of the car and the rate at which that value is changing.
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1.6 The second derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How does the derivative of a function tell us whether the function is increasing or decreasing at a
point or on an interval?

e What can we learn by taking the derivative of the derivative (to achieve the second derivative) of a
function f?

¢ What does it mean to say that a function is concave up or concave down? How are these charac-
teristics connected to certain properties of the derivative of the function?

e What are the units on the second derivative? How do they help us understand the rate of change
of the rate of change?

Web Resources

1. Video: Quick review & The second derivative
2. Video: Limit definition of the second derivative
3. Video: Determining concavity from a graph

4. GeoGebra Applets:
(a) Cubic function exploration

(b) First and second derivative exploration

Introduction

Given a differentiable function y = f(x), we know that its derivative, y = f’(x), is a related function whose
output at a value x = a tells us the slope of the tangent line to y = f(x) at the point (a, f(a)). That is,
heights on the derivative graph tell us the values of slopes on the original function’s graph. Therefore, the
derivative tells us important information about the function f.

At any point where f’(x) is positive, it means that the slope of the tangent line to f is positive, and
therefore the function f is increasing (or rising) at that point. Similarly, if f'(a) is negative, we know that
the graph of f is decreasing (or falling) at that point.

In the next part of our study, we work to understand not only whether the function f is increasing
or decreasing at a point or on an interval, but also how the function f is increasing or decreasing. Com-
paring the two tangent lines shown in Figure 1.25, we see that at point A, the value of f’(x) is positive
and relatively close to zero, which coincides with the graph rising slowly. By contrast, at point B, the
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Figure 1.25: Two tangent lines on a graph demonstrate how the slope of the tangent line tells us whether
the function is rising or falling, as well as whether it is doing so rapidly or slowly.

derivative is negative and relatively large in absolute value, which is tied to the fact that f is decreasing
rapidly at B. It also makes sense to not only ask whether the value of the derivative function is positive or
negative and whether the derivative is large or small, but also to ask “how is the derivative changing?”

We also now know that the derivative, y = f’(x), is itself a function. This means that we can consider
taking its derivative — the derivative of the derivative — and therefore ask questions like “what does the
derivative of the derivative tell us about how the original function behaves?” As we have done regularly
in our work to date, we start with an investigation of a familiar problem in the context of a moving object.

Preview Activity 1.7. The position of a car driving along a straight road at time ¢ in minutes is given by
the function y = s(¢) that is pictured in Figure 1.26. The car’s position function has units measured in
thousands of feet. For instance, the point (2,4) on the graph indicates that after 2 minutes, the car has
traveled 4000 feet.

(a) In everyday language, describe the behavior of the car over the provided time interval. In par-
ticular, you should carefully discuss what is happening on each of the time intervals [0, 1], [1,2],
[2,3], [3,4], and [4,5], plus provide commentary overall on what the car is doing on the interval
[0,12].

(b) On the lefthand axes provided in Figure 1.27, sketch a careful, accurate graph of y = s'(1).

(c) What is the meaning of the function y = s(¢) in the context of the given problem? What can we
say about the car’s behavior when s'(#) is positive? when s'(f) is zero? when s'(¢) is negative?

(d) Rename the function you graphed in (b) to be called y = v(f). Describe the behavior of v in
words, using phrases like “v is increasing on the interval ...” and “v is constant on the interval

”

(e) Sketch a graph of the function y = v/(f) on the righthand axes provide in Figure 1.26. Write at
least one sentence to explain how the behavior of v/() is connected to the graph of y = v(t).
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Figure 1.26: The graph of y = s(¢), the position of the car (measured in thousands of feet from its starting
location) at time ¢ in minutes.

Increasing, decreasing, or neither

When we look at the graph of a function, there are features that strike us naturally, and common language
can be used to name these features. In many different settings so far, we have intuitively used the words
increasing and decreasing to describe a function’s graph. Here we connect these terms more formally to
a function’s behavior on an interval of input values.

[Deﬁnition 1.21.]

Given a function f(x) defined on the interval (a, b), we say that f is increasing on (a, b) pro-
vided that for all x, y in the interval (a, b), if x < y, then f(x) < f(y). Similarly, we say that f is
decreasing on (a, b) provided that for all x, y in the interval (a, b), if x < y, then f(x) > f(y).

Simply put, an increasing function is one that is rising as we move from left to right along the graph,
and a decreasing function is one that falls as the value of the input increases. For a function that has a
derivative at a point, we will also talk about whether or not the function is increasing or decreasing at
that point. Moreover, the fact of whether or not the function is increasing, decreasing, or neither at a
given point depends precisely on the value of the derivative at that point.
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Figure 1.27: Axes for plotting y = v(t) = s'(¢) and y = v'(¥).

— Theorem 1.4. N

Let f be a function that is differentiable at x = a. Then f is increasing at x = a if and only
if f'(a) > 0 and f is decreasing at x = a if and only if f'(a) < 0. If f'(a) = 0, then we say f is
neither increasing nor decreasing at x = a.

Figure 1.28: A function that is decreasing at A, increasing at B, and more generally, decreasing on the
intervals -3 <x < —-2and 0 < x <2 and increasingon -2 < x<0and2 < x < 3.

For example, the function pictured in Figure 1.28 is increasing at any point at which f’(x) is positive,
and hence is increasing on the entire interval —2 < x < 0. Note that at both x = +2 and x = 0, we say that
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f is neither increasing nor decreasing, because f’(x) = 0 at these values.

The Second Derivative

For any function, we are now accustomed to investigating its behavior by thinking about its derivative.
Given a function f, its derivative is a new function, one that is given by the rule

. (x+h) - f(x)

') = lim L2

fio0 =i =

Because f is itself a function, it is perfectly feasible for us to consider the derivative of the derivative,
which is the new function y = [f'(x)]’. We call this resulting function the second derivative of y = f(x),
and denote the second derivative by y = f”(x). Due to the presence of multiple possible derivatives, we
will sometimes call f’ “the first derivative” of f, rather than simply “the derivative” of f.

[Deﬁnition 1.22.]

Formally, the second derivative is defined by the limit definition of the derivative of the first
derivative:
fx+h)-f(x)

1! =l
Fro=lim

We note that all of the established meaning of the derivative function still holds, so when we com-
pute y = f”(x), this new function measures slopes of tangent lines to the curve y = f'(x), as well as the
instantaneous rate of change of y = f’(x). In other words, just as the first derivative measures the rate at
which the original function changes, the second derivative measures the rate at which the first derivative
changes. This means that the second derivative tracks the instantaneous rate of change of the instan-
taneous rate of change of f. That is, the second derivative will help us to understand how the rate of
change of the original function is itself changing.

Concavity

In addition to asking whether a function is increasing or decreasing, it is also natural to inquire how a
function is increasing or decreasing. To begin, there are three basic behaviors that an increasing function
can demonstrate on an interval, as pictured in Figure 1.29: the function can increase more and more
rapidly, increase at the same rate, or increase in a way that is slowing down. Fundamentally, we are
beginning to think about how a particular curve bends, with the natural comparison being made to lines,
which don’t bend at all. More than this, we want to understand how the bend in a function’s graph is tied
to behavior characterized by the first derivative of the function.

For the leftmost curve in Figure 1.29, picture a sequence of tangent lines to the curve. As we move
from left to right, the slopes of those tangent lines will increase. Therefore, the rate of change of the
pictured function is increasing, and this explains why we say this function is increasing at an increasing
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Figure 1.29: Three functions that are all increasing, but doing so at an increasing rate, at a constant rate,
and at a decreasing rate, respectively.

rate. For the rightmost graph in Figure 1.29, observe that as x increases, the function increases but the
slope of the tangent line decreases, hence this function is increasing at a decreasing rate.

Of course, similar options hold for how a function can decrease. Here we must be extra careful with
our language, since decreasing functions involve negative slopes, and negative numbers present an in-
teresting situation in the tension between common language and mathematical language. For example,
it can be tempting to say that “—100 is bigger than —2.” But we must remember that when we say one
number is greater than another, this describes how the numbers lie on a number line: x < y provided that
x lies to the left of y. So of course, —100 is less than —2. Informally, it might be helpful to say that “-~100
is more negative than —2.” This leads us to note particularly that when a function’s values are negative,
and those values subsequently get more negative, the function must be decreasing.

Now consider the three graphs shown in Figure 1.30. Clearly the middle graph demonstrates the
behavior of a function decreasing at a constant rate. If we think about a sequence of tangent lines to the
first curve that progress from left to right, we see that the slopes of these lines get less and less negative
as we move from left to right. That means that the values of the first derivative, while all negative, are
increasing, and thus we say that the leftmost curve is decreasing at an increasing rate.

This leaves only the rightmost curve in Figure 1.30 to consider. For that function, the slope of the
tangent line is negative throughout the pictured interval, but as we move from left to right, the slopes
get more and more negative. Hence the slope of the curve is decreasing, and we say that the function is
decreasing at a decreasing rate.

This leads us to introduce the notion of concavity which provides simpler language to describe some
of these behaviors. Informally, when a curve opens up on a given interval, like the upright parabola
y = x? or the exponential growth function y = e*, we say that the curve is concave up on that interval.
Likewise, when a curve opens down, such as the parabola y = —x? or the opposite of the exponential
function y = —e*, we say that the function is concave down. This behavior is linked to both the first and
second derivatives of the function.
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Figure 1.30: From left to right, three functions that are all decreasing, but doing so in different ways.

In Figure 1.31, we see two functions along with a sequence of tangent lines to each. On the lefthand
plot where the function is concave up, observe that the tangent lines to the curve always lie below the
curve itself and that, as we move from left to right, the slope of the tangent line is increasing. Said dif-
ferently, the function f is concave up on the interval shown because its derivative, f’, is increasing on
that interval. Similarly, on the righthand plot in Figure 1.31, where the function shown is concave down,
there we see that the tangent lines alway lie above the curve and that the value of the slope of the tangent
line is decreasing as we move from left to right. Hence, what makes f concave down on the interval is
the fact that its derivative, f’, is decreasing.

Figure 1.31: At left, a function that is concave up; at right, one that is concave down.

We state these most recent observations formally as the definitions of the terms concave up and con-
cave down.
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[Deﬁnition 1.23.]

Let f be a differentiable function on an interval (a, b). Then f is concave up on (a, b) if and
only if f’ is increasing on (a, b); f is concave down on (a, b) if and only if f’ is decreasing on
(a,b).

The following activities lead us to further explore how the first and second derivatives of a function
determine the behavior and shape of its graph. We begin by revisiting Preview Activity 1.7.

Activity 1.15.

The position of a car driving along a straight road at time ¢ in minutes is given by the function y = s(¢)
that is pictured in Figure 1.32. The car’s position function has units measured in thousands of feet.
Remember that you worked with this function and sketched graphs of y = v(¢) = s'(¢) and y = v'(¢) in
Preview Activity 1.7.

Y S
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Figure 1.32: The graph of y = s(¢), the position of the car (measured in thousands of feet from its starting
location) at time ¢ in minutes.

(a) On what intervals is the position function y = s(¢) increasing? decreasing? Why?

(b) On which intervals is the velocity function y = v(¢) = s'(¢) increasing? decreasing? neither?
Why?

(c) Acceleration is defined to be the instantaneous rate of change of velocity, as the acceleration
of an object measures the rate at which the velocity of the object is changing. Say that the car’s
acceleration function is named a(f). How is a(t) computed from v(#)? How is a(t) computed
from s(¢)? Explain.

(d) What can you say about s” whenever s’ is increasing? Why?
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(e) Using only the words increasing, decreasing, constant, concave up, concave down, and linear,
complete the following sentences. For the position function s with velocity v and acceleration
a,

¢ on an interval where v is positive, s is

* on an interval where v is negative, s is

¢ on an interval where v is zero, s is

* on an interval where a is positive, v is

* on an interval where a is negative, v is

¢ on an interval where a is zero, v is

¢ on an interval where a is positive, s is

e on an interval where a is negative, s is

¢ on an interval where a is zero, s is

<

The context of position, velocity, and acceleration is an excellent one in which to understand how
a function, its first derivative, and its second derivative are related to one another. In Activity 1.15, we
can replace s, v, and a with an arbitrary function f and its derivatives f’ and f”, and essentially all the
same observations hold. In particular, note that f” is increasing if and only if both f is concave up, and
similarly f’ is increasing if and only if f” is positive. Likewise, f’ is decreasing if and only if both f is
concave down, and f’ is decreasing if and only if f” is negative.

Activity 1.16.

This activity builds on our experience and understanding of how to sketch the graph of f’ given the
graph of f. Below, given the graph of a function f, sketch f’ on the first axes below, and then sketch
f" on the second set of axes. In addition, for each, write several careful sentences in the spirit of those
in Activity 1.15 that connect the behaviors of f, f’, and f”. For instance, write something such as

f'is on the interval , which is connected to the fact that f
is on the same interval ,and f"is
on the interval as well

but of course with the blanks filled in. Throughout, view the scale of the grid for the graph of f as
being 1 x 1, and assume the horizontal scale of the grid for the graph of f’ is identical to that for f.
If you need to adjust the vertical scale on the axes for the graph of f’ or f”, you should label that
accordingly.

<
Activity 1.17.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at various points
in time is taken and recorded in the following table. Time ¢ is measured in minutes. In Activity 1.12,
we computed approximations to F'(30) and F'(60) using central differences. Those values and more
are provided in the second table below, along with several others computed in the same way.
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N AISSSUVAVI BAVAVNSES

f/l f/l

Figure 1.33: Two given functions f, with axes provided for plotting f’ and f” below.

Lt JFo | [ [Fo ]
0 |70 0 | NA
15 || 1805 | |15 | 6.03
30 || 251 30 | 3.85
45 | 296 45 | 2.45

60 || 324.5 60 || 1.56
75 || 342.8 75 || 1.00
90 || 354.5 90 || NA

(a) What are the units on the values of F'(1)?
(b) Use a central difference to estimate the value of F”(30).

(c) What is the meaning of the value of F”(30) that you have computed in (c) in terms of the
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potato’s temperature? Write several careful sentences that discuss, with appropriate units, the
values of F(30), F'(30), and F”(30), and explain the overall behavior of the potato’s temperature
at this point in time.

(d) Overall, is the potato’s temperature increasing at an increasing rate, increasing at a constant
rate, or increasing at a decreasing rate? Why?

Summary

In this section, we encountered the following important ideas:

¢ A differentiable function f is increasing at a point or on an interval whenever its first derivative is
positive, and decreasing whenever its first derivative is negative.

* By taking the derivative of the derivative of a function f, we arrive at the second derivative, f”. The
second derivative measures the instantaneous rate of change of the first derivative, and thus the sign
of the second derivative tells us whether or not the slope of the tangent line to f is increasing or de-
creasing.

» Adifferentiable function is concave up whenever its first derivative is increasing (or equivalently when-
ever its second derivative is positive), and concave down whenever its first derivative is decreasing
(or equivalently whenever its second derivative is negative). Examples of functions that are every-
where concave up are y = x* and y = e*; examples of functions that are everywhere concave down are
y=-x%and y = —e*.

e The units on the second derivative are “units of output per unit of input per unit of input.” They tell
us how the value of the derivative function is changing in response to changes in the input. In other
words, the second derivative tells us the rate of change of the rate of change of the original function.

Exercises

1. Suppose that y = f(x) is a differentiable function for which the following information is known: f(2) =
-3, f'(2) =15, f"(2) = -0.25.

(a) Is f increasing or decreasing at x = 2? Is f concave up or concave down at x = 2?
(b) Do you expect f(2.1) to be greater than —3, equal to —3, or less than —3? Why?
(c) Do you expect f'(2.1) to be greater than 1.5, equal to 1.5, or less than 1.5? Why?

(d) Sketch a graph of y = f(x) near (2, f(2)) and include a graph of the tangent line.

2. For a certain function y = g(x), its derivative is given by the function pictured in Figure 1.34.

(a) What is the approximate slope of the tangent line to y = g(x) at the point (2, g(2))?
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Figure 1.34: The graph of y = g’(x).

(b) How many real number solutions can there be to the equation g(x) = 0? Justify your conclu-
sion fully and carefully by explaining what you know about how the graph of g must behave
based on the given graph of g'.

(c) On the interval —3 < x < 3, how many times does the concavity of g change? Why?

(d) Use the provided graph to estimate the value of g”(2).

3. Abungee jumper’s height & (in feet ) at time ¢ (in seconds) is given in part by the data in the following
table:

t JooJos5 [10 [15 [20 [25 |30 [35 [40 [45 |50 |
| h(») ] 200 | 184.2 [ 159.9 | 131.9 | 104.7 | 81.8 | 65.5 [ 56.8 | 55.5 [ 60.4 | 69.8 |
|t [[55 |60 |65 [70 [75 |80 [85 [90 [95 [100 |
| h(») | 81.6]93.7 [ 1044 | 112.6 [ 117.7 [ 119.4 | 118.2 [ 114.8 | 110.0 | 104.7 |

(a) Use the given data to estimate h'(4.5), h'(5), and h'(5.5). At which of these times is the bungee
jumper rising most rapidly?

(b) Use the given data and your work in (a) to estimate k" (5).

(c) What physical property of the bungee jumper does the value of k" (5) measure? What are its
units?

(d) Based on the data, on what approximate time intervals is the function y = h(f) concave down?
What is happening to the velocity of the bungee jumper on these time intervals?
4. For each prompt that follows, sketch a possible graph of a function on the interval -3 < x < 3 that

satisfies the stated properties.

(@) y = f(x) such that f is increasing on -3 < x < 3, f is concave up on -3 < x < 0, and f is
concave downon 0 < x < 3.

(b) y = g(x) such that g is increasing on —3 < x < 3, g is concave down on -3 < x <0, and g is
concaveupon0< x < 3.
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(¢) ¥y = h(x) such that £ is decreasing on —3 < x < 3, h is concave up on —3 < x < —1, neither
concave up nor concave down on —1 < x < 1, and 4 is concave down on 1 < x < 3.

(d) y = p(x) such that p is decreasing and concave down on —3 < x < 0 and p is increasing and
concave down on 0 < x < 3.
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1.7 Limits, Continuity, and Differentiability

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* What does it mean graphically to say that f has limit L as x — a? How is this connected to having
a left-hand limit at x = a and having a right-hand limit at x = a?

* What does it mean to say that a function f is continuous at x = a? What role do limits play in
determining whether or not a function is continuous at a point?

* What does it mean graphically to say that a function f is differentiable at x = a? How is this con-
nected to the function being locally linear?

* How are the characteristics of a function having a limit, being continuous, and being differentiable
at a given point related to one another?

Web Resources

1. Video: Quick review & limits, continuity, and differentiability
2. Video: more limits
3. Video: determining continuity

4. Video: determining differentiability graphically

Introduction

In Section 1.2, we learned about how the concept of limits can be used to study the trend of a function
near a fixed input value. As we study such trends, we are fundamentally interested in knowing how
well-behaved the function is at the given point, say x = a. In this present section, we aim to expand
our perspective and develop language and understanding to quantify how the function acts and how its
value changes near a particular point. Beyond thinking about whether or not the function has a limit L
at x = a, we will also consider the value of the function f(a) and how this value is related to lim,_., f(x),
as well as whether or not the function has a derivative f’(a) at the point of interest. Throughout, we will
build on and formalize ideas that we have encountered in several settings.

We begin to consider these issues through the following preview activity that asks you to consider the
graph of a function with a variety of interesting behaviors.

Preview Activity 1.8. A function f defined on —4 < x < 4 is given by the graph in Figure 1.35. Use the
graph to answer each of the following questions. Note: to the right of x = 2, the graph of f is exhibiting
infinite oscillatory behavior.


https://www.youtube.com/watch?v=7-S0qHpnddk&index=20&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=OmgIej6fHrc&index=21&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=71PGm02zFjw&index=22&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=_vimObBaJxI&index=23&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
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3

Figure 1.35: The graph of y = f(x).

(a) For each of the values a = -3,-2,-1,0,1,2,3, determine whether or not lim f(x) exists. If the
X—a
function has alimit L at a given point, state the value of the limit using the notation lim f(x) = L.
X—a
If the function does not have a limit at a given point, write a sentence to explain why.

(b) For each of the values of a from part (a) where f has a limit, determine the value of f(a) at each
such point. In addition, for each such a value, does f(a) have the same value as )lclrr}l f(x)?

(c) Foreach of thevalues a=-3,-2,-1,0,1,2,3, determine whether or not f’(a) exists. In particular,
based on the given graph, ask yourselfifitis reasonable to say that f has a tangentline at (a, f(a))
for each of the given a-values. If so, visually estimate the slope of the tangent line to find the value
of f'(a).

Having a limit at a point

In Section 1.2, we first encountered limits and learned that we say that f has limit L as x approaches a
and write )lcllg f(x) = L provided that we can make the value of f(x) as close to L as we like by taking x
sufficiently close (but not equal to) a. Here, we expand further on this definition and focus in more depth
on what it means for a function not to have a limit at a given value.

Essentially there are two behaviors that a function can exhibit at a point where it fails to have a limit.
In Figure 1.36, at left we see a function f whose graph shows a jump at a = 1. In particular, if we let x
approach 1 from the left side, the value of f approaches 2, while if we let x go to 1 from the right, the
value of f tends to 3. Because the value of f does not approach a single number as x gets arbitrarily close
to 1 from both sides, we know that f does not have a limit at a = 1.

Since f does approach a single value on each side of a = 1, we can introduce the notion of left and
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right (or one-sided) limits. We say that f has limit L, as x approaches a from the left and write
xlllﬁl— fx) =L

provided that we can make the value of f(x) as close to L; as we like by taking x sufficiently close to a
while always having x < a. In this case, we call L; the left-hand limit of f as x approaches a. Similarly,
we say Lo is the right-hand limit of f as x approaches a and write

lim+ fx) =L,

X—a

provided that we can make the value of f(x) as close to L, as we like by taking x sufficiently close to a
while always having x > a. In the graph of the function f in Figure 1.36, we see that

lim f(x)=2 and lim f(x)=3
x—1- x—1*

and precisely because the left and right limits are not equal, the overall limit of f as x — 1 fails to exist.

Figure 1.36: Functions f and g that each fail to have alimitat a = 1.

For the function g pictured at right in Figure 1.36, the function fails to have a limit at a = 1 for a
different reason. While the function does not have a jump in its graph at a = 1, it is still not the case
that g approaches a single value as x approaches 1. In particular, due to the infinitely oscillating behav-
ior of g to the right of @ = 1, we say that the right-hand limit of g as x — 17 does not exist, and thus
)lci_rﬂ g(x) does not exist.

To summarize, anytime either a left- or right-hand limit fails to exist or the left- and right-hand limits
are not equal to each other, the overall limit will not exist. Said differently,



124 1.7. LIMITS, CONTINUITY, AND DIFFERENTIABILITY

[Deﬁnition 1.24.]

A function f has limit L as x — a if and only if
lim f(x)=L= lim f(x).
X—a x—at

That is, a function has a limit at x = a if and only if both the left- and right-hand limits at x = a
exist and share the same value.

In Preview Activity 1.8, the function f given in Figure 1.35 only fails to have a limit at two values: at
a = —2 (where the left- and right-hand limits are 2 and —1, respectively) and at x = 2, where lim,_.,+ f(x)
does not exist). Note well that even at values like a = —1 and a = 0 where there are holes in the graph, the
limit still exists.

Activity 1.18.

Consider a function that is piecewise-defined according to the formula

3(x+2)+2 for-3<x<-2
%(x+2)+1 for-2=<x<-1
f)={2x+2)+1 for-l<x<l
2 forx=1

4-x forx>1

Use the given formula to answer the following questions.

Figure 1.37: Axes for plotting the function y = f(x) in Activity 1.18.

(a) For each of the values a =-2,-1,0,1,2, compute f(a).

(b) For each of the values a =-2,-1,0, 1,2, determine xlir}rll_ f(x)and lim f(x).
— x—a*
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(c) For each of the values a = -2,-1,0, 1,2, determine )lcm}; f(x). If the limit fails to exist, explain
why by discussing the left- and right-hand limits at the relevant a-value.

(d) For which values of a is the following statement true?
Jlg_rg f) # fla)

(e) On the axes provided in Figure 1.37, sketch an accurate, labeled graph of y = f(x). Be sure
to carefully use open circles (o) and filled circles (¢) to represent key points on the graph, as
dictated by the piecewise formula.

Being continuous at a point

Intuitively, a function is continuous if we can draw it without ever lifting our pencil from the page. Al-
ternatively, we might say that the graph of a continuous function has no jumps or holes in it. We first
consider three specific situations in Figure 1.38 where all three functions have a limit at a = 1, and then
work to make the idea of continuity more precise.

1 \ 1 \

Figure 1.38: Functions f, g, and & that demonstrate subtly different behaviors at a = 1.

Note that f(1) is not defined, which leads to the resulting hole in the graph of f at a = 1. We will
naturally say that f is not continuous at a = 1. For the next function g in in Figure 1.38, we observe that
while lim,_.; g(x) = 3, the value of g(1) = 2, and thus the limit does not equal the function value. Here,
too, we will say that g is not continuous, even though the function is defined at a = 1. Finally, the function
h appears to be the most well-behaved of all three, since at a = 1 its limit and its function value agree.
That s,

lim h(x) =3 = h().
x—1

With no hole or jump in the graph of h at a = 1, we desire to say that h is continuous there.

More formally, we make the following definition.
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[Deﬁnition 1.25.]

A function f is continuous provided that

(@) fhasalimitas x — a,
(b) fisdefined at x = a, and

(© lim f(x) = f(@).

Conditions (a) and (b) are technically contained implicitly in (c), but we state them explicitly to empha-
size their individual importance. In words, (c) essentially says that a function is continuous at x = a
provided that its limit as x — a exists and equals its function value at x = a. Thus, continuous functions
are particularly nice: to evaluate the limit of a continuous function at a point, all we need to do is evaluate
the function.

For example, consider p(x) = x?> —2x + 3. It can be proved that every polynomial is a continuous
function at every real number, and thus if we would like to know lim,_.» p(x), we simply compute

lir%(x2—2x+3)=22—2~2+3:3.
x—>

This route of substituting an input value to evaluate a limit works anytime we know function being con-
sidered is continuous. Besides polynomial functions, all exponential functions and the sine and cosine
functions are continuous at every point, as are many other familiar functions and combinations thereof.

Activity 1.19.

This activity builds on your work in Preview Activity 1.8, using the same function f as given by the
graph that is repeated in Figure 1.39

Figure 1.39: The graph of y = f(x) for Activity 1.19.

(a) Atwhich values of a does lim,_., f(x) not exist?

o020



1.7. LIMITS, CONTINUITY, AND DIFFERENTIABILITY

(b) At which values of a is f(a) not defined?
(c) Atwhich values of a does f have a limit, but lim,_., f(x) # f(a)?
(d) State all values of a for which f is not continuous at x = a.

(e) Which condition is stronger, and hence implies the other: f hasalimitatx = aor f is continu-
ous at x = a? Explain, and hence complete the following sentence: “If f

at x = a, then f at x = a,” where you complete the blanks with has a
limit and is continuous, using each phrase once.

Being differentiable at a point

We recall that a function f is said to be differentiable at x = a whenever f’(a) exists. Moreover, for f'(a)
to exist, we know that the function y = f(x) must have a tangent line at the point (a, f(a)), since f'(a) is
precisely the slope of this line. In order to even ask if f has a tangent line at (a, f(a)), it is necessary that
f be continuous at x = a: if f fails to have a limit at x = g, if f(a) is not defined, or if f(a) does not equal
the value of lim,_., f(x), then it doesn’'t even make sense to talk about a tangent line to the curve at this
point.

Indeed, it can be proved formally that if a function f is differentiable at x = a, then it must be con-
tinuous at x = a. So, if f is not continuous at x = a, then it is automatically the case that f is not differ-
entiable there. For example, in Figure 1.38 from our early discussion of continuity, both f and g fail to
be differentiable at x = 1 because neither function is continuous at x = 1. But can a function fail to be
differentiable at a point where the function is continuous?

In Figure 1.40, we revisit the situation where a function has a sharp corner at a point, something
we encountered several times in Section 1.4. For the pictured function f, we observe that f is clearly
continuous at a = 1, since lim,_; f(x) =1= f(1).

But the function f in Figure 1.40 is not differentiable at a = 1 because f’(1) fails to exist. One way to
see this is to observe that f’(x) = —1 for every value of x that is less than 1, while f'(x) = +1 for every value
of x that is greater than 1. That makes it seem that either +1 or —1 would be equally good candidates
for the value of the derivative at x = 1. Alternately, we could use the limit definition of the derivative
to attempt to compute f’(1), and discover that the derivative does not exist. A similar problem will be
investigated in Activity 1.20. Finally, we can also see visually that the function f in Figure 1.40 does not
have a tangent line. When we zoom in on (1, 1) on the graph of f, no matter how closely we examine the
function, it will always look like a “V”, and never like a single line, which tells us there is no possibility for
a tangent line there.

To make a more general observation, if a function does have a tangent line at a given point, when we
zoom in on the point of tangency, the function and the tangent line should appear essentially indistin-
guishable’. Conversely, if we have a function such that when we zoom in on a point the function looks

7See, for instance, http://gvsu.edu/s/6J for an applet (due to David Austin, GVSU) where zooming in shows the
increasing similarity between the tangent line and the curve.


http://gvsu.edu/s/6J
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Figure 1.40: A function f that is continuous at a = 1 but not differentiable at a = 1; at right, we zoom in
on the point (1,1) in a magnified version of the box in the left-hand plot.

like a single straight line, then the function should have a tangent line there, and thus be differentiable.
Hence, a function that is differentiable at x = a will, up close, look more and more like its tangent line at
(a, f(a)), and thus we say that a function is differentiable at x = a is locally linear.

To summarize the preceding discussion of differentiability and continuity, we make several impor-
tant observations.

e If f is differentiable at x = a, then f is continuous at x = a. Equivalently, if f fails to be continuous
at x = a, then f will not be differentiable at x = a.

* A function can be continuous at a point, but not be differentiable there. In particular, a function f
is not differentiable at x = a if the graph has a sharp corner (or cusp) at the point (a, f(a)).

 If f is differentiable at x = a, then f is locally linear at x = a. That is, when a function is differen-
tiable, it looks linear when viewed up close because it resembles its tangent line there.

Activity 1.20.

In this activity, we explore two different functions and classify the points at which each is not differ-
entiable. Let g be the function given by the rule g(x) = |x|, and let f be the function that we have
previously explored in Preview Activity 1.8, whose graph is given again in Figure 1.41.

(a) Reasoning visually, explain why g is differentiable at every point x such that x # 0.
(b) Use the limit definition of the derivative to show that g’(0) = limj,_.q %
(c) Explain why g'(0) fails to exist by using small positive and negative values of k.

(d) State all values of a for which f is not differentiable at x = a. For each, provide a reason for
your conclusion.

(e) True or false: if a function p is differentiable at x = b, then lim,_.;, p(x) must exist. Why?
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Figure 1.41: The graph of y = f(x) for Activity 1.20.

Summary

In this section, we encountered the following important ideas:

* Afunction f haslimit L as x — a ifand only if f has a left-hand limit at x = a, has a right-hand limit at
X = a, and the left- and right-hand limits are equal. Visually, this means that there can be a hole in the
graph at x = a, but the function must approach the same single value from either side of x = a.

* A function f is continuous at x = a whenever f(a) is defined, f has a limit as x — a, and the value of
the limit and the value of the function agree. This guarantees that there is not a hole or jump in the
graph of f at x = a.

* Afunction f is differentiable at x = a whenever f’(a) exists, which means that f has a tangent line at
(a, f(a)) and thus f is locally linear at the value x = a. Informally, this means that the function looks
like a line when viewed up close at (4, f(a)) and that there is not a corner point or cusp at (a, f(a)).

¢ Ofthe three conditions discussed in this section (having a limit at x = a, being continuous at x = @, and
being differentiable at x = a), the strongest condition is being differentiable, and the next strongest is
being continuous. In particular, if f is differentiable at x = a, then f is also continuous at x = a, and if
f is continuous at x = a, then f has alimit at x = a.

Exercises

1. For each of the following prompts, give an example of a function that satisfies the stated criteria. A
formula or a graph, with reasoning, is sufficient for each. If no such example is possible, explain why.

(@) Afunction f that is continuous at a = 2 but not differentiable at a = 2.

(b) A function g that is differentiable at a = 3 but does not have a limit at a = 3.
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(c) A function & that has alimit at a = —2, is defined at a = —2, but is not continuous at a = —2.

(d) A function p that satisfies all of the following:
* p(-1)=3and lim,_._; p(x) =2
e p(0)=1and p’'(0)=0
e lim,_ p(x) = p(1) and p’(1) does not exist

2. Consider the graph of the function y = p(x) that is provided in Figure 1.42. Assume that each portion
of the graph of p is a straight line, as pictured.

34 34

Figure 1.42: At left, the piecewise linear function y = p(x). At right, axes for plotting y = p’(x).

(a) State all values of a for which lim,_., p(x) does not exist.
(b) State all values of a for which p is not continuous at a.
(c) State all values of a for which p is not differentiable at x = a.
(d) On the axes provided in Figure 1.42, sketch an accurate graph of y = p'(x).
3. Let h(x) be a function whose derivative y = h'(x) is given by the graph on the right in Figure 1.43.
(a) Based on the graph of y = I’ (x), what can you say about the behavior of the function y = h(x)?

(b) At which values of x is y = h'(x) not defined? What behavior does this lead you to expect to
see in the graph of y = h(x)?

(c) Isitpossible for y = h(x) to have points where / is not continuous? Explain your answer.

(d) On the axes provided at left, sketch at least two distinct graphs that are possible functions y =
h(x) that each have a derivative y = h'(x) that matches the provided graph at right. Explain
why there are multiple possibilities for y = h(x).
4. Consider the function g(x) = v/|x|.

(a) Use a graph to explain visually why g is not differentiable at x = 0.
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Figure 1.43: Axes for plotting y = h(x) and, at right, the graph of y = I/ (x).

(b) Use the limit definition of the derivative to show that

VIhl

'(0) = lim ~——.
g0 =lin =

(c) Investigate the value of g’(0) by estimating the limit in (b) using small positive and negative

values of h. For instance, you might compute —”'&gfll, Be sure to use several different values

of h (both positive and negative), including ones closer to 0 than 0.01. What do your results
tell you about g’'(0)?

(d) Use your graph in (a) to sketch an approximate graph of y = g’(x).
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1.8 The Tangent Line Approximation

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is the formula for the general tangent line approximation to a differentiable function y =
f(x) at the point (a, f(a))?

e What is the principle of local linearity and what is the local linearization of a differentiable func-
tion f ata point (a, f(a))?

* How does knowing just the tangent line approximation tell us information about the behavior
of the original function itself near the point of approximation? How does knowing the second
derivative’s value at this point provide us additional knowledge of the original function’s behavior?

Web Resources

1. Video: Quick review & the tangent line approximation
2. Video: calculating a tangent line
3. Video: Using a tangent line

4. Video: Using the local linearization

Introduction

Among all functions, linear functions are simplest. One of the powerful consequences of a function
y = f(x) being differentiable at a point (a, f(a)) is that, up close, the function y = f(x) is locally linear
and looks like its tangent line at that point. In certain circumstances, this allows us to approximate the
original function f with a simpler function L that is linear: this can be advantageous when we have
limited information about f or when f is computationally or algebraically complicated. We will explore
all of these situations in what follows.

It is essential to recall that when f is differentiable at x = a, the value of f’(a) provides the slope of
the tangent line to y = f(x) at the point (a, f(a)). By knowing both a point on the line and the slope of
the line we are thus able to find the equation of the tangent line. Preview Activity 1.9 will refresh these
concepts through a key example and set the stage for further study.

Preview Activity 1.9. Consider the function y = g(x) = —x% +3x +2.
(a) Use the limit definition of the derivative to compute a formula for y = g’(x).

(b) Determine the slope of the tangent line to y = g(x) at the value x = 2.
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Figure 1.44: Axes for plotting y = g(x) and its tangent line to the point (2, g(2)).

(c) Compute g(2).

(d) Find an equation for the tangent line to y = g(x) at the point (2, g(2)). Write your result in point-
slope form®.

(e) On the axes provided in Figure 1.44, sketch an accurate, labeled graph of y = g(x) along with its
tangent line at the point (2, g(2)).

The tangent line

Given a function f that is differentiable at x = a, we know that we can determine the slope of the tangent
line to y = f(x) at (a, f(a)) by computing f’(a). The resulting tangent line through (a, f(a)) with slope
m = f'(a) has its equation in point-slope form given by

y-fla)=f'(a(x-a),

which we can also express as y = f'(a)(x — a) + f(a). Note well: there is a major difference between f(a)
and f(x) in this context. The former is a constant that results from using the given fixed value of a, while
the latter is the general expression for the rule that defines the function. The same is true for f’(a) and
f'(x): we must carefully distinguish between these expressions. Each time we find the tangent line, we
need to evaluate the function and its derivative at a fixed a-value.

Another way to view the point-slope form of a line is to note that the change in the y-value, Ay, is
related to the change in the x-value, Ax, by

Ay~ f'(a)Ax. (1.2)

8Recall that a line with slope m that passes through (xg, y) has equation y — yg = m(x — xo), and this is the point-slope form
of the equation.
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In the present context, Ay = y — f(a) and Ax = x — a. Furthermore, if we divide by Ax then we arrive at
the familiar approximation of the derivative:
Ay

Figure 1.45: A function y = f(x) and its tangent line at the point (a, f(a)): at left, from a distance, and
at right, up close. At right, we label the tangent line function by y = L(x) and observe that for x near a,

f(x) = L(x).

In Figure 1.45, we see a labeled plot of the graph of a function f and its tangent line at the point
(a, f(a)). Notice how when we zoom in we see the local linearity of f more clearly highlighted as the
function and its tangent line are nearly indistinguishable up close. This can also be seen dynamically in
the java appletathttp://gvsu.edu/s/6J.

The local linearization

A slight change in perspective and notation will enable us to be more precise in discussing how the
tangent line to y = f(x) at (a, f(a)) approximates f near x = a. Taking the equation for the tangent line
and solving for y, we observe that the tangent line is given by

y=fl@x-a)+ f(a

and moreover that this line is itself a function of x. Replacing the variable y with the expression L(x), we
call
Lx) = f'(@)(x-a) + f(a)

the local linearization of f at the point (a, f(a)). In this notation, it is particularly important to observe
that L(x) is nothing more than a new name for the tangent line, and that for x close to a, we have that
f(x) = L(x).


http://gvsu.edu/s/6J
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Say, for example, that we know that a function y = f(x) has its tangent line approximation given by
L(x) = 3—-2(x—1) at the point (1,3), but we do not know anything else about the function f. If we are
interested in estimating a value of f(x) for x near 1, such as f(1.2), we can use the fact that f(1.2) = L(1.2)
and hence

f(.2)=L(1.2)=3-2(1.2—-1)=3-2(0.2) =2.6.

Again, much of the new perspective here is only in notation since y = L(x) is simply a new name for
the tangent line function. In light of this new notation and our observations above, we note that since
L(x) = f(a) + f'(a)(x — a) and L(x) = f(x) for x near q, it also follows that we can write

fx) = f(a)+ f'(a)(x - a) for x near a.

The next activities explores some additional important properties of the local linearization y = L(x)
to a function f at given a-value.

Activity 1.21.

Suppose it is known that for a given differentiable function y = g(x), its local linearization at the point
where a = —11is given by L(x) = -2+ 3(x + 1).

(a) Compute the values of L(—1) and L'(-1).

(b) What must be the values of g(—1) and g'(—1)? Why?

(c) Do you expect the value of g(—1.03) to be greater than or less than the value of g(—1)? Why?
(d) Use the local linearization to estimate the value of g(—1.03).

(e) Suppose that you also know that g’ (—1) = 2. What does this tell you about the graph of y =
gx)ata=-1?

(f) For x near —1, sketch the graph of the local linearization y = L(x) as well as a possible graph
of y = g(x) on the axes provided in Figure 1.46.

Figure 1.46: Axes for plotting y = L(x) and y = g(x).
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Activity 1.22.

The circumference of a sphere was measured to be 71.0 cm with a possible error of 0.5 cm. In this
activity we’ll use linear approximation to estimate the maximum error in the calculated surface area.

(a) Write the formula for the surface area of a sphere in terms of the radius, and write the formula
for the circumference of a circle in terms of the radius.

(b) Fill in the blanks with the help of equation 1.2.

AC = Ar
AS = Ar

(c) Use your answer from part (b) along with the fact that AC = 0.5 and C = 71 to calculate the
error in surface area: AS.

(d) Estimate the relative error (fractional error) in the calculated surface area.

Activity 1.23.

Use linear approximation to approximate /4.1 using the following hints:

* Let f(x) = v/x and find the equation of the tangent line to f(x) at a “nice” point near 4.1.
¢ Then use this to approximate v/4.1.

As we saw in the example provided by Activity 1.21, the local linearization y = L(x) is a linear function
that shares two important values with the function y = f(x) that it is derived from. In particular, observe
that since L(x) = f(a)+ f'(a)(x— a), it follows that L(a) = f(a). In addition, since L is a linear function, its
derivative is its slope. Hence, L' (x) = f'(a) for every value of x, and specifically L'(a) = f’(a). Therefore,
we see that L is a linear function that has both the same value and the same slope as the function f at the
point (a, f(a)).

In situations where we know the linear approximation y = L(x), we therefore know the original func-
tion’s value and slope at the point of tangency. What remains unknown, however, is the shape of the
function f at the point of tangency. There are essentially four possibilities, as enumerated in Figure 1.47.

These stem from the fact that there are three options for the value of the second derivative: either
f"(a) <0, f"(a) =0, or f"(a) >0. If f’(a) > 0, then we know the graph of f is concave up, and we see
the first possibility on the left, where the tangent line lies entirely below the curve. If f”(a) < 0, then we
find ourselves in the second situation (from left) where f is concave down and the tangent line lies above
the curve. In the situation where f”(a) = 0 and f” changes sign at x = a, the concavity of the graph will
change, and we will see either the third or fourth optiong. A fifth option (that is not very interesting) can
occur, which is where the function f is linear, and so f(x) = L(x) for all values of x.

91t is possible to have f”(a) = 0 and have f” not change sign at x = a, in which case the graph will look like one of the first
two options.
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Figure 1.47: Four possible graphs for a nonlinear differentiable function and how it can be situated rela-
tive to its tangent line at a point.

The plots in Figure 1.47 highlight yet another important thing that we can learn from the concavity
of the graph near the point of tangency: whether the tangent line lies above or below the curve itself.
This is key because it tells us whether or not the tangent line approximation’s values will be too large or
too small in comparison to the true value of f. For instance, in the first situation in the leftmost plot in
Figure 1.47 where f”(a) > 0, since the tangent line falls below the curve, we know that L(x) < f(x) for all
values of x near a.

We explore these ideas further in the following activity.
Activity 1.24.

This activity concerns a function f(x) about which the following information is known:

 fisadifferentiable function defined at every real number x
. f(Z) =—1
e y= f'(x) has its graph given in Figure 1.48

Figure 1.48: At center, a graph of y = f’(x); at left, axes for plotting y = f(x); at right, axes for plotting
y=f").
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Your task is to determine as much information as possible about f (especially near the value a = 2) by
responding to the questions below.

(a) Find a formula for the tangent line approximation, L(x), to f at the point (2, -1).

(b) Use the tangent line approximation to estimate the value of f(2.07). Show your work carefully
and clearly.

(c) Sketch a graph of y = f”(x) on the righthand grid in Figure 1.48; label it appropriately.

(d) Is the slope of the tangent line to y = f(x) increasing, decreasing, or neither when x = 2?
Explain.

(e) Sketch a possible graph of y = f(x) near x = 2 on the lefthand grid in Figure 1.48. Include a
sketch of y = L(x) (found in part (a)). Explain how you know the graph of y = f(x) looks like
you have drawn it.

(f) Does your estimate in (b) over- or under-estimate the true value of f(2)? Why?

<

The idea that a differentiable function looks linear and can be well-approximated by a linear function
is an important one that finds wide application in calculus. For example, by approximating a function
with its local linearization, it is possible to develop an effective algorithm to estimate the zeroes of a
function. Local linearity also helps us to make further sense of certain challenging limits. For instance,

we have seen that a limit such as
. sin(x)
lim

x—0 X

is indeterminate because both its numerator and denominator tend to 0. While there is no algebra that

we can do to simplify %, itis straightforward to show that the linearization of f(x) = sin(x) at the point

(0,0) is given by L(x) = x. Hence, for values of x near 0, sin(x) = x. As such, for values of x near 0,

sin(x) X .
x x
which makes plausible the fact that
. sin(x)
lim =1
x—=0 X

These ideas and other applications of local linearity will be explored later on in our work.

Summary

In this section, we encountered the following important ideas:

¢ The tangent line to a differentiable function y = f(x) at the point (a, f (a)) is given in point-slope form
by the equation

y-f(a) = f'(@)(x-a).



1.8. THE TANGENT LINE APPROXIMATION

* The principle of local linearity tells us that if we zoom in on a point where a function y = f(x) is differ-
entiable, the function should become indistinguishable from its tangent line. That is, a differentiable
function looks linear when viewed up close. We rename the tangent line to be the function y = L(x)
where L(x) = f(a) + f'(a)(x — a) and note that f(x) = L(x) for all x near x = a.

* If we know the tangent line approximation L(x) = f(a) + f'(a)(x — a), then because L(a) = f(a) and
L'(a) = f'(a), we also know both the value and the derivative of the function y = f(x) at the point
where x = a. In other words, the linear approximation tells us the height and slope of the original
function. If, in addition, we know the value of f”(a), we then know whether the tangent line lies above
or below the graph of y = f(x) depending on the concavity of f.

Exercises

1. A certain function y = p(x) has its local linearization at a = 3 given by L(x) = —2x +5.
(a) What are the values of p(3) and p’(3)? Why?
(b) Estimate the value of p(2.79).

(c) Suppose that p”(3) = 0 and you know that p”(x) < 0 for x < 3. Is your estimate in (b) too large
or too small?

(d) Suppose that p”(x) > 0 for x > 3. Use this fact and the additional information above to sketch
an accurate graph of y = p(x) near x = 3. Include a sketch of y = L(x) in your work.

2. Apotatois placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at various points
in time is taken and recorded in the following table. Time ¢ is measured in minutes.

TN

0 70

15 || 180.5
30 || 251
45 || 296
60 || 324.5
75 || 342.8
90 || 354.5

(a) Use a central difference to estimate F’'(60). Use this estimate as needed in subsequent ques-
tions.

(b) Find the local linearization y = L(¢) to the function y = F(#) at the point where a = 60.
(c) Determine an estimate for F(63) by employing the local linearization.

(d) Do you think your estimate in (c) is too large or too small? Why?

3. An object moving along a straight line path has a differentiable position function y = s(¢). It is known
that at time ¢ = 9 seconds, the object’s position is s = 4 feet (measured from its starting point at ¢ = 0).
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Furthermore, the object’s instantaneous velocity at £ = 9 is —1.2 feet per second, and its acceleration
at the same instant is 0.08 feet per second per second.

(a) Use local linearity to estimate the position of the object at ¢ = 9.34.
(b) Isyour estimate likely too large or too small? Why?
(c) Ineveryday language, describe the behavior of the moving object at t = 9. Is it moving toward
its starting point or away from it? Is its velocity increasing or decreasing?
4. For a certain function f, its derivative is known to be f’(x) = (x — l)e_xz. Note that you do not know a
formula for y = f(x).

(a) At what x-value(s) is f’(x) = 0? Justify your answer algebraically, but include a graph of f’ to
support your conclusion.

(b) Reasoning graphically, for what intervals of x-values is f”(x) > 02 What does this tell you
about the behavior of the original function f? Explain.

(c) Assuming that f(2) = —3, estimate the value of f(1.88) by finding and using the tangent line
approximation to f at x = 2. Is your estimate larger or smaller than the true value of f(1.88)?
Justify your answer.
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Chapter 2

Computing Derivatives

2.1 Flementary derivative rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ What are alternate notations for the derivative?

* How can we sometimes use the algebraic structure of a function f(x) to easily compute a formula
for f'(x)?

¢ What is the derivative of a power function of the form f(x) = x"*? What is the derivative of an
exponential function of form f(x) = a*?

 If we know the derivative of y = f(x), how is the derivative of y = kf(x) computed, where k is a
constant?

* If we know the derivatives of y = f(x) and y = g(x), how is the derivative of y = f(x) + g(x) com-
puted?

Web Resources

1.

2.

Video: Quick Review & elementary dervative rules

Video: derivatives of power and constant functions

. Video: Derivatives of exponential functions

Video: Derivatives of constant multiples

. Video: Derivatives of sum

Khan Playlist: The power rule
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https://www.youtube.com/watch?v=wFOgWzI0SuQ&index=28&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=ciBNzth33Fw&index=29&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=kcQieXhoAqs&index=30&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=gya8IngB1BI&index=31&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=BaAj1IZvt-w&index=32&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.khanacademy.org/math/differential-calculus/taking-derivatives/power_rule_tutorial
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Introduction

In Chapter 1, we developed the concept of the derivative of a function. We now know that the derivative
f’ of a function f measures the instantaneous rate of change of f with respect to x as well as the slope of
the tangent line to y = f(x) at any given value of x. To date, we have focused primarily on interpreting the
derivative graphically or, in the context of functions in a physical setting, as a meaningful rate of change.
To actually calculate the value of the derivative at a specific point, we have typically relied on the limit
definition of the derivative.

In this present chapter, we will investigate how the limit definition of the derivative

/ . fx+h)-fx)

A e

leads to interesting patterns and rules that enable us to quickly find a formula for f’(x) based on the
formula for f(x) without using the limit definition directly. For example, we already know that if f(x) = x,
then it follows that f’(x) = 1. While we could use the limit definition of the derivative to confirm this, we
know it to be true because f(x) is a linear function with slope 1 at every value of x. One of our goals is to
be able to take standard functions, say ones such as g(x) = 4x’ —sin(x) + 3e%, and, based on the algebraic
form of the function, be able to apply shortcuts to almost immediately determine the formula for g’(x).

Preview Activity 2.1. Functions of the form f(x) = x", where n =1,2,3, ..., are often called power func-
tions.

(a) Use the limit definition of the derivative to find f’(x) for f(x) = x2.
(b) Use the limit definition of the derivative to find f’(x) for f(x) = x3.

(c) Use the limit definition of the derivative to find f'(x) for f(x) = x*. (Hint: (a+ b)* = a* + 4a’b +
6a%b® + 4ab® + b Apply this rule to (x + h)* within the limit definition.)

(d) Based on your work in (a), (b), and (c), what do you conjecture is the derivative of f(x) = x°2 Of
flx) = x132

(e) Conjecture a formula for the derivative of f(x) = x" that holds for any positive integer n. That is,
given f(x) = x" where n is a positive integer, what do you think is the formula for f'(x)?

Some Key Notation

In addition to our usual f’ notation for the derivative, there are other ways to symbolically denote the
derivative of a function, as well as the instruction to take the derivative. We know that if we have a
function, say f(x) = x?, that we can denote its derivative by f’(x), and we write f'(x) = 2x. Equivalently,
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if we are thinking more about the relationship between y and x, we sometimes denote the derivative of
y with respect to x with the symbol

dy

dx
which we read “dee-y dee-x.” This notation comes from the fact that the derivative is related to the slope
of aline, and slope is measured by %. Note that while we read % as “change in y over change in x,” for
the derivative symbol %, we view this is a single symbol, not a quotient of two quantities'. For example,

if y = x?, we'll write that the derivative is % =2x.

Furthermore, we use a variant of % notation to convey the instruction to take the derivative of a
certain quantity with respect to a given variable. In particular, if we write

d
Ix (L]

this means “take the derivative of the quantity in [J with respect to x.” To continue our example above
with the squaring function, here we may write % [x?] = 2x.

It is important to note that the independent variable can be different from x. If we have f(z) = 22,
we then write f'(z) = 2z. Similarly, if y = t?, we can say % = 2t. And changing the variable and deriva-
tive notation once more, it is also true that diq[qz] = 2q. This notation may also be applied to second

2
derivatives: f"(z) = % [% = Z—ZJ;.

In what follows, we’ll be working to widely expand our repertoire of functions for which we can
quickly compute the corresponding derivative formula

Constant, Power, and Exponential Functions

So far, we know the derivative formula for two important classes of functions: constant functions and
power functions. For the first kind, observe that if f(x) = c is a constant function, then its graph is a
horizontal line with slope zero at every point. Thus, % [c] = 0. We summarize this with the following
rule.

(Constant Functions: For any real number c, if f(x) = ¢, then f’(x) = 0. )

Thus, if f(x) = 7, then f'(x) = 0. Similarly, 2 [v/3] =0.

For power functions, from your work in Preview Activity 2.1, you have conjectured that for any posi-
tive integer n, if f(x) = x", then f’(x) = nx""!. Not only can this rule be formally proved to hold for any
positive integer n, but also for any nonzero real number (positive or negative).

IThat is, we do not say “dee-y over dee-x.”
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CPower Functions: For any nonzero real number, if f(x) = x”, then f’(x) = nx™ 1, )

This rule for power functions allows us to find derivatives such as the following: if g(z) = z~3, then
g'(z) = —3z7*. Similarly, if k() = t7/%, then 4% = Z¢%/5; likewise, diq[q“] =ng" .

As we next turn to thinking about derivatives of combinations of basic functions, it will be instructive
to have one more type of basic function whose derivative formula we know. For now, we simply state this
rule without explanation or justification; we will explore why this rule is true in one of the exercises at the
end of this section, plus we will encounter graphical reasoning for why the rule is plausible in Preview
Activity 2.2.

CExponential Functions: For any positive real number q, if f(x) = a*, then f'(x) = a*In(a). )

For instance, this rule tells us that if f(x) = 2%, then f’(x) = 2*In(2). Similarly, for p(r) = 107, p'(r) =
107In(10). Tt is especially important to note that when a = e, where e is the base of the natural logarithm
function, we have that

d
—[e*]=e*In(e) = e*
dx

since In(e) = 1. This is an extremely important property of the function e*: its derivative function is itself!

Finally, note carefully the distinction between power functions and exponential functions: in power
functions, the variable is in the base, as in x2, while in exponential functions, the variable is in the power,
as in 2*. As we can see from the rules, this makes a big difference in the form of the derivative.

The following activity will check your understanding of the derivatives of the three basic types of
functions noted above.

Activity 2.1.

Use the three rules above to determine the derivative of each of the following functions. For each,
state your answer using full and proper notation, labeling the derivative with its name. For example,

if you are given a function h(z), you should write “h’(z) =" or “ % =" as part of your response.
@ f(=mn
(b) glz)=7%

© h(w)=w’*
d px)=3'"2
e r()=w2)"
® Flg™

@ m@) =%
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Constant Multiples and Sums of Functions

Of course, most of the functions we encounter in mathematics are more complicated than being simply
constant, a power of a variable, or a base raised to a variable power. In this section and several following,
we will learn how to quickly compute the derivative of a function constructed as an algebraic combina-
tion of basic functions. For instance, we'd like to be able to understand how to take the derivative of a
polynomial function such as p(f) =3 1> —71* + 2 —9, which is a function made up of constant multiples
and sums of powers of t. To that end, we develop two new rules: the Constant Multiple Rule and the Sum
Rule.

Say we have a function y = f(x) whose derivative formula is known. How is the derivative of y = k f (x)
related to the derivative of the original function? Recall that when we multiply a function by a constant k,
we vertically stretch the graph by a factor of | k| (and reflect the graph across y = 0 if k < 0). This vertical
stretch affects the slope of the graph, making the slope of the function y = k f(x) be k times as steep as
the slope of y = f(x). In terms of the derivative, this is essentially saying that when we multiply a function
by a factor of k, we change the value of its derivative by a factor of k as well. Thus?, the Constant Multiple
Rule holds:

The Constant Multiple Rule: For any real number £k, if f(x) is a differentiable function with deriva-
tive f'(x), then %[kf(x)] =kf'(x).

In words, this rule says that “the derivative of a constant times a function is the constant times the
derivative of the function.” For example, if g(¢) =3 -5, we have g’(¢) = 3-5'In(5). Similarly, % [527%] =
5(-2z73).

Next we examine what happens when we take a sum of two functions. If we have y = f(x) and y =
g(x), we can compute a new function y = (f + g)(x) by adding the outputs of the two functions: (f +
g)(x) = f(x) + g(x). Not only does this result in the value of the new function being the sum of the values
of the two known functions, but also the slope of the new function is the sum of the slopes of the known
function. Therefore®, we arrive at the following Sum Rule for derivatives:

The Sum Rule: If f(x) and g(x) are differentiable functions with derivatives f’(x) and g’(x) respec-
tively, then <L [f(x) + g(x)] = f'(x) + g'(x).

In words, the Sum Rule tells us that “the derivative of a sum is the sum of the derivatives.” It also
tells us that any time we take a sum of two differentiable functions, the result must also be differentiable.
Furthermore, because we can view the difference function y = (f —g)(x) = f(x) —g(x)as y = f(x) + (-1-
g(x)), the Sum Rule and Constant Multiple Rules together tell us that % [fO)+(=1-gx)]l = f'(x)—-g' (%),

2The Constant Multiple Rule can be formally proved as a consequence of properties of limits, using the limit definition of
the derivative.

3Like the Constant Multiple Rule, the Sum Rule can be formally proved as a consequence of properties of limits, using the
limit definition of the derivative.
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or that “the derivative of a difference is the difference of the derivatives.” Hence we can now compute
derivatives of sums and differences of elementary functions. For instance, % 2% +w?) =2¥In(2) + 2w,
and if h(q) =3q% —44q73, then I/ (q) = 3(6¢°) —4(-3g™*) = 18¢° + 12q7*.

Activity 2.2.

Use only the rules for constant, power, and exponential functions, together with the Constant Multi-
ple and Sum Rules, to compute the derivative of each function below with respect to the given inde-
pendent variable. Note well that we do not yet know any rules for how to differentiate the product or
quotient of functions. This means that you may have to do some algebra first on the functions below
before you can actually use existing rules to compute the desired derivative formula. In each case,
label the derivative you calculate with its name using proper notation such as f’(x), h'(z), dr/dt, etc.

@ flx)=x3-xt+2%
(b) g(x)=14e*+3x°—x
(©) h(z) = Vz+ % +57
@ r()=v53¢" —mne'+e*

€ s =0*+DE*-1

3

x> —x+2

) gx) =
(g pla)= 3a*-2a®+7a%>—-a+12

<

In the same way that we have shortcut rules to help us find derivatives, we introduce some language
that is simpler and shorter. Often, rather than say “take the derivative of f,” we'll instead say simply
“differentiate f.” This phrasing is tied to the notion of having a derivative to begin with: if the derivative
exists at a point, we say “f is differentiable,” which is tied to the fact that f can be differentiated.

As we work more and more with the algebraic structure of functions, it is important to strive to de-
velop a big picture view of what we are doing. Here, we can note several general observations based on
the rules we have so far. One is that the derivative of any polynomial function will be another polynomial
function, and that the degree of the derivative is one less than the degree of the original function. For
instance, if p(t) = 7t> — 413 + 8t, p is a degree 5 polynomial, and its derivative, p'(¢) = 35¢* — 12¢> + 8, is
a degree 4 polynomial. Additionally, the derivative of any exponential function is another exponential
function: for example, if g(z) = 7- 2%, then g’(z) = 7- 2%1In(2), which is also exponential.

Furthermore, while our current emphasis is on learning shortcut rules for finding derivatives without
directly using the limit definition, we should be certain not to lose sight of the fact that all of the meaning
of the derivative still holds that we developed in Chapter 1. That is, anytime we compute a derivative,
that derivative measures the instantaneous rate of change of the original function, as well as the slope
of the tangent line at any selected point on the curve. The following activity asks you to combine the
just-developed derivative rules with some key perspectives that we studied in Chapter 1.

Activity 2.3.

o020



2.1. ELEMENTARY DERIVATIVE RULES

Each of the following questions asks you to use derivatives to answer key questions about functions.
Be sure to think carefully about each question and to use proper notation in your responses.

(a) Find the slope of the tangent line to h(z) = 'z + % at the point where z = 4.

(b) A population of cells is growing in such a way that its total number in millions is given by the
function P(#) = 2(1.37)" + 32, where ¢ is measured in days.

i. Determine the instantaneous rate at which the population is growing on day 4, and in-
clude units on your answer.

ii. Is the population growing at an increasing rate or growing at a decreasing rate on day 4?
Explain.

(c) Find an equation for the tangent line to the curve p(a) = 3a* —2a> + 7a® — a + 12 at the point
where a = —1.

(d) What the difference between being asked to find the slope of the tangent line (asked in (a))
and the equation of the tangent line (asked in (c))?

Summary

In this section, we encountered the following important ideas:

* Given a differentiable function y = f(x), we can express the derivative of f in several different nota-
tions: f'(x), %, %, and %[f(x)].

¢ The limit definition of the derivative leads to patterns among certain families of functions that enable
us to compute derivative formulas without resorting directly to the limit definition. For example, if f
is a power function of the form f(x) = x”, then f'(x) = nx"1 for any real number 7 other than 0. This
is called the Rule for Power Functions.

* We have stated a rule for derivatives of exponential functions in the same spirit as the rule for power
functions: for any positive real number a, if f(x) = a*, then f'(x) = a*In(a).

* If we are given a constant multiple of a function whose derivative we know, or a sum of functions
whose derivatives we know, the Constant Multiple and Sum Rules make it straightforward to compute
the derivative of the overall function. More formally, if f(x) and g(x) are differentiable with derivatives
f'(x) and g’'(x) and a and b are constants, then

d
P [af(x)+bg(x)] = af'(x) + bg' (x).

Exercises

1. Let f and g be differentiable functions for which the following information is known: f(2) =5, g(2) =
-3, f'(2)=-1/2,g'(2) = 2.
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(a) Let h be the new function defined by the rule h(x) = 3 f(x) —4g(x). Determine h(2) and h'(2).
(b) Find an equation for the tangent line to y = h(x) at the point (2, h(2)).

(c) Let p be the function defined by the rule p(x) = -2 f(x) + %g(x). Is p increasing, decreasing,
or neither at a = 2?2 Why?

(d) Estimate the value of p(2.03) by using the local linearization of p at the point (2, p(2)).

2. Consider the functions r(#) = t* and s(t) = arccos(¢), for which you are given the facts that r'(t) =
t!In(t) + 1) and §'(¢) = — \/11_7 Do not be concerned with where these derivative formulas come
from. We restrict our interest in both functions to the domain0< ¢ < 1.

(a) Let w(t) =3t'—2arccos(t). Determine w'(f).
(b) Find an equation for the tangent line to y = w(t) at the point (%, w(%)).

(c) Let v(r) = t! +arccos(r). Is v increasing or decreasing at the instant ¢ = %? Why?

3. Let functions p and g be the piecewise linear functions given by their respective graphs in Figure 2.1.
Use the graphs to answer the following questions.

Figure 2.1: The graphs of p (in blue) and g (in green).

(a) Atwhat values of x is p not differentiable? At what values of x is g not differentiable? Why?
(b) Letr(x) = p(x)+2qg(x). At what values of x is r not differentiable? Why?
(c) Determine r’(-2) and r’(0).

(d) Find an equation for the tangent line to y = r(x) at the point (2, r(2)).

4. Let f(x) = a*. The goal of this problem is to explore how the value of a affects the derivative of f(x),
without assuming we know the rule for % [a*] that we have stated and used in earlier work in this
section.
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(a) Use the limit definition of the derivative to show that

, . a“-a'-a*
f(x) =1lim
h—0

(b) Explain why it is also true that
h

a
! — X . 1
fx)=a hl_I}’(l)
(c) Use computing technology and small values of h to estimate the value of

. a"-1
L=1lim
h—0

when a = 2. Do likewise when a = 3.

(d) Note that it would be ideal if the value of the limit L was 1, for then f would be a particularly
special function: its derivative would be simply a*, which would mean that its derivative is
itself. By experimenting with different values of a between 2 and 3, try to find a value for a for

which
a"-1

L=1lim =1.

h—0

(e) Compute In(2) and In(3). What does your work in (b) and (c) suggest is true about —ddx [2*] and
d ox
< [2%].
dx

(f) How do your investigations in (d) lead to a particularly important fact about the number e?
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2.2 The sine and cosine functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is a graphical justification for why % [a*] = a*In(a)?

e What do the graphs of y = sin(x) and y = cos(x) suggest as formulas for their respective deriva-
tives?

¢ Once we know the derivatives of sin(x) and cos(x), how do previous derivative rules work when
these functions are involved?

Web Resources

(none yet)

Introduction

Throughout Chapter 2, we will be working to develop shortcut derivative rules that will help us to bypass
the limit definition of the derivative in order to quickly determine the formula for f’(x) when we are given
a formula for f(x). In Section 2.1, we learned the rule for power functions, that if f(x) = x”, then f'(x) =
nx""1, and justified this in part due to results from different n-values when applying the limit definition
of the derivative. We also stated the rule for exponential functions, that if a is a positive real number and
f(x) = a*, then f'(x) = a*In(a). Later in this present section, we are going to work to conjecture formulas
for the sine and cosine functions, primarily through a graphical argument. To help set the stage for doing
so, the following preview activity asks you to think about exponential functions and why it is reasonable
to think that the derivative of an exponential function is a constant times the exponential function itself.

Preview Activity 2.2. Consider the function g(x) = 2%, which is graphed in Figure 2.2.

(a) Ateachofx=-2,-1,0,1,2, use a straightedge to sketch an accurate tangent line to y = g(x).
(b) Use the provided grid to estimate the slope of the tangent line you drew at each point in (a).

(c) Use the limit definition of the derivative to estimate g’(0) by using small values of i, and compare
the result to your visual estimate for the slope of the tangent line to y = g(x) at x =0 in (b).

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = g’(x) on the axes adjacent
to the graph of y = g(x).

(e) Write at least one sentence that explains why it is reasonable to think that g’(x) = cg(x), where ¢
is a constant. In addition, calculate In(2), and then discuss how this value, combined with your
work above, reasonably suggests that g’(x) = 2*In(2).
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7.. 7..
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Figure 2.2: At left, the graph of y = g(x) = 2*. At right, axes for plotting y = g’(x).

The sine and cosine functions

The sine and cosine functions are among the most important functions in all of mathematics. Sometimes
called the circular functions due to their genesis in the unit circle, these periodic functions play a key
role in modeling repeating phenomena such as the location of a point on a bicycle tire, the behavior of
an oscillating mass attached to a spring, tidal elevations, and more. Like polynomial and exponential
functions, the sine and cosine functions are considered basic functions, ones that are often used in the
building of more complicated functions. As such, we would like to know formulas for %[sin(x)] and

% [cos(x)], and the next two activities lead us to that end.

Activity 2.4.
Consider the function f(x) = sin(x), which is graphed in Figure 2.3 below. Note carefully that the grid

in the diagram does not have boxes that are 1 x 1, but rather approximately 1.57 x 1, as the horizontal
scale of the grid is /2 units per box.

(@) Ateachofx=-2m,-38,—x,—1,0,%,m, 3%, 2, use a straightedge to sketch an accurate tangent
line to y = f(x).
(b) Use the provided grid to estimate the slope of the tangent line you drew at each point. Pay

careful attention to the scale of the grid.

(c) Use the limit definition of the derivative to estimate f’(0) by using small values of h, and
compare the result to your visual estimate for the slope of the tangent lineto y = f(x) atx=0
in (b). Using periodicity, what does this result suggest about f’(271)? about f'(—2m1)?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = f’(x) on the axes
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adjacent to the graph of y = f(x).

(e) What familiar function do you think is the derivative of f(x) = sin(x)?

/\.1{/\.2«...1][

R T __~ & R
-1 -1

Figure 2.3: At left, the graph of y = f(x) = sin(x).

Activity 2.5.

Consider the function g(x) = cos(x), which is graphed in Figure 2.4 below. Note carefully that the grid
in the diagram does not have boxes that are 1 x 1, but rather approximately 1.57 x 1, as the horizontal
scale of the grid is 7/2 units per box.

Figure 2.4: At left, the graph of y = g(x) = cos(x).

(a) Ateachofx=—-2m,— 37“, -m,-%,0,3,7, 37“, 2m, use a straightedge to sketch an accurate tangent
line to y = g(x).
(b) Use the provided grid to estimate the slope of the tangent line you drew at each point. Again,

note the scale of the axes and grid.

(c) Use the limit definition of the derivative to estimate g'(3) by using small values of &, and
compare the result to your visual estimate for the slope of the tangentline to y = g(x) at x = %
in (b). Using periodicity, what does this result suggest about g'(—%")? can symmetry on the

graph help you estimate other slopes easily?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = g’(x) on the axes
adjacent to the graph of y = g(x).

(e) What familiar function do you think is the derivative of g(x) = cos(x)?
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The results of the two preceding activities suggest that the sine and cosine functions not only have
the beautiful interrelationships that are learned in a course in trigonometry — connections such as the
identities sin?(x) + cos®(x) = 1 and cos(x — §) = sin(x) - but that they are even further linked through
calculus, as the derivative of each involves the other. The following rules summarize the results of the
activities®.

Sine and Cosine Functions: For all real numbers x,

d . d ]
—[sin(x)] = cos(x) and —[cos(x)] = —sin(x)
dx dx

We have now added two additional functions to our library of basic functions whose derivatives we
know: power functions, exponential functions, and the sine and cosine functions. The constant multiple
and sum rules still hold, of course, and all of the inherent meaning of the derivative persists, regardless
of the functions that are used to constitute a given choice of f(x). The following activity puts our new
knowledge of the derivatives of sin(x) and cos(x) to work.

Activity 2.6.

Answer each of the following questions. Where a derivative is requested, be sure to label the derivative
function with its name using proper notation.

(a) Determine the derivative of h(t) = 3 cos(t) —4sin(z).

(b) Find the exact slope of the tangent line to y = f(x) =2x + %(X) at the point where x = §.
pIs
E .

(c) Find the equation of the tangent line to y = g(x) = x? + 2cos(x) at the point where x =
(d) Determine the derivative of p(z) = z* +47 + 4 cos(z) — sin(3).

(e) The function P(#) = 24 + 8sin(¢) represents a population of a particular kind of animal that
lives on a small island, where P is measured in hundreds and ¢ is measured in decades since
January 1, 2010. What is the instantaneous rate of change of P on January 1, 20302 What
are the units of this quantity? Write a sentence in everyday language that explains how the
population is behaving at this point in time.

Summary

In this section, we encountered the following important ideas:

* Ifwe consider the graph of an exponential function f(x) = a* (where a > 1), the graph of f’(x) behaves
similarly, appearing exponential and as a possibly scaled version of the original function a*. For f(x) =
2%, careful analysis of the graph and its slopes suggests that % [2¥] = 2¥In(2), which is a special case of
the rule we stated in Section 2.1.

4These two rules may be formally proved using the limit definition of the derivative and the expansion identities for sin(x+ )
and cos(x + h).



154 2.2. THE SINE AND COSINE FUNCTIONS

¢ By carefully analyzing the graphs of y = sin(x) and y = cos(x), plus using the limit definition of the
derivative at select points, we found that % [sin(x)] = cos(x) and % [cos(x)] = —sin(x).

* We note that all previously encountered derivative rules still hold, but now may also be applied to
functions involving the sine and cosine, plus all of the established meaning of the derivative applies
to these trigonometric functions as well.

Exercises

1. Suppose that V(1) = 24-1.07" +6sin(r) represents the value of a person’s investment portfolio in thou-
sands of dollars in year ¢, where t = 0 corresponds to January 1, 2010.

(a) Atwhat instantaneous rate is the portfolio’s value changing on January 1, 2012? Include units
On your answer.

(b) Determine the value of V”(2). What are the units on this quantity and what does it tell you
about how the portfolio’s value is changing?

(c) Ontheinterval 0 < ¢ < 20, graph the function V(¢) =24-1.07 ! +6sin(¢) and describe its behav-
ior in the context of the problem. Then, compare the graphs of the functions A(#) = 24-1.07!
and V(¢) =24-1.07% + 6sin(?), as well as the graphs of their derivatives A’(¢) and V'(£). What is
the impact of the term 6sin(¢#) on the behavior of the function V(¢)?

2. Let f(x) =3cos(x) —2sin(x) +6.

(a) Determine the exact slope of the tangent line to y = f(x) at the point where a = 7.
(b) Determine the tangent line approximation to y = f(x) at the point where a = m.
(c) Atthe pointwhere a= 7, is f increasing, decreasing, or neither?

(d) At the point where a = 37”, does the tangent line to y = f(x) lie above the curve, below the
curve, or neither? How can you answer this question without even graphing the function or
the tangent line?

3. Inthis exercise, we explore how the limit definition of the derivative more formally shows that % [sin(x)] =
cos(x). Letting f(x) = sin(x), note that the limit definition of the derivative tells us that

sin(x + h) — sin(x)
A .

/ T
=i

(a) Recall the trigonometric identity for the sine of a sum of angles a and £:
sin(a + P) = sin(a) cos(P) + cos(a) sin(P). Use this identity and some algebra to show that

() = lim sin(x)(cos(h) — 1) + cos(x) sin(h)
YR .

h
(b) Next, note that as h changes, x remains constant. Explain why it therefore makes sense to say
that -1 in()
f'(x) =sin(x) - lim O 4 cos(x) - lim
h—0 h h—0 h
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(c) Finally, use small values of & to estimate the values of the two limits in (c):

. cos(h)—1 . sin(h)
lim ———— and lim .
h—0 h h—0 h

(d) What do your results in (c) thus tell you about f’(x)?
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2.3 The product and quotient rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* How does the algebraic structure of a function direct us in computing its derivative using shortcut
rules?

¢ How do we compute the derivative of a product of two basic functions in terms of the derivatives
of the basic functions?

¢ How do we compute the derivative of a quotient of two basic functions in terms of the derivatives
of the basic functions?

¢ How do the product and quotient rules combine with the sum and constant multiple rules to
expand the library of functions we can quickly differentiate?

Web Resources

1. Video: Quick review & the produce and quotient rules
2. Video: product rule examples

3. Video: quotient rule examples

4. Video: combining the product and quotient rules

5. Khan Playlist: The product and quotient rules

Introduction

So far, the basic functions we know how to differentiate include power functions (x"), exponential func-
tions (a*), and the two fundamental trigonometric functions (sin(x) and cos(x)). With the sum rule and
constant multiple rules, we can also compute the derivative of combined functions such as

f(x) =7x' —4-9% + wsin(x) — V3 cos(x),
because the function f is fundamentally a sum of basic functions. Indeed, we can now quickly say that

f'(x) = 77x'0 = 4-9%In(9) + mcos(x) + v/3sin(x).

But we can of course combine basic functions in ways other than multiplying them by constants and
taking sums and differences. For example, we could consider the function that results from a product of
two basic functions, such as

p(z) = z3 cos(z),
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https://www.youtube.com/watch?v=bAGEnF0uFog&index=33&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
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or another that is generated by the quotient of two basic functions, one like

in(t
q(6) = SHZIE )

While the derivative of a sum is the sum of the derivatives, it turns out that the rules for computing
derivatives of products and quotients are more complicated. In what follows we explore why this is the
case, what the product and quotient rules actually say, and work to expand our repertoire of functions we
can easily differentiate. To start, Preview Activity 2.3 asks you to investigate the derivative of a product
and quotient of two polynomials.

Preview Activity 2.3. Let u and v be the functions defined by u(t) = 2¢> and v(f) = 3 +4t.
(a) Determine u'(r) and v'(1).

(b) Let p(t) = 2¢?(t3+41) and observe that p(#) = u(f)- v(t). Rewrite the formula for p by distributing
the 212 term. Then, compute p’(z) using the sum and constant multiple rules.

(c) True or false: p'(t) = u'(t) - V' ().

3 +4t t
(d) Letg(s) = ey and observe that g(f) = % Rewrite the formula for g by dividing each term
u

in the numerator by the denominator and simplify to write g as a sum of constant multiples of
powers of t. Then, compute ¢'(¢) using the sum and constant multiple rules.

V(1)

(e) True or false: ¢'(1) = e

The product rule

As parts (b) and (d) of Preview Activity 2.3 show, it is not true in general that the derivative of a product
of two functions is the product of the derivatives of those functions. Indeed, the rule for differentiating
a function of the form p(x) = u(x) - v(x) in terms of the derivatives of u and v is more complicated than
simply taking the product of the derivatives of u and v. To see further why this is the case, as well as to
begin to understand how the product rule actually works, we consider an example involving meaningful
functions.

Say that an investor is regularly purchasing stock in a particular company. Let N(#) be a function that
represents the number of shares owned on day ¢, where ¢ = 0 represents the first day on which shares
were purchased. Further, let S(¢) be a function that gives the value of one share of the stock on day ¢;
note that the units on S(#) are dollars per share. Moreover, to compute the total value on day ¢ of the
stock held by the investor, we use the function V(¢) = N(#) - S(#). By taking the product

V(t) = N(t) shares- S(#) dollars per share,

we have the total value in dollars of the shares held. Observe that over time, both the number of shares
and the value of a given share will vary. The derivative N’(f) measures the rate at which the number of
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shares held is changing, while S’(¢) measures the rate at which the value per share is changing. The big
question we'd like to answer is: how do these respective rates of change affect the rate of change of the
total value function?

To help better understand the relationship among changesin N, S, and V, let’s consider some specific
data. Suppose that on day 100, the investor owns 520 shares of stock and the stock’s current value is
$27.50 per share. This tells us that N(100) = 520 and S(100) = 27.50. In addition, say that on day 100, the
investor purchases an additional 12 shares (so the number of shares held is rising at a rate of 12 shares
per day), and that on that same day the price of the stock is rising at a rate of 0.75 dollars per share per
day. Viewed in calculus notation, this tells us that N’(100) = 12 (shares per day) and S’(100) = 0.75 (dollars
per share per day). At what rate is the value of the investor’s total holdings changing on day 100?

Observe that the increase in total value comes from two sources: the growing number of shares,
and the rising value of each share. If only the number of shares is rising (and the value of each share
is constant), the rate at which which total value would rise is found by computing the product of the
current value of the shares with the rate at which the number of shares is changing. That is, the rate at
which total value would change is given by

dollars shares 3 dollars

12 =330

S(100) -N’(100) = 27.50
(100)-N'(100) share day day

Note particularly how the units make sense and explain that we are finding the rate at which the total
value V is changing, measured in dollars per day. If instead the number of shares is constant, but the
value of each share is rising, then the rate at which the total value would rise is found similarly by taking
the product of the number of shares with the rate of change of share value. In particular, the rate total
value is rising is

dollars per share dollars
=390 .

N(100) -S’(100) = 520shares - 0.75
day day

Of course, when both the number of shares is changing and the value of each share is changing, we have
to include both of these sources, and hence the rate at which the total value is rising is

dollars
day

V’(100) = S(100) - N'(100) + N(100) - S’(100) = 330 + 390 = 720

This tells us that we expect the total value of the investor’s holdings to rise by about $720 on the 100th
day.’

Next, we expand our perspective from the specific example above to the more general and abstract
setting of a product p of two differentiable functions, u and v. If we have P(x) = u(x) - v(x), our work

SWhile this example highlights why the product rule is true, there are some subtle issues to recognize. For one, if the stock’s
value really does rise exactly $0.75 on day 100, and the number of shares really rises by 12 on day 100, then we'd expect that
V(101) =N(101)-S(101) = 532-28.25 = 15029. If, as noted above, we expect the total value to rise by $720, then with V(100) =
N(100)-S(100) = 520-27.50 = 14300, then it seems like we should find that V(101) = V(100) + 720 = 15020. Why do the two results
differ by 92 One way to understand why this difference occurs is to recognize that N’(100) = 12 represents an instantaneous rate
of change, while our (informal) discussion has also thought of this number as the total change in the number of shares over the
course of a single day. The formal proof of the product rule reconciles this issue by taking the limit as the change in the input
tends to zero.
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above suggests that P'(x) = u(x)v'(x) + v(x)u/(x). Indeed, a formal proof using the limit definition of the
derivative can be given to show that the following rule, called the product rule, holds in general.

Product Rule: If f and g are differentiable functions, then their product P(x) = u(x) - v(x) is also a
differentiable function, and
P'(x) = v(x)u'(x) + u(x) v’ (x).

In light of the earlier example involving shares of stock, the product rule also makes sense intuitively:
the rate of change of P should take into account both how fast # and v are changing, as well as how large
u and v are at the point of interest. Furthermore, we note in words what the product rule says: if P is
the product of two functions u (the first function) and v (the second), then “the derivative of P is the first
times the derivative of the second, plus the second times the derivative of the first.” It is often a helpful
mental exercise to say this phrasing aloud when executing the product rule.

Example 2.1. Let P(z) = z3-cos(z). Use the product rule to differentiate P.

Solution. The first function is u(z) = z> and the second function is v(z) = cos(z). By the product rule,
P’ will be given by the second, cos(z), times the derivative of the first, 3z2, plus the first, z3, times the
derivative of the second, —sin(z). That is,

P'(z) = (:os(z)?)z2 + z3(— sin(z)) = 3722 cos(z) — z sin(z).

Of course, the letters P, u, and v are arbitrary choices. Don't let the choice of letters confuse you. The
following activity further explores the use of the product rule.

Activity 2.7.

Use the product rule to answer each of the questions below. Throughout, be sure to carefully label
any derivative you find by name. That is, if you're given a formula for f(x), clearly label the formula
you find for f’(x). It is not necessary to algebraically simplify any of the derivatives you compute.

(@) Let m(w) =3w!'"4¥. Find m' (w).
(b) Let h(¢) = (sin(#) +cos(t)) t*. Find K/ (t).

(c) Determine the slope of the tangent line to the curve y = f(x) at the point where a = 1 if f is
given by the rule f(x) = e*sin(x).

(d) Find the tangent line approximation L(x) to the function y = g(x) at the point where a = -1 if
g is given by the rule g(x) = (x% + x)2%,
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The quotient rule

Because quotients and products are closely linked, we can use the product rule to understand how to
take the derivative of a quotient. In particular, let Q(x) be defined by Q(x) = u(x)/v(x), where u and v
are both differentiable functions. We desire a formula for Q' in terms of u, v, v/, and v'. It turns out that
Q is differentiable everywhere that v(x) # 0. Moreover, taking the formula Q = u/v and multiplying both
sides by v, we can observe that

u(x) =Qx) - v(x).
Thus, we can use the product rule to differentiate u. Doing so,
U (x) = Q) V' () + v(0)Q' ().

Since we want to know a formula for Q’, we work to solve this most recent equation for Q’(x), finding first
that
Q') v(x) = u'(x) - Q) V' (x).

Dividing both sides by v(x), we have

po uW(X)=Q)V (%)
Q(x)= 200 .

ux)

Finally, we also recall that Q(x) = ek

we have

Using this expression in the preceding equation and simplifying,

u'(x) - % V' (x)

Q'(x)

v(x)
u'(x) - % V'(X) p(x)
v(x) ‘ v(x)
v(x)u (x) — ux) v (x)

v(x)2

This shows the fundamental argument for why the quotient rule holds.

Quotient Rule: If « and v are differentiable functions, then their quotient Q(x) = X2 s also a dif-

v(x)
ferentiable function for all x where v(x) # 0, and

v(x)u' (x) —ux)v'(x)
[v(x))?

Q'x) =

Like the product rule, it can be helpful to think of the quotient rule verbally. If a function Q is the
quotient of a top function u and a bottom function v, then Q' is given by “the bottom times the derivative
of the top, minus the top times the derivative of the bottom, all over the bottom squared.” For example,
if Q(¢) = sin(#)/2’, then we can identify the top function as sin(#) and the bottom function as 2’. By the
quotient rule, we then have that Q' will be given by the bottom, 27, times the derivative of the top, cos(t),
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minus the top, sin(#), times the derivative of the bottom, 2?In(2), all over the bottom squared, (252, That
is,
2% cos(t) —sin()2¢1In(2)

(21?2 '
In this particular example, it is possible to simplify Q' (¢) by removing a factor of 2 from both the numer-
ator and denominator, hence finding that

Q)=

cos(t) —sin() In(2)

QW= 5

In general, we must be careful in doing any such simplification, as we don’t want to correctly execute
the quotient rule but then find an incorrect overall derivative due to an algebra error. As such, we will
often place more emphasis on correctly using derivative rules than we will on simplifying the result that
follows.

The following activity further explores the use of the quotient rule.
Activity 2.8.

Use the quotient rule to answer each of the questions below. Throughout, be sure to carefully label
any derivative you find by name. That is, if you're given a formula for f(x), clearly label the formula
you find for f’(x). It is not necessary to algebraically simplify any of the derivatives you compute.

z

(a) Letr(z) = ——. Find r'(z2).
zZ*+1

®) Let v = — 2D g v,
cos(?) + 12

x> -2x-8

(c) Determine the slope of the tangent line to the curve R(x) = 5
x J—

at the point where
x=0.

(d) When a camera flashes, the intensity I of light seen by the eye is given by the function

where I is measured in candles and t is measured in milliseconds. Compute I'(0.5), I'(2), and
I'(5); include appropriate units on each value; and discuss the meaning of each.

Combining rules

One of the challenges to learning to apply various derivative shortcut rules correctly and effectively is
recognizing the fundamental structure of a function. For instance, consider the function given by
£

f(x) = xsin(x) + ST 2
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How do we decide which rules to apply? Our first task is to recognize the overall structure of the given
function. Observe that the function f is fundamentally a sum of two slightly less complicated functions,
so we can apply the sum rule® and get

2

d
fl) = —

Tx xsin(x) +

cos(x) +2

x2

= i[xsh( )]+i —
© dx i cos(x) +2

dx

Now, the left-hand term above is a product, so the product rule is needed there, while the right-hand
term is a quotient, so the quotient rule is required. Applying these rules respectively, we find that

(cos(x) +2)2x — x*(—sin(x))
(cos(x) +2)2
2xc0s(x) + 4x + x%sin(x)
(cos(x) +2)2

1)

(xcos(x) +sin(x)) +

xcos(x) +sin(x) +

We next consider how the situation changes with the function defined by

y2+1

s(y) =

Overall, s is a quotient of two simpler function, so the quotient rule will be needed. Here, we execute the
quotient rule and use the notation diy to defer the computation of the derivative of the numerator and
derivative of the denominator. Thus,

PP +D- Gy 7] =y [y 1]

sy = G2+ 1)2

Now, there remain two derivatives to calculate. The first one, d%/ [y-77] calls for use of the product rule,

d

while the second, ay [y + 1] takes only an elementary application of the sum rule. Applying these rules,

we now have

A+ Dy P In@+ 7Y -1 - y-7V[2y]
- (y2 +1)2

While some minor simplification is possible, we are content to leave s'(y) in its current form, having
found the desired derivative of s. In summary, to compute the derivative of s, we applied the quotient
rule. In so doing, when it was time to compute the derivative of the top function, we used the product
rule; at the point where we found the derivative of the bottom function, we used the sum rule.

s'(y)

In general, one of the main keys to success in applying derivative rules is to recognize the structure
of the function, followed by the careful and diligent application of relevant derivative rules. The best way
to get good at this process is by doing a large number of exercises, and the next activity provides some
practice and exploration to that end.

Activity 2.9.

5When taking a derivative that involves the use of multiple derivative rules, it is often helpful to use the notation % []to
wait to apply subsequent rules. This is demonstrated in each of the two examples presented here.
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Use relevant derivative rules to answer each of the questions below. Throughout, be sure to use proper
notation and carefully label any derivative you find by name.

(a) Let f(r)= (573 +sin(r)) (4" —2cos(r)). Find (.

cos(t
(b) Let p(1) = T(Gf)' Find p'(1).
z . ,
+1.F1ndg (2).

(c) Let g(z) =3z"e* —22°sin(z) + 5
z

(d) A moving particle has its position in feet at time ¢ in seconds given by the function s(¢) =
3cos(f) —sin(¥)

et
(e) Suppose that f(x) and g(x) are differentiable functions and it is known that f(3) = -2, f'(3) =

7,8(3)=4,and g'(3) = -1. If p(x) = f(x)- g(x) and g(x) = %, calculate p’(3) and ¢’ (3).

. Find the particle’s instantaneous velocity at the moment ¢ = 1.

<

As the algebraic complexity of the functions we are able to differentiate continues to increase, it is
important to remember that all of the derivative’s meaning continues to hold. Regardless of the structure
of the function f, the value of f’(a) tells us the instantaneous rate of change of f with respect to x at the
moment x = a, as well as the slope of the tangent line to y = f(x) at the point (a, f(a)).

Summary

In this section, we encountered the following important ideas:

e If a function is a sum, product, or quotient of simpler functions, then we can use the sum, product, or
quotient rules to differentiate the overall function in terms of the simpler functions and their deriva-
tives.

e The product rule tells us that if P is a product of differentiable functions u and v according to the rule
P(x) = u(x)v(x), then
P'(x) = v(@)u' (x) + u(x)v' (x).

¢ The quotient rule tells us that if Q is a quotient of differentiable functions © and v according to the
_ ux)
rule Q(x) = 5y, then
v()u' (x) — ux)v'(x)

[v(x)?]

Q'x) =

¢ The product and quotient rules now complement the constant multiple and sum rules and enable us
to compute the derivative of any function that consists of sums, constant multiples, products, and

quotients of basic functions we already know how to differentiate. For instance, if F has the form
2a(x) —5b(x)
Fx)=———

2 c(x)-d(x)

then F is fundamentally a quotient, and the numerator is a sum of constant multiples and the de-
nominator is a product. Hence the derivative of F can be found by applying the quotient rule and
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then using the sum and constant multiple rules to differentiate the numerator and the product rule to
differentiate the denominator.

Exercises
1. Let f and g be differentiable functions for which the following information is known: f(2) =5, g(2) =
-3, fl(2)=-1/2,g'2) = 2.
(a) Let h be the new function defined by the rule h(x) = g(x) - f(x). Determine h(2) and h'(2).
(b) Find an equation for the tangent line to y = h(x) at the point (2, h(2)).
g8(x)

(c) Let r be the function defined by the rule r(x) = o Is r increasing, decreasing, or neither at
a =2? Why?

(d) Estimate the value of r(2.06) by using the local linearization of p at the point (2, p(2)).

2. Consider the functions r(f) = t' and s(t) = arccos(t), for which you are given the facts that r'(¢) =

t!In(t) + 1) and s'(8) = —ﬁ. Do not be concerned with where these derivative formulas come

from. We restrict our interest_ in both functions to the domain 0 < ¢ < 1.
(@) Let w(#) = t'arccos(t). Determine w'(t).
(b) Find an equation for the tangent line to y = w(t) at the point (%, w(%)).

(c) Letv(r) = - Is v increasing or decreasing at the instant ¢ = %? Why?

tt
arccos(t

3. Let functions p and g be the piecewise linear functions given by their respective graphs in Figure 2.5.
Use the graphs to answer the following questions.

Figure 2.5: The graphs of p (in blue) and g (in green).

(@) Let r(x) = p(x)-q(x). Determine r’'(-2) and r'(0).

(b) Are there values of x for which r’(x) does not exist? If so, which values, and why?
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(c) Find an equation for the tangent line to y = r(x) at the point (2, r(2)).

d) Let z(x) = %. Determine z'(0) and 2 (2).

(e) Are there values of x for which z'(x) does not exist? If so, which values, and why?

4. A farmer with large land holdings has historically grown a wide variety of crops. With the price of
ethanol fuel rising, he decides that it would be prudent to devote more and more of his acreage to
producing corn. As he grows more and more corn, he learns efficiencies that increase his yield per
acre. In the present year, he used 7000 acres of his land to grow corn, and that land had an average
yield of 170 bushels per acre. At the current time, he plans to increase his number of acres devoted to
growing corn at a rate of 600 acres/year, and he expects that right now his average yield is increasing
at a rate of 8 bushels per acre per year. Use this information to answer the following questions.

(a) Say that the present year is ¢ = 0, that A(f) denotes the number of acres the farmer devotes
to growing corn in year ¢, Y(t) represents the average yield in year ¢ (measured in bushels
per acre), and C(t) is the total number of bushels of corn the farmer produces. What is the
formula for C(¢) in terms of A(#) and Y(#)? Why?

(b) What is the value of C(0)?2 What does it measure?

(c) Write an expression for C'(¢) in terms of A(#), A'(¢), Y(#), and Y'(#). Explain your thinking.
(d) What is the value of C’'(0)? What does it measure?

(e) Based on the given information and your work above, estimate the value of C(1).

(f) Assume that the annual yield decreases every year by 8 bushels per acre. Write expressions for
C(1r) and C'(1), find the approximate time and number of bushels when the total number of
bushels is maximized, and discuss how the maximum value would change if the farmer were
able to control the rate at which the yield decreased. Present your solution with thorough
discussion and appropriate plots.

5. Let f(v) be the gas consumption (in liters/km) of a car going at velocity v (in km/hour). In other
words, f(v) tells you how many liters of gas the car uses to go one kilometer if it is traveling at v
kilometers per hour. In addition, suppose that f(80) = 0.05 and f’(80) = 0.0004.

(a) Let g(v) be the distance the same car goes on one liter of gas at velocity v. What is the rela-
tionship between f(v) and g(v)? Hence find g(80) and g'(80).

(b) Let h(v) be the gas consumption in liters per hour of a car going at velocity v. In other words,
h(v) tells you how many liters of gas the car uses in one hour if it is going at velocity v. What
is the algebraic relationship between h(v) and f(v)? Hence find /h(80) and h’'(80).

(c) How would you explain the practical meaning of these function and derivative values to a
driver who knows no calculus? Include units on each of the function and derivative values
you discuss in your response.
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2.4 Derivatives of other trigonometric functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What are the derivatives of the tangent, cotangent, secant, and cosecant functions?

¢ How do the derivatives of tan(x), cot(x), sec(x), and csc(x) combine with other derivative rules we
have developed to expand the library of functions we can quickly differentiate?

Web Resources

1. Video: Quick review & derivatives of other trig functions

2. Video: examples of other trig derivatives

Introduction

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea:
locating a point on the unit circle.

(z,9)

sin(

cos(6)

Figure 2.6: The unit circle and the definition of the sine and cosine functions.

Because each angle 6 corresponds to one and only one point (x, y) on the unit circle, the x- and y-
coordinates of this point are each functions of 0. Indeed, this is the very definition of cos(8) and sin(0):
cos(0) is the x-coordinate of the point on the unit circle corresponding to the angle 6, and sin(0) is the
y-coordinate. From this simple definition, all of trigonometry is founded. For instance, the fundamental
trigonometric identity,

sin®(0) + cos?(0) = 1,
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is a restatement of the Pythagorean Theorem, applied to the right triangle shown in Figure 2.6.

We recall as well that there are four other trigonometric functions, each defined in terms of the sine
and/or cosine functions. These six trigonometric functions together offer us a wide range of flexibility in

problems involving right triangles. The tangent function is defined by tan(8) = sin® \vhile the cotangent

cos(0)’
gi%((g)). The secant function is the reciprocal of the cosine function,

and the cosecant function is the reciprocal of the sine function, csc(0) = sinl(e) .

function is its reciprocal: cot(0) =
sec(0) =

_1_
cos(0)’

Because we know the derivatives of the sine and cosine function, and the other four trigonometric
functions are defined in terms of these familiar functions, we can now develop shortcut differentiation
rules for the tangent, cotangent, secant, and cosecant functions. In this section’s preview activity, we
work through the steps to find the derivative of y = tan(x).

sin(x)

Preview Activity 2.4. Consider the function f(x) = tan(x), and remember that tan(x) = ;-

(a) Whatis the domain of f?

(b) Use the quotient rule to show that one expression for f’(x) is
cos(x) cos(x) + sin(x) sin(x)
cos?(x) '

flo=

(c) Whatis the Fundamental Trigonometric Identity? How can this identity be used to find a simpler
form for f'(x)?

(d) Recall thatsec(x) = COSI( 7 - How can we express f '(x) in terms of the secant function?

(e) For what values of x is f’(x) defined? How does this set compare to the domain of f?

Derivatives of the cotangent, secant, and cosecant functions

In Preview Activity 2.4, we found that the derivative of the tangent function can be expressed in several
ways, but most simply in terms of the secant function. Next, we develop the derivative of the cotangent
function.

Let g(x) = cot(x). To find g’(x), we observe that g(x) = %((xx)) and apply the quotient rule. Hence
, sin(x)(—sin(x)) — cos(x) cos(x)
g = —
sin“ (x)
_ sin®(x) + cos?(x)
B sin?(x)
By the Fundamental Trigonometric Identity, we see that g’(x) = — Sin% oL recalling that csc(x) = Wl(x)’ it

follows that we can most simply express g’ by the rule
g'(x) = —csc?(x).

Note that neither g nor g’ is defined when sin(x) = 0, which occurs at every integer multiple of . Hence
we have the following rule.
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Cotangent Function: For all real numbers x such that x # kn, where k =0,+1,+2,...,

d 2
—[cot(x)] = —csc”(x).
dx

Observe that the shortcut rule for the cotangent function is very similar to the rule we discovered in
Preview Activity 2.4 for the tangent function.

Tangent Function: For all real numbers x such that x # %, where k= +1,42,...,

d 2
— [tan(x)] = sec”(x).
dx

In the next two activities, we develop the rules for differentiating the secant and cosecant functions.

Activity 2.10.

1

Let h(x) = sec(x) and recall that sec(x) = o5 -

(a) What is the domain of h?

(b) Use the quotient rule to develop a formula for /'(x) that is expressed completely in terms of
sin(x) and cos(x).

(c) How can you use other relationships among trigonometric functions to write 4'(x) only in
terms of tan(x) and sec(x)?

(d) What is the domain of #'? How does this compare to the domain of h?

Activity 2.11.

1

Let p(x) = csc(x) and recall that csc(x) = TR

(a) What is the domain of p?

(b) Use the quotient rule to develop a formula for p’(x) that is expressed completely in terms of
sin(x) and cos(x).

(c) How can you use other relationships among trigonometric functions to write p’(x) only in
terms of cot(x) and csc(x)?

(d) What is the domain of p'? How does this compare to the domain of p?

<

The quotient rule has thus enabled us to determine the derivatives of the tangent, cotangent, secant,
and cosecant functions, expanding our overall library of basic functions we can differentiate. Moreover,

o020
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we observe that just as the derivative of any polynomial function is a polynomial, and the derivative of
any exponential function is another exponential function, so it is that the derivative of any basic trigono-
metric function is another function that consists of basic trigonometric functions. This makes sense
because all trigonometric functions are periodic, and hence their derivatives will be periodic, too.

As has been and will continue to be the case throughout our work in Chapter 2, the derivative retains
all of its fundamental meaning as an instantaneous rate of change and as the slope of the tangent line to
the function under consideration. Our present work primarily expands the list of functions for which we
can quickly determine a formula for the derivative. Moreover, with the addition of tan(x), cot(x), sec(x),
and csc(x) to our library of basic functions, there are many more functions we can differentiate through
the sum, constant multiple, product, and quotient rules.

Activity 2.12.

Answer each of the following questions. Where a derivative is requested, be sure to label the derivative

function with its name using proper notation.
(a) Let f(x) =5sec(x) —2csc(x). Find the slope of the tangent line to f at the point where x = %

(b) Let p(2) = z%sec(z) — zcot(z). Find the instantaneous rate of change of p at the point where

z=7.
(c) Let h(t) = te;n(t) —2e'cos(1). Find W (1).
241
() Letg(r) = rs‘;‘im. Find g'(r).

(e) When a mass hangs from a spring and is set in motion, the object’s position oscillates in a way
that the size of the oscillations decrease. This is usually called a damped oscillation. Suppose
that for a particular object, its displacement from equilibrium (where the object sits at rest) is
modeled by the function

15sin(?)
s(f) = ———.
el
Assume that s is measured in inches and ¢ in seconds. Sketch a graph of this function for
t = 0 to see how it represents the situation described. Then compute ds/dt, state the units on
this function, and explain what it tells you about the object’s motion. Finally, compute and
interpret s'(2).

Summary

In this section, we encountered the following important ideas:

* The derivatives of the other four trigonometric functions are

d 2 d 2
— [tan(x)] =sec”(x), —[cot(x)] = —csc”(x),
dx dx

i[sec(x)] =sec(x)tan(x), and i[csc(x)] = —csc(x) cot(x).
dx dx
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Each derivative exists and is defined on the same domain as the original function. For example, both
the tangent function and its derivative are defined for all real numbers x such that x # kz—”, where
k=+1,+£2,....

¢ The above four rules for the derivatives of the tangent, cotangent, secant, and cosecant can be used
along with the rules for power functions, exponential functions, and the sine and cosine, as well as the
sum, constant multiple, product, and quotient rules, to quickly differentiate a wide range of different
functions.

Exercises

1. An object moving vertically has its height at time ¢ (measured in feet, with time in seconds) given by
the function h(f) = 3 + 2620

1.2
(a) What is the object’s instantaneous velocity when ¢ = 2?
(b) What is the object’s acceleration at the instant ¢ = 2?
(c) Describe in everyday language the behavior of the object at the instant ¢ = 2.
2. Let f(x) = sin(x) cot(x).
(a) Use the product rule to find f’(x).

(b) True or false: for all real numbers x, f(x) = cos(x).

(c) Explain why the function that you found in (a) is almost the opposite of the sine function, but
not quite. (Hint: convert all of the trigonometric functions in (a) to sines and cosines, and
work to simplify. Think carefully about the domain of f and the domain of f’.)

3. Let p(z) be given by the rule
ztan(z)

= +3ez +1.
z2sec(z)+1

p(2)
(a) Determine p’(z).
(b) Find an equation for the tangent line to p at the point where z = 0.

(c) Att=0,is pincreasing, decreasing, or neither? Why?
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2.5 The chain rule

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* What is a composite function and how do we recognize its structure algebraically?

* Given a composite function C(x) = f(g(x)) that is built from differentiable functions f and g, how
do we compute C'(x) in terms of f, g, f’, and g'? What is the statement of the Chain Rule?

Web Resources

1. Video: Quick review & the chain rule

2. Video: example of the chain rule - polynomials

3. Video: examples of the chain rule - radicals

4. Video: chain rule examples - trig functions

5. Video: chain rule examples - exponential functions
6. Video: chain rule examples - mixing rules

7. Video: chain rule examples - graphs only

8. Video: Summary of derivative mechanics

9. Khan Playlist: The chain rule

Introduction

In addition to learning how to differentiate a variety of basic functions, we have also been developing
our ability to understand how to use rules to differentiate certain algebraic combinations of them. For
example, we not only know how to take the derivative of f(x) = sin(x) and g(x) = x%, but now we can
quickly find the derivative of each of the following combinations of f and g:

s(x) = 3x%— 5sin(x),
plx) = x? sin(x),and

sin(x)
q(x) = 2

Finding s’ uses the sum and constant multiple rules, determining p’ requires the product rule, and g’ can
be attained with the quotient rule. Again, we note the importance of recognizing the algebraic structure

of a given function in order to find its derivative: s(x) =3g(x) —5f(x), p(x) = u(x) - v(x), and g(x) = %


https://www.youtube.com/watch?v=HxVn6kRD5NM&index=39&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=QDc1UmLWhug&index=40&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=ysp96e3Z-nw&index=41&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=4y39u0DmrPY&index=42&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=zexX6t_zbCg&index=43&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=1B06Pk3W6Pc&index=44&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=pwm50foAx6A&index=45&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=Bvg6BNqBj44
https://www.khanacademy.org/math/differential-calculus/taking-derivatives/chain_rule
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There is one more natural way to algebraically combine basic functions, and that is by composing
them. For instance, let’s consider the function

Cx) = sin(xz),

and observe that any input x passes through a chain of functions. In particular, in the process that
defines the function C(x), x is first squared, and then the sine of the result is taken. Using an arrow
diagram,
2 s 2
X — x~ — sin(x”).

In terms of the elementary functions f and u, we observe that x is first input in the function u, and then
the result is used as the input in f. Said differently, we can write

C(x) = f(u(x)) = sin(x*)
and say that C is the composition of f and u. We will refer to u, the function that is first applied to x, as
the inner function, while f, the function that is applied to the result, is the outer function.

The main question that we answer in the present section is: given a composite function C(x) =
f(u(x)) that is built from differentiable functions f and u, how do we compute C'(x) in terms of f, u,
f', and u'? In the same way that the rate of change of a product of two functions, p(x) = u(x) - v(x), de-
pends on the behavior of both © and v, it makes sense intuitively that the rate of change of a composite
function C(x) = f(u(x)) will also depend on some combination of f and u and their derivatives. The rule
that describes how to compute C’ in terms of f and u and their derivatives will be called the chain rule.

But before we can learn what the chain rule says and why it works, we first need to be comfortable
decomposing composite functions so that we can correctly identify the inner and outer functions, as we
did in the example above with C(x) = sin(x?).

Preview Activity 2.5. For each function given below, identify its fundamental algebraic structure. In par-
ticular, is the given function a sum, product, quotient, or composition of basic functions? If the function
is a composition of basic functions, state a formula for the inner function u« and the outer function f so
that the overall composite function can be written in the form f(u(x)). If the function is a sum, product,
or quotient of basic functions, use the appropriate rule to determine its derivative.

(@) h(x)=tan(2%)

(b) p(x)=2"tan(x)

(©) r(x) = (tan(x))*

(d) m(x) = e@n

() w(x)=+/x+tan(x)

) z(x) =+vtan(x)
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The chain rule

One of the challenges of differentiating a composite function is that it often cannot be written in an
alternate algebraic form. For instance, the function C(x) = sin(x?) cannot be expanded or otherwise
rewritten, so it presents no alternate approaches to taking the derivative. But other composite functions
can be expanded or simplified, and these present a way to begin to explore how the chain rule might have
to work. To that end, we consider two examples of composite functions that present alternate means of
finding the derivative.

Example 2.2. Let f(x) = —4x+7 and u(x) = 3x—5. Determine a formula for C(x) = f(u(x)) and compute
C'(x). How is C' related to f and u and their derivatives?

Solution. By the rules given for f and u,

Cx) = f(ux)
= f(Bx-5)
= —4(3x-5)+7
= -12x+20+7
= -12x+27.

Thus, C'(x) = —12. Noting that f'(x) = —4 and u/(x) = 3, we observe that C’ appears to be the product of
f'and u'.

From one perspective, Example 2.2 may be too elementary. Linear functions are the simplest of all func-
tions, and perhaps composing linear functions (which yields another linear function) does not exemplify
the true complexity that is involved with differentiating a composition of more complicated functions.
At the same time, we should remember the perspective that any differentiable function is locally linear,
so any function with a derivative behaves like a line when viewed up close. From this point of view, the
fact that the derivatives of f and g are multiplied to find the derivative of their composition turns out to
be a key insight.

We now consider a second example involving a nonlinear function to gain further understanding of
how differentiating a composite function involves the basic functions that combine to form it.

Example 2.3. Let C(x) = sin(2x). Use the double angle identity to rewrite C as a product of basic func-
tions, and use the product rule to find C'. Rewrite C' in the simplest form possible.
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Solution. By the double angle identity for the sine function,
C(x) = sin(2x) = 2sin(x) cos(x).
Applying the product rule and simplifying,
C'(x) = 2sin(x) (- sin(x)) + cos(x) (2 cos(x)) = 2(cos? (x) — sin®(x)).
Next, we recall that one of the double angle identities for the cosine function tells us that
cos(2x) = cos?® (x)— sin® (x).
Substituting this result in our expression for C’(x), we now have that

C'(x) =2cos(2x).

So from Example 2.3, we see that if C(x) = sin(2x), then C'(x) = 2cos(2x). Letting u(x) = 2x and f(x) =
sin(x), we observe that C(x) = f(u(x)). Moreover, with u'(x) = 2 and f’(x) = cos(x), it follows that we can
view the structure of C'(x) as

C'(x) =2cos(2x) = u' (x) f' (u(x)).

In this example, we see that for the composite function C(x) = f(u(x)), the derivative C' is (as in the
example involving linear functions) constituted by multiplying the derivatives of f and u, but with the
special condition that f” is evaluated at u(x), rather than at x.

It makes sense intuitively that these two quantities are involved in understanding the rate of change
of a composite function: if we are considering C(x) = f(u(x)) and asking how fast C is changing at a given
x value as x changes, it clearly matters (a) how fast u is changing at x, as well as how fast f is changing at
the value of u(x). It turns out that this structure holds not only for the functions in Examples 2.2 and 2.3,
but indeed for all differentiable functions’ as is stated in the Chain Rule.

Chain Rule: If u is differentiable at x and f is differentiable at u(x), then the composite function C
defined by C(x) = f(u(x)) is differentiable at x and

C'(x) = f'(ux)u' (x).

As with the product and quotient rules, it is often helpful to think verbally about what the chain rule
says: “If C is a composite function defined by an outer function f and an inner function u, then C' is
given by the derivative of the outer function, evaluated at the inner function, times the derivative of the
inner function.”

At least initially in working particular examples requiring the chain rule, it can be also be helpful to
clearly identify the inner function u and outer function f, compute their derivatives individually, and

7Like other differentiation rules, the Chain Rule can be proved formally using the limit definition of the derivative.

o020



2.5. THE CHAIN RULE

then put all of the pieces together to generate the derivative of the overall composite function. To see
what we mean by this, consider the function

r(x) = (tan(x))°.

The function r is composite, with inner function u(x) = tan(x) and outer function f(x) = x?. Organizing
the key information involving f, u, and their derivatives, we have

flx) = x? u(x) = tan(x)
f'(x)=2x u' (x) = sec?(x)
f!(u(x)) = 2tan(x)

Applying the chain rule, which tells us that r'(x) = f'(u(x)) ' (x), we find that for r(x) = (tan(x))?, its
derivative is
r'(x) = 2tan(x) sec?(x).

As a side note, we remark that another way to write r(x) is r(x) = tan?(x). Observe that in this for-
mat, the composite nature of the function is more implicit, but this is common notation for powers of
trigonometric functions: cos*(x), sin®(x), and sec?(x) are all composite functions, with the outer func-
tion a power function and the inner function a trigonometric one.

The chain rule now substantially expands the library of functions we can differentiate, as the follow-
ing activity demonstrates.

Activity 2.13.

For each function given below, identify an inner function u and outer function f to write the function
in the form f(u(x)). Then, determine f’(x), u'(x), and f’(u(x)), and finally apply the chain rule to
determine the derivative of the given function.

(@) h(x)=cos(x?)

(b) p(x) = vtan(x)
(C) S(.X,') — zsin(x)

(d) z(x) =cot’(x)

(e) m(x) = (sec(x) + e*)°

Using multiple rules simultaneously

The chain rule now joins the sum, constant multiple, product, and quotient rules in our collection of the
different techniques for finding the derivative of a function through understanding its algebraic structure
and the basic functions that constitute it. It takes substantial practice to get comfortable with navigating
multiple rules in a single problem; using proper notation and taking a few extra steps can be particularly
helpful as well. We demonstrate with an example and then provide further opportunity for practice in
the following activity.
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Example 2.4. Find a formula for the derivative of k(1) = 3° 2! sec?(¢).

Solution. We first observe that the most basic structure of & is that it is the product of two functions:
h(t) = a(t) - b(t) where a(t) = 3%+2t and b(t) = sec*(1). Therefore, we see that we will need to use the
product rule to differentiate . When it comes time to differentiate a and b in their roles in the product
rule, we observe that since each is a composite function, the chain rule will be needed. We therefore
begin by working separately to compute a’'(t) and b'(t).

Writing a(#) = f(u(1) = 3°°+2!, and finding the derivatives of f and u, we have
f(n=3' u(t) = > +2¢

f'(t) =3"In(3) W) =2r+2
F'(u(n) =3"+2"In(3)

Thus, by the chain rule, it follows that a'(f) = £/ (u(8))u/ (1) = 3" 2! In(3) (21 + 2).
Turning next to b, we write b(t) = r(s(t)) = sec*(#) and find the derivatives of r and s. Doing so,
r(=1t s(t) = sec(r)

r'(t) =41 s'() = sec(f) tan(r)
r'(s(2)) = 4sec3(¢)

By the chain rule, we now know that b'(f) = r/(s())s'(t) = 4sec3(t) sec(t) tan(t) = 4sec*(¢) tan(1).

Now we are finally ready to compute the derivative of the overall function h. Recalling that h(f) =
3"+2tgec4 (1), by the product rule we have

d d
B (1) = 3t2+2ta[sec4(t)] + sec4(t)a[3t2+2t].

From our work above with a and b, we know the derivatives of 3421 and sec*(1), and therefore

W (1) = 3" 2 4sect () tan(t) + sec ()37 2! In(3) (21 + 2).

Activity 2.14.

For each of the following functions, find the function’s derivative. State the rule(s) you use, label
relevant derivatives appropriately, and be sure to clearly identify your overall answer.

(@ p(r)=4vVré+2er

(b) m(v) =sin(v?) cos(v?)
_ cos(10y)
(©) h(y)= o1
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(d)
(e)

S(Z) — 2Z2 sec(z)

c(x) = sin(exz)

<

The chain rule now adds substantially to our ability to do different familiar problems that involve
derivatives. Whether finding the equation of the tangent line to a curve, the instantaneous velocity of a
moving particle, or the instantaneous rate of change of a certain quantity, if the function under consid-
eration involves a composition of other functions, the chain rule is indispensable.

Activity 2.15.

Use known derivative rules, including the chain rule, as needed to answer each of the following ques-

tions.
(@

(b)

Find an equation for the tangent line to the curve y = v'e* + 3 at the point where x = 0.

1
If s(t) = e represents the position function of a particle moving horizontally along an
axis at time ¢ (where s is measured in inches and ¢ in seconds), find the particle’s instanta-

neous velocity at ¢ = 1. Is the particle moving to the left or right at that instant?

(c) At sea level, air pressure is 30 inches of mercury. At an altitude of & feet above sea level, the

(d)

air pressure, P, in inches of mercury, is given by the function

P= 308_0'0000323h.

Compute dP/dh and explain what this derivative function tells you about air pressure, in-
cluding a discussion of the units on dP/dh. In addition, determine how fast the air pressure
is changing for a pilot of a small plane passing through an altitude of 1000 feet.

Suppose that f(x) and u(x) are differentiable functions and that the following information
about them is known:

x | f@ | fl) | ux) | vx)
-1 2 -5 | -3 4
2 | -3 4 -1 2

If C(x) is a function given by the formula f(u(x)), determine C'(2). In addition, if D(x) is the
function f(f(x)), find D'(-1).

The composite version of basic function rules

As we gain more experience with differentiating complicated functions, we will become more comfort-
able in the process of simply writing down the derivative without taking multiple steps. We demonstrate
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part of this perspective here by showing how we can find a composite rule that corresponds to two of our
basic functions. For instance, we know that % [sin(x)] = cos(x). If we instead want to know

i[sin(u(x))]
dx ’

where u is a differentiable function of x, then this requires the chain rule with the sine function as the
outer function. Applying the chain rule,

a [sin(u(x))] = cos(u(x)) - 1 (x).
dx

Similarly, since % [a*] = a*In(a), it follows by the chain rule that

—[a"™] = a*PIn(a).

dx
In the process of getting comfortable with derivative rules, an excellent exercise is to write down a list of
all basic functions whose derivatives are known, list those derivatives, and then write the corresponding
chain rule for the composite version with the inner function being an unknown function u(x) and the
outer function being the known basic function. These versions of the chain rule are particularly simple
when the inner function is linear, since the derivative of a linear function is a constant. For instance,

d
e [6x+7)'°] =1065x+7)°-5,

d 2
— [tan(17x)] = 17sec“(17x), and
dx

% [e73*] = —3e73".

Summary

In this section, we encountered the following important ideas:

¢ A composite function is one where the input variable x first passes through one function, and then the
resulting output passes through another. For example, the function h(x) = 25" is composite since
X —> sin(x) — 250

¢ Given a composite function C(x) = f(u(x)) that is built from differentiable functions f and u, the
chain rule tells us that we compute C’(x) in terms of f, u, f’, and u’ according to the formula

C'(x) = f'(ux)u' (x).

Exercises

1. Consider the basic functions f(x) = x3 and u(x) = sin(x).
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(@) Let h(x) = f(u(x)). Find the exact instantaneous rate of change of h at the point where x = %.
(b) Which function is changing most rapidly at x = 0.25: h(x) = f(u(x)) or r(x) = u(f(x))? Why?

(c) Let h(x) = f(u(x)) and r(x) = u(f(x)). Which of these functions has a derivative that is peri-
odic? Why?
2. Let u(x) be a differentiable function. For each of the following functions, determine the derivative.
Each response will involve u and/or u'.
(@) p(x) =@
(b) q(x) = u(e")
(c) r(x) =cot(u(x)
(d) s(x) = u(cot(x))
(e) a(x)=u(x"

) b(x)=u*(x)

3. Let functions p and g be the piecewise linear functions given by their respective graphs in Figure 2.7.
Use the graphs to answer the following questions.

Figure 2.7: The graphs of p (in blue) and g (in green).

(a) Let C(x) = p(q(x)). Determine C'(-1) and C'(-2).
(b) Find a value of x for which C’(x) does not exist. Explain your thinking.
(c) LetY(x) = q(qg(x)) and Z(x) = g(p(x)). Determine Y'(-2) and Z(0).

4. If a spherical tank of radius 4 feet has h feet of water present in the tank, then the volume of water in
the tank is given by the formula

V= ghz(IZ— n.
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(a)

(b)

(9]

(d)

At what instantaneous rate is the volume of water in the tank changing with respect to the
height of the water at the instant 47 = 1? What are the units on this quantity?

Now suppose that the height of water in the tank is being regulated by an inflow and outflow
(e.g., a faucet and a drain) so that the height of the water at time ¢ is given by the rule h(f) =
sin(mt) + 1, where ¢ is measured in hours (and # is still measured in feet). At what rate is the
height of the water changing with respect to time at the instant ¢ = 2?

Continuing under the assumptions in (b), at what instantaneous rate is the volume of water
in the tank changing with respect to time at the instant t = 22

What are the main differences between the rates found in (a) and (c)? Include a discussion of
the relevant units.
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2.6 Derivatives of Inverse Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is the derivative of the natural logarithm function?
* What are the derivatives of the inverse trigonometric functions arcsin(x) and arctan(x)?

* If g is the inverse of a differentiable function f, how is g’ computed in terms of f, f’, and g?

Web Resources

1. Video: Quick review & derivatives of inverse functions
2. Video: examples of derivaties with natural log

3. Video: derivaties involving arcsine

Introduction

Much of mathematics centers on the notion of function. Indeed, throughout our study of calculus, we are
investigating the behavior of functions, often doing so with particular emphasis on how fast the output
of the function changes in response to changes in the input. Because each function represents a process,
a natural question to ask is whether or not the particular process can be reversed. That is, if we know
the output that results from the function, can we determine the input that led to it? Connected to this
question, we now also ask: if we know how fast a particular process is changing, can we determine how
fast the inverse process is changing?

As we have noted, one of the most important functions in all of mathematics is the natural exponen-
tial function f(x) = e*. Because the natural logarithm, g(x) = In(x), is the inverse of the natural expo-
nential function, the natural logarithm is similarly important. One of our goals in this section is to learn
how to differentiate the logarithm function, and thus expand our library of basic functions with known
derivative formulas. First, we investigate a more familiar setting to refresh some of the basic concepts
surrounding functions and their inverses.

Preview Activity 2.6. The equation y = g(x —32) relates a temperature given in x degrees Fahrenheit to
the corresponding temperature y measured in degrees Celsius.

(a) Solve the equation y = g(x —32) for x to write x (Fahrenheit temperature) in terms of y (Celsius
temperature).

(b) Let C(x) = g(x —32) be the function that takes a Fahrenheit temperature as input and produces
the Celsius temperature as output. In addition, let F(y) be the function that converts a temper-


https://www.youtube.com/watch?v=chdkxtt8XQo&index=46&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=jhBhSerqbyU&index=47&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=pEEQNdttZsw&index=48&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
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ature given in y degrees Celsius to the temperature F(y) measured in degrees Fahrenheit. Use
your work in (a) to write a formula for F(y).

(c) Next consider the new function defined by p(x) = F(C(x)). Use the formulas for F and C to de-
termine an expression for p(x) and simplify this expression as much as possible. What do you
observe?

(d) Now, let r(y) = C(F(y)). Use the formulas for F and C to determine an expression for r(y) and
simplify this expression as much as possible. What do you observe?

(e) What is the value of C'(x)? of F'(y)? How do these values appear to be related?

Basic facts about inverse functions

A function f : A — B is a rule that associates each element in the set A to one and only one element in
the set B. We call A the domain of f and B the codomain of f. If there exists a function g : B — A such
that g(f(a)) = a for every possible choice of a in the set A and f(g(b)) = b for every b in the set B, then
we say that g is the inverse of f. We often use the notation f~! (read “ f-inverse”) to denote the inverse
of f. Perhaps the most essential thing to observe about the inverse function is that it undoes the work of
f. Indeed, if y = f(x), then

o= =x,

and this leads us to another key observation: writing y = f(x) and x = f~!(y) say the exact same thing.
The only difference between the two equations is one of perspective — one is solved for x, while the other
is solved for y.

Here we briefly remind ourselves of some key facts about inverse functions. For a function f: A — B,
e f has an inverse if and only if f is one-to-one® and onto?;

« provided f~! exists, the domain of f~! is the codomain of f, and the codomain of f~! is the do-
main of f;

e f71(f(x)) = x for every x in the domain of f and f(f~'(y)) = y for every y in the codomain of f;

e y=f(x)ifand onlyif x = f~1(y).

The last stated fact reveals a special relationship between the graphs of f and f~!. In particular, if we
consider y = f(x) and a point (x, y) that lies on the graph of f, then it is also true that x = f~!(y), which
means that the point (y, x) lies on the graph of f~1. This shows us that the graphs of f and f~! are the

8A function f is one-to-one provided that no two distinct inputs lead to the same output.
9A function f is onto provided that every possible element of the codomain can be realized as an output of the function for
some choice of input from the domain.
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reflections of one another across the line y = x, since reflecting across y = x is precisely the geometric ac-
tion that swaps the coordinates in an ordered pair. In Figure 2.8, we see this exemplified for the function
y = f(x) = 2* and its inverse, with the points (-1, %) and (%, —1) highlighting the reflection of the curves
across y = x.

Figure 2.8: A graph of a function y = f(x) along with its inverse, y = f~!(x).

To close our review of important facts about inverses, we recall that the natural exponential function
y = f(x) = e* has an inverse function, and its inverse is the natural logarithm, x = f~!(y) = In(y). Indeed,
writing y = e* is interchangeable with x = In(y), plus In(e*) = x for every real number x and ™) = y for
every positive real number j.

The derivative of the natural logarithm function

In what follows, we determine a formula for the derivative of g(x) = In(x). To do so, we take advantage
of the fact that we know the derivative of the natural exponential function, which is the inverse of g. In
particular, we know that writing g(x) = In(x) is equivalent to writing e8¥) = x. Now we differentiate both
sides of this most recent equation. In particular, we observe that

d

d
g —
dx [¢] ax

The righthand side is simply 1; applying the chain rule to the left side, we find that
eSMg'(x) =1.

Since our goal is to determine g’(x), we solve for g’(x), so

(y) =
g = o8’

Finally, we recall that since g(x) =1n(x), e8 () = In(®) = x and thus

W=t
g)=—.
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d 1
Natural Logarithm: For all positive real numbers x, I n(x)] = —.
X X

This rule for the natural logarithm function now joins our list of other basic derivative rules that
we have already established. There are two particularly interesting things to note about the fact that
%[ln(x)] = % One is that this rule is restricted to only apply to positive values of x, as these are the
only values for which the original function is defined. The other is that for the first time in our work,
differentiating a basic function of a particular type has led to a function of a very different nature: the
derivative of the natural logarithm is not another logarithm, nor even an exponential function, but rather
arational one.

Derivatives of logarithms may now be computed in concert with all of the rules known to date. For
instance, if f(£) = In(¢2 + 1), then by the chain rule, f'(f) = -1 -2t.

241
Activity 2.16.

For each function given below, find its derivative.

(@ h(x)=x%In(x)
B In(2)
T ef+1

(©) s(y)=In(cos(y) +2)

(b) p(®)

(d) z(x)=tan(n(x))

(e) m(z) =In(n(z))

<

In addition to the important rule we have derived for the derivative of the natural log functions, there
are additional interesting connections to note between the graphs of f(x) = e* and f~!(x) = In(x).

In Figure 2.9, we are reminded that since the natural exponential function has the property that its
derivative is itself, the slope of the tangent to y = e* is equal to the height of the curve at that point. For
instance, at the point A = (In(0.5),0.5), the slope of the tangent line is ma = 0.5, and at B = (In(5), 5), the
tangent line’s slope is mg = 5. At the corresponding points A’ and B on the graph of the natural logarithm
function (which come from reflecting across the line y = x), we know that the slope of the tangent line
is the reciprocal of the x-coordinate of the point (since % (In(x)] = %). Thus, with A’ = (0.5,In(0.5)), we
have my = 0—2 =2, and at B’ = (5,In(5)), mp' = %

In particular, we observe that ma = m%\ and myp = mLB This is not a coincidence, but in fact holds for
any curve y = f(x) and its inverse, provided the inverse exists. One rationale for why this is the case is due
to the reflection across y = x: in so doing, we essentially change the roles of x and y, thus reversing the
rise and run, which leads to the slope of the inverse function at the reflected point being the reciprocal
of the slope of the original function. At the close of this section, we will also look at how the chain rule
provides us with an algebraic formulation of this general phenomenon.
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Figure 2.9: A graph of the function y = e* along with its inverse, y = In(x), where both functions are
viewed using the input variable x.

Inverse trigonometric functions and their derivatives

Trigonometric functions are periodic, so they fail to be one-to-one, and thus do not have inverses. How-
ever, if we restrict the domain of each trigonometric function, we can force the function to be one-to-one.
For instance, consider the sine function on the domain [—%, g .

o)y

o T
CIE

|
o[y

Figure 2.10: A graph of f(x) = sin(x) (in blue), restricted to the domain [-7, 7], along with its inverse,
f~1(x) = arcsin(x) (in magenta).

Because no output of the sine function is repeated on this interval, the function is one-to-one and
thus has an inverse. In particular, if we view f(x) = sin(x) as having domain [-%, Z] and codomain [-1, 1],

272
then there exists an inverse function f~! such that

m n

-1.7_ o
=01 [2,2
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We call f ~1 the arcsine (or inverse sine) function and write f 1 y) = arcsin(y). It is especially important
to remember that writing
y =sin(x) and x = arcsin(y)

say the exact same thing. We often read “the arcsine of y” as “the angle whose sine is y.” For example,
we say that % is the angle whose sine is %, which can be written more concisely as arcsin(%) = %, which is
equivalent to writing sin(%) = 3.

Next, we determine the derivative of the arcsine function. Letting h(x) = arcsin(x), our goal is to find
I (x). Since h(x) is the angle whose sine is x, it is equivalent to write

sin(h(x)) = x.

Differentiating both sides of the previous equation, we have

d [sin(h(x))] = d [x]
dx Cdx
and by the fact that the righthand side is simply 1 and by the chain rule applied to the left side,
cos(h(x))h'(x) = 1.

Solving for A’ (x), it follows that

Ty —
) = cos(h(x))

Finally, we recall that h(x) = arcsin(x), so the denominator of k'(x) is the function cos(arcsin(x)), or in
other words, “the cosine of the angle whose sine is x.” A bit of right triangle trigonometry allows us to
simplify this expression considerably.

1 x
0
V1—22

Figure 2.11: The right triangle that corresponds to the angle 8 = arcsin(x).

Let’s say that 6 = arcsin(x), so that 0 is the angle whose sine is x. From this, it follows that we can
picture 6 as an angle in a right triangle with hypotenuse 1 and a vertical leg of length x, as shown in
Figure 2.11. The horizontal leg must be V'1 — x2, by the Pythagorean Theorem. Now, note particularly that
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0 = arcsin(x) since sin(0) = x, and recall that we want to know a different expression for cos(arcsin(x)).
From the figure, cos(arcsin(x)) = cos(0) = V1 — x2.

Thus, returning to our earlier work where we established that if /2(x) = arcsin(x), then h'(x) =
we have now shown that

1
cos(arcsin(x))’

H(x)= ——
1-x

d
Inverse sine: For all real numbers x suchthat-1<x<1, P [arcsin(x)] =
X

1
Vi-Z

Activity 2.17.

The following prompts in this activity will lead you to develop the derivative of the inverse tangent
function.

(a) Let r(x) = arctan(x). Use the relationship between the arctangent and tangent functions to
rewrite this equation using only the tangent function.

(b) Differentiate both sides of the equation you found in (a). Solve the resulting equation for ' (x),
writing 7’(x) as simply as possible in terms of a trigonometric function evaluated at r(x).

(c) Recall that r(x) = arctan(x). Update your expression for r’(x) so that it only involves trigono-
metric functions and the independent variable x.

(d) Introduce a right triangle with angle 0 so that 0 = arctan(x). What are the three sides of the
triangle?

(e) Interms of only x and 1, what is the value of cos(arctan(x))?
(f) Use the results of your work above to find an expression involving only 1 and x for r/(x).

<

While derivatives for other inverse trigonometric functions can be established similarly, we primarily
limit ourselves to the arcsine and arctangent functions. With these rules added to our library of deriva-
tives of basic functions, we can differentiate even more functions using derivative shortcuts. In Activ-
ity 2.18, we see each of these rules at work.

Activity 2.18.

Determine the derivative of each of the following functions.
(@ f(x)= x3 arctan(x) + ¥ In(x)
(b) p(l,) — zl’arcsin(l’)
(¢) h(z) = (arcsin(bz) + arctan(4 — z))27

(d) s(y) = cot(arctan(y))
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(e) m(v) =In(sin®(v) +1)

() (krt%mww
g(w) = arctan | ——

The link between the derivative of a function and the derivative of its inverse

In Figure 2.9, we saw an interesting relationship between the slopes of tangent lines to the natural expo-
nential and natural logarithm functions at points that corresponded to reflection across the line y = x. In
particular, we observed that for a point such as (In(2),2) on the graph of f(x) = e*, the slope of the tangent
line at this pointis f’(In(2)) = 2, while at the corresponding point (2,In(2)) on the graph of f “1(x) =In(x),
the slope of the tangent line at this pointis (f “H'2) = %, which is the reciprocal of f'(In(2)).

That the two corresponding tangent lines having slopes that are reciprocals of one another is not a
coincidence. If we consider the general setting of a differentiable function f with differentiable inverse
g such that y = f(x) if and only if x = g(y), then we know that f(g(x)) = x for every x in the domain of
f~L. Differentiating both sides of this equation with respect to x, we have

i[ ( ())]_i[]
dxfgx Taxy

and by the chain rule,
flgng'(x) =1.

Solving for g’(x), we have

, B 1
8W=met)

Here we see that the slope of the tangent line to the inverse function g at the point (x, g(x)) is precisely the
reciprocal of the slope of the tangent line to the original function f at the point (g(x), f(g(x))) = (g(x), x).

To see this more clearly, consider the graph of the function y = f(x) shown in Figure 2.12, along with
its inverse y = g(x). Given a point (a, b) that lies on the graph of f, we know that (b, a) lies on the graph
of g; said differently, f(a) = b and g(b) = a. Now, applying the rule that

1
f(gx)

g'x)=

to the value x = b, we have
1

1
flig)  fl@’
which is precisely what we see in the figure: the slope of the tangent line to g at (b, a) is the reciprocal of

the slope of the tangent line to f at (a, b), since these two lines are reflections of one another across the
line y = x.

g'(b)=

©220
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m = f’(a)
y = f(x) (a,5)
m = g (b)
(b7 a). |
d
y = g(r)

Figure 2.12: A graph of function y = f(x) along with its inverse, y = g(x) = f~!(x). Observe that the slopes
of the two tangent lines are reciprocals of one another.

. ~

Derivative of an inverse function: Suppose that f is a differentiable function with inverse g and
that (a, b) is a point that lies on the graph of f at which f’(a) # 0. Then

More generally, for any x in the domain of g/, we have

g'(x)=

1
\_ flgx) Y,

The rules we derived for In(x), arcsin(x), and arctan(x) are all just specific examples of this general
property of the derivative of an inverse function. For example, with g(x) = In(x) and f(x) = ¢*, it follows

that
1 1 1

T gy e T X

g (x)

Summary

In this section, we encountered the following important ideas:

| —

d
¢ For all positive real numbers x, d—[ln(x)] =—.
X

¢ For all real numbers x suchthat-1<x<1, [arcsin(x)] =

. In addition, for all real numbers

Sl ®

1-x
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d
X, E[arctan(x)] =132

* If g is the inverse of a differentiable function f, then for any point x in the domain of g’,

! _
80 =5t

Exercises

1. Determine the derivative of each of the following functions. Use proper notation and clearly identify
the derivative rules you use.

(@) f(x)=In(2arctan(x)+ 3arcsin(x) +5)
(b) r(2z) = arctan(In(arcsin(z)))
(¢) q(t) = arctan®(3t) arcsin(7¢)

) g(v):ln( arctan(v) )

arcsin(v) + v?

Figure 2.13: A function y = f(x) for use in Exercise 2.

2. Consider the graph of y = f(x) provided in Figure 2.13 and use it to answer the following questions.
(a) Use the provided graph to estimate the value of f’(1).

(b) Sketch an approximate graph of y = f~!(x). Label at least three distinct points on the graph
that correspond to three points on the graph of f.

(c) Based on your work in (a), what is the value of (f_l)’(— 1)? Why?
3. Let f(x) = 2% +4.
(a) Sketch a graph of y = f(x) and explain why f is an invertible function.

(b) Let g be the inverse of f and determine a formula for g.
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(c) Compute f'(x), g'(x), f'(2), and g’'(6). What is the special relationship between f’(2) and
g¢'(6)2 Why?

4. Let h(x) = x +sin(x).
(a) Sketch a graph of y = h(x) and explain why / must be invertible.
(b) Explain why it does not appear to be algebraically possible to determine a formula for 7.

(c) Observe that the point (3, 7 +1) lies on the graph of y = h(x). Determine the value of (b1 (3+
1).
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2.7 Derivatives of Functions Given Implicitly

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* What does it mean to say that a curve is an implicit function of x, rather than an explicit function
of x?

* How does implicit differentiation enable us to find a formula for % when y is an implicit function
of x?

* In the context of an implicit curve, how can we use % to answer important questions about the
tangent line to the curve?

Web Resources

1. Video: Quick review & derivatives of functions given implicitly
2. Video: derivatives of implicit functions
3. Video: finding slope with implicit differentiation

4. Khan Playlist: Implicit differentiation

Introduction

In all of our studies with derivatives to date, we have worked in a setting where we can express a formula
for the function of interest explicitly in terms of x. But there are many interesting curves that are deter-
mined by an equation involving x and y for which it is impossible to solve for y in terms of x. Perhaps
the simplest and most natural of all such curves are circles. Because of the circle’s symmetry, for each x
value strictly between the endpoints of the horizontal diameter, there are two corresponding y-values.
For instance, in Figure 2.14, we have labeled A = (-3, V/7) and B = (-3,—v/7), and these points demon-
strate that the circle fails the vertical line test. Hence, it is impossible to represent the circle through a
single function of the form y = f(x). At the same time, portions of the circle can be represented explicitly
as a function of x, such as the highlighted arc that is magnified in the center of Figure 2.14. Moreover,
it is evident that the circle is locally linear, so we ought to be able to find a tangent line to the curve at
every point; thus, it makes sense to wonder if we can compute % at any point on the circle, even though
we cannot write y explicitly as a function of x. Finally, we note that the righthand curve in Figure 2.14 is
called a lemniscate and is just one of many fascinating possibilities for implicitly given curves.

In working with implicit functions, we will often be interested in finding an equation for % that tells
us the slope of the tangent line to the curve at a point (x, y). To do so, it will be necessary for us to work
with y while thinking of y as a function of x, but without being able to write an explicit formula for y
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https://www.youtube.com/watch?v=YI7uxdvcq4E&index=49&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
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41 3 3 _

Figure 2.14: At left, the circle given by x* + y? = 16. In the middle, the portion of the circle x*> + y? = 16
that has been highlighted in the box at left. And at right, the lemniscate given by x> — > = 6xy.

in terms of x. The following preview activity reminds us of some ways we can compute derivatives of
functions in settings where the function’s formula is not known. For instance, recall the earlier example
%[e”m] = "Wy (x).

Preview Activity 2.7. Let f be a differentiable function of x (whose formula is not known) and recall

that %[ f(x)] and f'(x) are interchangeable notations. Determine each of the following derivatives of
combinations of explicit functions of x, the unknown function f, and an arbitrary constant c.

(a) %[x%tf(x)]
(b) %[xzf(x)]

(c) %[C+x+f(x)2]
d) %[f(xz)]

d
(e) e [xf(x)+ fcx)+cf(x)]

Implicit Differentiation

Because a circle is perhaps the simplest of all curves that cannot be represented explicitly as a single
function of x, we begin our exploration of implicit differentiation with the example of the circle given
by x? + y? = 16. It is visually apparent that this curve is locally linear, so it makes sense for us to want
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to find the slope of the tangent line to the curve at any point, and moreover to think that the curve is
differentiable. The big question is: how do we find a formula for %, the slope of the tangent line to the
circle at a given point on the circle? By viewing y as an implicit'? function of x, we essentially think of y
as some function whose formula f(x) is unknown, but which we can differentiate. Just as y represents
an unknown formula, so too its derivative with respect to x, %, will be (at least temporarily) unknown.

Consider the equation x? + y? = 16 and view y as an unknown differentiable function of x. Differen-
tiating both sides of the equation with respect to x, we have

d [x*+y%] = d 1161,

dx Y=

On the right, the derivative of the constant 16 is 0, and on the left we can apply the sum rule, so it follows
that

d ., d

+

dx <] dx
Next, it is essential that we recognize the different roles being played by x and y. Since x is the indepen-
dent variable, it is the variable with respect to which we are differentiating, and thus % [x?] = 2x. But

[¥?]=0

y is the dependent variable and y is an implicit function of x. Thus, when we want to compute % [y?]
it is identical to the situation in Preview Activity 2.7 where we computed % lf (x)2]. In both situations,
we have an unknown function being squared, and we seek the derivative of the result. This requires the

chain rule by which we find that % =l 2] = y1 dy . Therefore, continuing our work in differentiating both
sides of x? + y? = 16, we now have that
2x+2 yﬂ =0.
dx

Since our goal is to find an expression for & d , we solve this most recent equation for 4 d . Subtracting 2x
from both sides and dividing by 2y,
dy 2x x

dx 2y y

There are several important things to observe about the result that % =- f First, this expression for
the derivative involves both x and y. It makes sense that this should be the case, since for each value of
x between —4 and 4, there are two corresponding points on the circle, and the slope of the tangent line
is different at each of these points. Second, this formula is entirely consistent with our understanding
of circles. If we consider the radius from the origin to the point (a, b), the slope of this line segment is
my = b . The tangent line to the circle at (a, b) will be perpendicular to the radius, and thus have slope

m; = —%, as shown in Figure 2.15. Finally, the slope of the tangent line is zero at (0 4) and (0,—4), and is

undefined at (-4, 0) and (4, 0); all of these values are consistent with the formula % = —)—yc.

We consider the following more complicated example to investigate and demonstrate some addi-
tional algebraic issues that arise in problems involving implicit differentiation.

10Essentially the idea of an implicit function is that it can be broken into pieces where each piece can be viewed as an explicit
function of x, and the combination of those pieces constitutes the full implicit function. For the circle, we could choose to take
the top half as one explicit function of x, and the bottom half as another.
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Figure 2.15: The circle given by x? + y* = 16 with point (a, b) on the circle and the tangent line at that
point, with labeled slopes of the radial line, m,, and tangent line, m;.

Example 2.5. For the curve given implicitly by x* + y? — 2xy = 2, shown in Figure 2.16, find the slope of
the tangent line at (-1, 1).

Figure 2.16: The curve x° + y> —2xy = 2.

Solution. We begin by differentiating the curve’s equation implicitly. Taking the derivative of each side
with respect to x,

— [+ 2 -2xy] = —[2],
dx [+ xy] dx 2]
by the sum rule and the fact that the derivative of a constant is zero, we have

d d
— [+ — )%

d
- —[2xy] =0.
dx dx dx[ xy1=0
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For the three derivatives we now must execute, the first uses the simple power rule, the second requires
the chain rule (since y is an implicit function of x), and the third necessitates the product rule (again
since y is a function of x). Applying these rules, we now find that

d d
3x2 +2yd—i - [2xd—i +2y]=0.

Remembering that our goal is to find an expression for % so that we can determine the slope of a par-

ticular tangent line, we want to solve the preceding equation for %. To do so, we get all of the terms

involving % on one side of the equation and then factor. Expanding and then subtracting 3x? — 2y from
both sides, it follows that

dy dy 2
Zydx 2xdx—2y 3x°.

Factoring the left side to isolate %, we have
dy 2
—((2y—-2x)=2y-3x".
dx (@y-2x)=2y-3x
Finally, we divide both sides by (2y —2x) and conclude that

dy 2y—3x?
dx 2y-2x

Here again, the expression for % depends on both x and y. To find the slope of the tangent line at (-1, 1),
we substitute this point in the formula for %, using the notation

dy _2)-3(-1* 1

dx| iy 2M)-2(-1) 4

This value matches our visual estimate of the slope of the tangent line shown in Figure 2.16.

Example 2.5 shows that it is possible when differentiating implicitly to have multiple terms involving
%. Regardless of the particular curve involved, our approach will be similar each time. After differen-
tiating, we expand so that each side of the equation is a sum of terms, some of which involve %. Next,
addition and subtraction are used to get all terms involving % on one side of the equation, with all re-
maining terms on the other. Finally, we factor to get a single instance of %, and then divide to solve for
g

Note, too, that since % is often a function of both x and y, we use the notation

dy
Ax|(a,p)
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to denote the evaluation of % at the point (a, b). This is analogous to writing f’(a) when f’ depends on
a single variable.

Finally, there is a big difference between writing % and %. For example,
d o>, 2
—[x"+
PR
gives an instruction to take the derivative with respect to x of the quantity x? + y?, presumably where y
is a function of x. On the other hand,
dy > -
—(x"+
dx( )
means the product of the derivative of y with respect to x with the quantity x*> + y?. Understanding this

notational subtlety is essential.

The following activities present opportunities to explore several different problems involving implicit
differentiation.

Activity 2.19.
Consider the curve defined by the equation x = y° —5y% + 4y, whose graph is pictured in Figure 2.17.

Y

R

Figure 2.17: The curve x = y° —5y° +4y.

(a) Explain why it is not possible to express y as an explicit function of x.
(b) Use implicit differentiation to find a formula for dy/dx.

(c) Use your result from part (b) to find an equation of the line tangent to the graph of x = y° —
5y3 +4y at the point (0,1).

(d) Use your result from part (b) to determine all of the points at which the graph of x = y° 533+
4y has a vertical tangent line.
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Two natural questions to ask about any curve involve where the tangent line can be vertical or hori-
zontal. To be horizontal, the slope of the tangent line must be zero, while to be vertical, the slope must
be undefined. It is typically the case when differentiating implicitly that the formula for % is expressed
as a quotient of functions of x and y, say

dy _pxy)

dx qx,y)’
Thus, we observe that the tangent line will be horizontal precisely when the numerator is zero, or p(x, y) =
0. Similarly, the tangent line will be vertical whenever g(x, y) = 0, making the denominator 0 and thus the
slope undefined. If both x and y are involved in an equation such as p(x, y) = 0, we try to solve for one
of them in terms of the other, and then use the resulting condition in the original equation that defines
the curve to find an equation in a single variable that we can solve to determine the point(s) that lie on
the curve at which the condition holds. It is not always possible to execute the desired algebra due to the
possibly complicated combinations of functions that often arise.

Activity 2.20.

Consider the curve defined by the equation y( y2 - 1)(y-2) = x(x—1)(x —2), whose graph is pictured
in Figure 2.18. Through implicit differentiation, it can be shown that

Figure 2.18: The curve y(y2 -Dy-2)=x(x-1(x-2).

dy =D =2)+x(x—2)+x(x—1)

dx  (PP-D(y-2)+2y2(y-2)+y2-1)

Use this fact to answer each of the following questions.

(a) Determine all points (x, y) at which the tangent line to the curve is horizontal.
(b) Determine all points (x, y) at which the tangent line is vertical.

(c) Find the equation of the tangent line to the curve at one of the points where x = 1.

The closing activity in this section offers more opportunities to practice implicit differentiation.

Activity 2.21.
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For each of the following curves, use implicit differentiation to find dy/dx and determine the equa-
tion of the tangent line at the given point.

@ x*-y>=6xy, (-3,3)
(b) sin(y)+y=x3+x, (0,0)
(c) xe ™ =y?, (0.571433,1)

Summary

In this section, we encountered the following important ideas:

* When we have an equation involving x and y where y cannot be solved for explicitly in terms of x, but
where portions of the curve can be thought of as being generated by explicit functions of x, we say
that y is an implicit function of x. A good example of such a curve is the unit circle.

¢ In the process of implicit differentiation, we take the equation that generates an implicitly given curve
and differentiate both sides with respect to x while treating y as a function of x. In so doing, the chain
rule leads % to arise, and then we may subsequently solve for % using algebra.

e While % may now involve both the variables x and y, % still measures the slope of the tangent line to
the curve, and thus this derivative may be used to decide when the tangent line is horizontal (% =0)

or vertical (% is undefined), or to find the equation of the tangent line at a particular point on the
curve.

Exercises

1. Consider the curve given by the equation 2y3 + y* — y° = x* — 2x3 + x2. Find all points at which the
tangent line to the curve is horizontal or vertical.

2. For the curve given by the equation sin(x + y) + cos(x — y) = 1, find the equation of the tangent line to
the curve at the point (3, 7).

3. Implicit differentiation enables us a different perspective from which to see why the rule % [a*] =
a*In(a) holds, if we assume that % (In(x)] = % This exercise leads you through the key steps to do so.

(a) Let y = a”. Rewrite this equation using the natural logarithm function to write x in terms of y
(and the constant a).

(b) Differentiate both sides of the equation you found in (a) with respect to x, keeping in mind
that y is implicitly a function of x.

(c) Solve the equation you found in (b) for %, and then use the definition of y to write % solely
in terms of x. What have you found?
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2.8 Using Derivatives to Evaluate Limits

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ How can derivatives be used to help us evaluate indeterminate limits of the form g?

* What does it mean to say that lim,_., f(x) =L and lim,_., f(x) = co?

* How can derivatives assist us in evaluating indeterminate limits of the form 222

Web Resources

1. Video: Quick review & LU'Hopital’s Rule
2. Video: Using L'Hopital’s rule with zero
3. Video: L'Hopital’s rules using infinity

4, Video: additional LU'Hopital’s example

Introduction

Because differential calculus is based on the definition of the derivative, and the definition of the deriva-
tive involves a limit, there is a sense in which all of calculus rests on limits. In addition, the limit involved
in the limit definition of the derivative is one that always generates an indeterminate form of g. If fisa
differentiable function for which f’(x) exists, then when we consider

fx+h)-f(x)
h )

it follows that not only does h — 0 in the denominator, but also (f(x + h) — f(x)) — 0 in the numerator,
since f is continuous. Thus, the fundamental form of the limit involved in the definition of f’(x) is 8.
Remember, saying a limit has an indeterminate form only means that we don't yet know its value and
have more work to do: indeed, limits of the form g can take on any value, as is evidenced by evaluating
f'(x) for varying values of x for a function such as f'(x) = x°.

/ 1
o=

Of course, we have learned many different techniques for evaluating the limits that result from the
derivative definition, and including a large number of shortcut rules that enable us to evaluate these
limits quickly and easily. In this section, we turn the situation upside-down: rather than using limits to
evaluate derivatives, we explore how to use derivatives to evaluate certain limits. This topic will com-
bine several different ideas, including limits, derivative shortcuts, local linearity, and the tangent line
approximation.

X+x-2

Preview Activity 2.8. Let h be the function given by h(x) = —; 1
x —


https://www.youtube.com/watch?v=KXGhzie3b8s&index=52&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=flM7qVLdezY&index=53&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=wXXej6AmEKQ&index=54&list=PL9bIjQJDwfGuXQHuS5Jkmum_CFILoCZX-
https://www.youtube.com/watch?v=p-Xma-2GGck
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(a) What is the domain of h?

XP+x-2

(b) Explain why lin% a1 results in an indeterminate form.
xX— Xc —

(c) Nextwe will investigate the behavior of both the numerator and denominator of / near the point

where x = 1. Let f(x) = x° + x—2 and g(x) = x> — 1. Find the local linearizations of f and g at

a =1, and call these functions L £ (%) and Lg (x), respectively.

Ly (x)
Lg (x)

for x near a =1.

(d) Explain why h(x) =

(e) Using your work from (c), evaluate

Le(x
lim s ).
x—1Lg(x)

What do you think your result tells us about lirri h(x)?
X—

(f) Investigate the function h(x) graphically and numerically near x = 1. What do you think is the
value of lin% h(x)?
X—

Using derivatives to evaluate indeterminate limits of the form %.

The fundamental idea of Preview Activity 2.8 — that we can evaluate an indeterminate limit of the form
% by replacing each of the numerator and denominator with their local linearizations at the point of
interest — can be generalized in a way that enables us to easily evaluate a wide range of limits. We begin
by assuming that we have a function £ (x) that can be written in the form h(x) = % where f and g are
both differentiable at x = a and for which f(a) = g(a) = 0. We are interested in finding a way to evaluate

the indeterminate limit given by )161_13 h(x). In Figure 2.19, we see a visual representation of the situation
involving such functions f and g. In particular, we see that both f and g have an x-intercept at the point
where x = a. In addition, since each function is differentiable, each is locally linear, and we can find their
respective tangent line approximations L and Lg at x = a, which are also shown in the figure. Since we

are interested in the limit of % as x — a, the individual behaviors of f(x) and g(x) as x — a are key to
understand. Here, we take advantage of the fact that each function and its tangent line approximation

become indistinguishable as x — a.

First, let’s reall that L¢(x) = f'(a)(x—a) + f(a) and Lg (x) = g'(a)(x—a) + g(a). The critical observation
we make is that when taking the limit, because x is getting arbitrarily close to a, we can replace f with
Ly and replace g with Lg, and thus we observe that

Lr(x)
P GO . )

1m
x—a g(x) x—a Lg(x)

/ —
lim fla(x-a) +f(a).
x—a g'(a)(x—a)+ g(a)

o020



2.8. USING DERIVATIVES TO EVALUATE LIMITS

Figure 2.19: At left, the graphs of f and g near the value a, along with their tangent line approximations
Ly and Lg at x = a. At right, zooming in on the point a and the four graphs.

Next, we remember a key fundamental assumption: that both f(a) =0 and g(a) = 0, as this is precisely
what makes the original limit indeterminate. Substituting these values for f(a) and g(a) in the limit
above, we now have

lim f) _ fla)(x-a)
x—a g(x) x—a g'(a)(x - a)
I fl(a

im ,
x—a g/(a)

where the latter equality holds since x is approaching (but not equal to) a, so 3=% = 1. Finally, we note

)
that 7@

is constant with respect to x, and thus

i L) L@
x—ag(x) g'(a)

We have, of course, implicitly made the assumption that g’(a) # 0, which is essential to the overall limit

having the value QEZ% . We summarize our work above with the statement of LHopital’s Rule, which is the

formal name of the result we have shown.

— Theorem 2.5. N

L'Hopital’s Rule: Let f and g be differentiable at x = a, and suppose that f(a) = g(a) =0 and
that g’(a) # 0. Then

lim @ = —f (a).
x—ag(x) g'la
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In practice, we typically add the minor assumption that f’ and g’ are continuous at a, and hence we

can write that ,
lim f = lim '

x—a g(x) x—a g’(x)’

which reflects the fundamental benefit of LHopital’s Rule: if % produces an indeterminate limit of
0

form § as x — a, it is equivalent to consider the limit of the quotient of the two functions’ derivatives,
f'x)

. For example, if we consider the limit from Preview Activity 2.8,

g'(x)
o xX°+x-2
hmz—,
x—1 xc-1
by L'Hopital’s Rule we have that
. X+x-2 . 5x*+1 6
lim ——— =1lim =—-=3.
x—1 x2-1 x—1 2x 2

By being able to replace the numerator and denominator with their respective derivatives, we often move
from an indeterminate limit to one whose value we can easily determine.

Activity 2.22.

Evaluate each of the following limits. If you use L'Hopital’s Rule, indicate where it was used, and be
certain its hypotheses are met before you apply it.
In(1+
@ lim 240
x—0

cos(x)

(b) lim

x—-n X

. 2In(x)
© )16111} 1—ex1

@ lim sin(x) — x
x—0cos(2x)—1

<

While L'Hopital’s Rule can be applied in an entirely algebraic way, it is important to remember that
the genesis of the rule is graphical: the main idea is that the slopes of the tangent linesto f and gatx=a

determine the value of the limit of Jg% as x — a. We see this in Figure 2.20, which is a modified version

of Figure 2.19, where we can see from the grid that f’(a) =2 and g’(a) = —1, hence by L'Hopital’s Rule,
!/
lim f  flla 2

x—a g(x) - g'(a) -1 -

Indeed, what we observe is that it’s not the fact that f and g both approach zero that matters most, but
rather the rate at which each approaches zero that determines the value of the limit. This is a good way
to remember what L'Hopital’s Rule says: if f(a) = g(a) = 0, the the limit of fg% as x — a is given by the
ratio of the slopes of f and g at x = a.

Activity 2.23.
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/
T /- e
N - @ “Num = g(a)
- g

Figure 2.20: Two functions f and g that satisfy L'Hopital’s Rule.

In this activity, we reason graphically to evaluate limits of ratios of functions about which some infor-
mation is known.

Figure 2.21: Three graphs referenced in the questions of Activity 2.23.

(a) Use the left-hand graph to determine the values of f(2), f'(2), g(2), and g’'(2). Then, evaluate
lim &
x—2 g(x)

(b) Use the middle graph to find p(2), p'(2), q(2), and ¢’ (2). Then, determine the value of

lim @
x—2 q(x)

(c) Use theright-hand graph to compute r(2), r'(2), s(2), s'(2). Explain why you cannot determine

the exact value of
. T(X)
lim —
x—2 s(x)
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without further information being provided, but that you can determine the sign of limy_., %
In addition, state what the sign of the limit will be, with justification.
<

Limits involving co

The concept of infinity, denoted oo, arises naturally in calculus, like it does in much of mathematics. It
is important to note from the outset that co is a concept, but not a number itself. Indeed, the notion
of oo naturally invokes the idea of limits. Consider, for example, the function f(x) = %, whose graph is
pictured in Figure 2.22. We note that x = 0 is not in the domain of f, so we may naturally wonder what

Figure 2.22: The graph of f(x) = %

happens as x — 0. As x — 0", we observe that f(x) increases without bound. That is, we can make the
value of f(x) as large as we like by taking x closer and closer (but not equal) to 0, while keeping x > 0.
This is a good way to think about what infinity represents: a quantity is tending to infinity if there is no
single number that the quantity is always less than.

Recall that when we write 3161_{% f(x) =L, this means that can make f(x) as close to L as we'd like by

taking x sufficiently close (but not equal) to a. We thus expand this notation and language to include the

possibility that either L or a can be oco. For instance, for f(x) = %, we now write

. 1
lim — =oo,

by which we mean that we can make % as large as we like by taking x sufficiently close (but not equal) to
0. In a similar way, we naturally write

1
lim — =0,
X—00 X

since we can make % as close to 0 as we'd like by taking x sufficiently large (i.e., by letting x increase
without bound).
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In general, we understand the notation )161_% f(x) = oo to mean that we can make f(x) as large as we'd
like by taking x sufficiently close (but not equal) to a, and the notation xh_)rrolo f(x) = L to mean that we
can make f(x) as close to L as we'd like by taking x sufficiently large. This notation applies to left- and
right-hand limits, plus we can also use limits involving —co. For example, returning to Figure 2.22 and
flx) = %, we can say that

1 1
lim —=-o00 and lim —=0.
x—0" X X——00 X

Finally, we write
lim f(x)=o00
X—00

when we can make the value of f(x) as large as we'd like by taking x sufficiently large. For example,

lim x% = co.
X—00

Note particularly that limits involving infinity identify vertical and horizontal asymptotes of a func-
tion. If lim,_., f(x) = oo, then x = a is a vertical asymptote of f, while iflimy_., f(x) =L, then y=Lisa
horizontal asymptote of f. Similar statements can be made using —oo, as well as with left- and right-hand
limitsas x — a~ orx — a™.

In precalculus classes, it is common to study the end behavior of certain families of functions, by
which we mean the behavior of a function as x — co and as x — —oo. Here we briefly examine a library
of some familiar functions and note the values of several limits involving co. For the natural exponential

y=ce
644
y = f(x)
™ 5
YR
644
gy =) y=yg(x)

Figure 2.23: Graphs of some familiar functions whose end behavior as x — +oo is known. In the middle
graph, f(x) = x> —16x and g(x) = x* — 16x> - 8.

function e*, we note that limy_., ¢* = co and lim,_._o, e* = 0, while for the related exponential decay
function e™*, observe that these limits are reversed, with limy_., e™* = 0 and limy_._o, e~ = co. Turning
to the natural logarithm function, we have limy_.¢+ In(x) = —oo and limy_.o,In(x) = co. While both e*
and In(x) grow without bound as x — oo, the exponential function does so much more quickly than the
logarithm function does. We'll soon use limits to quantify what we mean by “quickly.”
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For polynomial functions of the form p(x) = a,x" + a,— x"1+...a;x+ap, the end behavior depends
on the sign of a, and whether the highest power n is even or odd. If n is even and a,, is positive, then
limy—_.o p(x) = 0o and lim,_._o p(x) = 00, as in the plot of g in Figure 2.23. If instead a,, is negative, then
limy_.o p(x) = —oo and limy_._o, p(x) = —co. In the situation where n is odd, then either lim,_., p(x) =
oo and limy_._o, p(x) = co (which occurs when a,, is positive, as in the graph of f in Figure 2.23), or
limy_ p(x) = 0o and lim,_._, p(x) = co (when a,, is negative).

A function can fail to have a limit as x — oco. For example, consider the plot of the sine function at
right in Figure 2.23. Because the function continues oscillating between —1 and 1 as x — oo, we say that
lim,_., sin(x) does not exist.

Finally, it is straightforward to analyze the behavior of any rational function as x — co. Consider, for
example, the function
3x®—4x+5
7x2+9x-10
Note that both (3x*> —4x +5) — 0o as x — oo and (7x% + 9x — 10) — oo as x — oco. Here we say that
lim,_o g(x) has indeterminate form %, much like we did when we encountered limits of the form g.
We can determine the value of this limit through a standard algebraic approach. Multiplying the numer-

ator and denominator each by é, we find that

qx) =

) 3x®—4x+5 %
lim g(x) = lim ————— %
x—00 x—007x%2+9x—10 %
3-4145%
- th .0l _10Ll
oo7+9}_10?
3
-7

since é — 0and i — 0 as x — oo. This shows that the rational function g has a horizontal asymptote at
y= % A similar approach can be used to determine the limit of any rational function as x — co.
But how should we handle a limit such as
2

.X
lim —?
x—o00 eX

Here, both x> — oo and e* — oo, but there is not an obvious algebraic approach that enables us to find
the limit’s value. Fortunately, it turns out that UHopital’s Rule extends to cases involving infinity.

— Theorem 2.6. )

L'Hopital’s Rule (c0): If f and g are differentiable and both approach zero or both approach
+oo as x — a (where a is allowed to be co), then

/
lim f» = lim f (x).
x—a g(x) x—a g’(x)

. J
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To evaluate lim .o g—i, we observe that we can apply LHopital’s Rule, since both x?> — co and e* — oo.
Doing so, it follows that
x? 2x
lim — = lim —
x—oo gX  x—oo gX’

This updated limit is still indeterminate and of the form 2, but it is simpler since 2x has replaced x2.
Hence, we can apply L'Hopital’s Rule again, by which we find that

x? 2x 2
lim — = lim — = lim —.
x—oo X  x—oo X  x—o00 e*

Now, since 2 is constant and e* — oo as x — oo, it follows that % — 0 as x — oo, which shows that

Activity 2.24.

Evaluate each of the following limits. If you use L'Hopital’s Rule, indicate where it was used, and be
certain its hypotheses are met before you apply it.
(@) lim a
1 ——
x—oo In(x)
eX+x
® I e
In(x)

(c) lim

T

(d) lim

(e) lim xe ™

<

When we are considering the limit of a quotient of two functions f ( that results in an indeterminate
form of 22, in essence we are asking which function is growing faster w1thout bound. We say that the
function g dominates the function f as x — oo provided that

tim £ — o,
X—00 g( X)
whereas f dominates g provided that limy_. ]gchi = oo. Finally, if the value of limy_. A Ex; is finite

and nozero, we say that f and g grow at the same rate. For example, from earlier work we know that
: 2 _ ; 2 e Ti 3x?—4x+5 _ 3 _ 2,2 _ 7,2
limy—. 27 = 0, s0 e* dominates x*, while limy—o 275755 = 5, 50 f(x) =3x° —4x+5 and g(x) = 7x" +
9x — 10 grow at the same rate.

Summary

In this section, we encountered the following important ideas:
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¢ Derivatives be used to help us evaluate indeterminate limits of the form % through L'Hopital’s Rule,
which is developed by replacing the functions in the numerator and denominator with their tangent
line approximations. In particular, if f(a) = g(a) = 0 and f and g are differentiable at a, U'Hopital’s

Rule tells us that
fo f'(x)

lim —— =lim .
x—a g(x) x—a g’(x)

* When we write x — oo, this means that x is increasing without bound. We thus use co along with limit
notation to write lim,_., f(x) = L, which means we can make f(x) as close to L as we like by choosing
x to be sufficiently large, and similarly lim,_., f(x) = co, which means we can make f(x) as large as
we like by choosing x sufficiently close to a.

* A version of LHopital’s Rule also allows us to use derivatives to assist us in evaluating indeterminate
limits of the form 3. In particular, If f and g are differentiable and both approach zero or both ap-
proach +oo as x — a (where a is allowed to be co0), then

lim M = lim f (x).
x—a g(x) x—a g’(x)

Exercises

1. Let f and g be differentiable functions about which the following information is known: f(3) = g(3) =
0, f'38)=¢g'B3)=0, f"(3) = -2, and g"(3) = 1. Let a new function & be given by the rule h(x) = %. On
the same set of axes, sketch possible graphs of f and g near x = 3, and use the provided information

to determine the value of
lir% h(x).
X—

Provide explanation to support your conclusion.
2. Find all vertical and horizontal asymptotes of the function

B 3(x—a)(x—Db)
T 5(x—a)(x—c)

R(x)

where a, b, and c are distinct, arbitrary constants. In addition, state all values of x for which R is not
continuous. Sketch a possible graph of R, clearly labeling the values of a, b, and c.

3. Consider the function g(x) = x>*, which is defined for all x > 0. Observe that lim_q+ g(x) is indeter-
minate due to its form of 0°. (Think about how we know that 0% = 0 for all k > 0, while b° = 1 for all
b # 0, but that neither rule can apply to 0°.)
(@) Let h(x) =In(g(x)). Explain why h(x) = 2xIn(x).

(b) Next, explain why it is equivalent to write h(x) = m

X

(c) Use L'Hopital’s Rule and your work in (b) to compute lim_.¢+ h(x).

(d) Based on the value of limy_.¢+ h(x), determine limy_.o+ g(x).
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4. Recall we say that function g dominates function f provided thatlim_..c f(x) = 0o, limy_. g(x) = o0,
f&x) _

and lim,_ 0 = 0.
(a) Which function dominates the other: In(x) or /x?
(b) Which function dominates the other: In(x) or {/x? (n can be any positive integer)
(c) Explain why e* will dominate any polynomial function.

(d) Explain why x” will dominate In(x) for any positive integer .
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2.9 More on Limits

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

* In addition to direct substitution, factorization, and 'Hospital’s Rule, are there other techniques
that can be used to evaluate limits? How would we evaluate the following limits

x2 -4
lim Vx2+1-x, lim , lirr(l)xsin(llx) ?
x—>

X—00 x—2 x—2

Introduction

We have seen, when introducing the concept of limits in Section 1.2, limits that were relatively simple.
In the case where the function was continuous at the value approached by the limit direct substitution
could be used. Sometimes it was possible to deduce the value of the limit using the graph of the function.
When we had ratios of polynomials and an indeterminate form 0/0 we could factor the numerator and
the denominator to simplify the expression and use direct substitution afterward to evaluate the limit.
We briefly review these simple limits.

Example 2.6. Evaluate each limit.
) |
(@) }Cl_rg tan(ﬂ)

(b) lim earcsinl/x
x—1
-1
() lim u
x—1-2(x-1)

3x2-12
(d Hm— <
=2 x2-5x+6

Solution.

At x = 2, the rational function n/2x is continuous and the value of the function is /4. In fact, the
rational function n/2x is continuous everywhere except at x = 0, where there is an infinity discontinuity.
The tangent function is continuous everywhere except at +7/2, +3n/2, +5mn/2,..., where there are vertical
asymptotes. Therefore, unless in the limit x approaches 0 or a value which makes the expression n/2x
approach a value where the tangent function is discontinuous, we may use direct substitution to evaluate
the limit. We will soon see that a continuous function of a continuous function remains continuous on its
domain. Therefore, whenever we have a function which is a composition of continuous function, taking

o020
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the limit of this function at a point can be done with direct substitution when the value approached is in
the domain of the function. In our case this gives
. s L8 T
hmtan(—) = tan(—) = tan(—) =1.
x—2 2x 2:2 4
The second example is similar to the first one: the function in the limit is a composition of the func-
tions e*, arcsin x, and 1/x. All functions are continuous on their domain and the composition of these
functions gives a function that is also continuous on its domain. When x approaches 1, the expres-
sion 1/x approaches 1, the expression arcsin 1/x approaches arcsinl = n/2, and finally the expression

eesinl/x approaches e™'2. Therefore,

arcsinl/x — /2

lim e e

x—1
We would have had a limit that does not exist if either x would have approached 0, or if x would have
approached a value where arcsin is undefined (any value not in the interval [-1, 1]).

In the third example, we cannot use direct substitution, since replacing x by 1 makes the denomina-
tor 0. Furthermore, we cannot just cancel the numerator and denominator |x — 1| and x — 1, since these
expressions are not equal: |x — 1| only equals x — 1 when x — 1 is nonnegative, that is x — 1 = 0 or simply
x = 1. Otherwise, |x — 1| = —(x — 1). More precisely,

x=1 _1
x— 1| 3D = 2 if x=1,
20-1) —(x=1) _ -1
) =3 if x<1.
lx—1

This means that the graph of | is a step graph that is equal to —1/2 for values of x less than 1, and

2(x-1)
1/2 for values of x equal to or above 1, as shown in Figure 2.24. Since we are approaching 1 from the left
A
1/2 1 .
1
—1/2 .
x-1
Figure 2.24: The graph of y = ﬁ shows that the limit does not exist at x = 1, but the right-hand and
x f—

left-hand limits exist.

x—-1
(values less than 1), values of the expression - 1) remain equal to —1/2. Therefore,
x p—

|x—1|

im —=-1/2.
x—1"2(x-1)
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The last example is a typical example where we have a rational function and where both polynomials
3x% —12 and x? - 5x + 6 are equal to 0 when x = 2. This means that x = 2 is a root for both polynomials
and therefore x — 2 is a factor for both polynomials. We will be able to simpli xngz 5;136 by canceling at
the top and at the bottom the common factor x — 2:

o 3x%2-12 ) 3(x2-4) o 3(x—-2)(x+2) .. 3(x+2) 3-4
lim ——— =1lim = lim = lim =—=-12.
—2x2-5x+6 x—2(x-2)(x-3) 12 (x—-2)(x—3) x—2 x-3 -1

+2)

e . . . . 3(x s .
After simplifying the expression, we have obtained the rational expression which is continuous

x —
everywhere except at x = 3. Since we are approaching x = 2, we can use direct substitution to evaluate
the limit.

In the preview activity that follows, you will review the type of limits we have previously looked at.
Some of the limits will also require the use of 'Hospital’s Rule.

Preview Activity 2.9. Evaluate the following limits.
. xP-x-2
(@ lim ———
x—-1 Xx°—-X

2

xX“—x-2
(b) limg—
=1 x°—Xx

(¢) limarcsin(x® —5)
x—2

sin3x

() )16111}) 4x

X%+ x—6]
(e) lim ———
-2  Xx-2

() lim xInx*
x—0+

Using the conjugate to evaluate limits

Vi+x-2
Consider the following limit: lirré —_3 Direct substitution shows that this is a limit of the form 0/0.
x— X —

We could definitely use 'Hospital’s Rule, but we will show you a technique that can be used when square

. i . . VI+x-=2 . ..
roots are involved. The idea is to rewrite the expression -3 by rationalizing the numerator, that
X

is by removing any radicals from the numerator (something you might recall doing in high school). To
do this we use the identity (a— b)(a+ b) = a? — b?. Indeed, notice (V1+x—-2)(V1+x+2) = \/mz —22=
(1 + x) — 4 and therefore multiplying the numerator by v/1+ x + 2 will remove the radical. To preserve
equality, we need to multiply the numerator and the denominator by v/1 + x + 2. We obtain

\/1+x—2_1, (\/1+x—2)(\/1+x+2)_1, 1+x)—-4

lim = lim

3 x-3 3 (xr-3)(VIrx+2) S (x-3)(VIrx+2)

o020
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x-3 1 1
=lim =lim—=-.
=3 (x-3)(VI+x+2) *=3y1+x+2 4
vV1i+x-2 1
By writing 3 as - 5 we say that we have rationalized the numerator. Instead of having
X—= +Xx+

a radical in the numerator, it now appears in the denominator. The advantage in using the second ex-

pression in our limit is that it is well defined at x = 3 and we may use a direct substitution to evaluate the
limit.

x-3
If you consider the following similar example lim ————, then in this case we would also rewrite
=3 y14+x-2

the expression within the limit by multiplying the numerator and the denominator by v'1 + x+2, but this
time we would be rationalizing the denominator instead. Otherwise, everything else is just the same.

Note that we call the expression v'1+ x + 2 the conjugate of the expression v'1+ x —2. In general,
va+ b is the conjugate of v/a— b (and vice versa), a+ v b is the conjugate of a — v'b (and vice versa), and
va— /b is the conjugate of v/a+ v/b (and vice versa).

Preview Activity 2.10. Write an equivalent expression for each expression below by multiplying and
dividing by the conjugate. Simplify your answer as much as possible.

Vr-1
x—1
x—16
Jx—4

b

V7+x— \/_

(d V9Ix2+x-3x

(a)

(b)

Use your work to evaluate the following limits.
-1
(@) lim vx
-1 x-1

im x—16
x—>16\/_ 4

(¢ lim —

=0\/T+x-7

(d lim V9x2+x—-3x

X—00

(b)
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Activity 2.25.
In this exercise we wish to graph the curve y = vV4x2 — 1.

(a) Find the domain of the function f(x) = v4x?— 1. Notice that some negative values of x are
allowed in the domain.

(b) Evaluate the derivative of f(x) and find the intervals where the function is increasing and
decreasing.

(c) Evaluate the limit lim vV4x2—-1-2x.
X—00

(d) If y = ax+ b is a slant asymptote of y = f(x), then the values of ax + b and f(x) are getting
closer for increasingly large values of x (we only discuss the case were x — oo, but the case
where x — —oo is similar). In other words, y = ax + b is a slant asymptote of y = f(x) if

)}Lrglof(x) —(ax+b)=0.

Use the limit in (c) to find a slant asymptote for the graph of y = f(x).

Figure 2.25: This figure illustrates a function f which has a slant asymptote y = ax + b.

(e) When x is large and positive, 4x? is much larger than 1, and we may write vV4x2 — 1 = V4x2.
Simplify v4x2 to obtain another argument showing that y = 2x is a slant asymptote of the
graph of y = f(x). How would this argument work out for large but negative values of x? Hint:
V4x2 is not equal to 2x when x is negative. What is it equal to?

(f) Graph y = f(x) for nonnegative values of x using information on the domain, the derivative
and the asymptote.

(g) Show f(-1) = f(1), f(—2.4) = f(2.4), and in general that f(—x) = f(x) to argue that f is sym-
metrical with respect to the y-axis. Use your previous graph to obtain the graph of f over its
domain.

(h) Consider the curve y = vV9x? + x— 1+ 1 and find its slant asymptotes.
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Using continuity to evaluate limits

-Vx

X
). The expression 1 isnot defined at x =1 (and

1-
Now consider the following limit: lirr% arccos (
X—

therefor not continuous since a continuous function at x = 1 is at least defined at x = 1) and we cannot
use direct substitution to evaluate the limit. As x approaches 1, the limit of this expression is of the form
0/0 and multiplying the numerator and the denominator by the conjugate of 1 —/x gives (we could also
apply I'Hospital’s Rule)

lim—l_ﬁ—lim(l_ﬁ)(lJrﬁ)—lim 1-x = lim 1 —1
=1 1-x x=1 (1-0)1+vx) =1(1-00+yx) x=11+yx 2

X . .
. is approaching 1/2 as x ap-

1-ﬁ)

. . X . .
We see that in the expression arccos( ), the inner expression

proaches 1. Because arccos is continuous at 1/2, we expect that as x approaches 1 that arccos( 1
-X
will approach arccos (%), or if you prefer we expect to obtain

imarecos( 7227 <arccos
lim arccos =arccos|—=|=—.
x—1 1 2 3

In some way this equivalent to move the limit inside the outer function:

. 1-vx _1-Vx 1
lim arccos 1 = arccos|lim = arccos 3 =

X—1 -x x—1 1—-x 3

The following result allows us to do this precisely.

Moving the limit inside: If f is continuous at x = b and )lclrrfll g(x) = b, then

lim f(g(0) = f (lim g()) = £ ).

1-Vx

In the example we did, we had f(x) = arccosx, g(x) = ,a=1,and b=1/2.

1-x
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Activity 2.26.
Evaluate the following limits.
2_4
(a) limcos (M)
x—2 x—2
. 2x2+x-1
® I\ Se—s
Vx-3
(¢) lime>s
x—9
3
(d) lim arcsin ( V3+ x)
X—00 2x

<

From the previous result we get another important result and its proof appears in Appendix 22: the
composition of continuous functions is also continuous. This means that if f and g are continuous
functions on their domain, then the composite function fog defined by (fog)(x) = f(g(x)) is continuous
on its domain as well. For instance, take the function v/1/x. The function 1/x being a rational function,
it is continuous on its domain R/{0} (all reals except 0), and the function /x is continuous on its domain
[0,00). Since v/1/x is the composite of both functions, it is also continuous on its domain (0,c0).

— Theorem 2.7. N

Continuity of the composition of continuous functions: If the function g is continuous at
x = a, and the function f is continuous at g(a), then the composite function fog is continuous
atx=a:

lim f(g(x)) = f(g(a).

The theorem does not assume that f and g are continuous functions on their domain (so it has a
wider range of applications), but if that is the case, then the composite function f o g is continuous on its
domain. Most composite functions we consider are this way though and showing where it is continuous
is merely equivalent in this case (thanks to the theorem) to find the domain of the function. Knowing
where the function is continuous allows us to use the direct substitution rule when the value being ap-
proached in the limit of the function is part of its domain.

Activity 2.27.

Find all values where the following functions are continuous.
@ V1-x?

b) x¥*+4+

o020

1
V1-x2
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(c) cos (e“x)

x2—4 )
3x2 —6x

(d) arctan (

Using the Squeeze Theorem to evaluate limits

Consider the following limit
. sinx

lim —.

X—0o0 X
In this example, we cannot simply replace x by co, that would not make any sense. Furthermore, we can-
not evaluate the limit of the numerator and the denominator as x — oo and compute the resulting ratio,
since the limit of the numerator does not exist (sin x keeps oscillating between —1 and 1) and the denom-
inator goes to infinity. L'Hospital’s Rule cannot be used here, since the numerator is not approaching
infinity. However, the fact that —1 < sinx < 1 allows us to write the following inequalities

-1 sinx
<——=<

X X

==

. sinx
Now notice that as x — oo, the expressions on the left and on the right which bound the expression —

x
in the center both approach 0. Therefore, the expression in the center must also approach 0 and we

obtain .
. sinx
lim — =0.
X—00 X

One way to think about this problem is to see that the graph of % is squeezed between the graphs of

1 1
the functions ——, and —. This is shown in the figure below.
X X

fle) =2

Figure 2.26: The graph of f(x) = sin x/x oscillates between the graphs of g(x) = —-1/x and h(x) =1/x.

For this reason we introduce here the so-called Squeeze Theorem.
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— Theorem 2.8. N

Squeeze Theorem: Consider the following limit

ngUD

and let I be an interval which contains the point a. Assume that the graph of f is squeezed
between the graphs of g and & such that

g(x) < f(x) < h(x)

when x is any value in the interval I not equal to a. If g and & approach the same value L as
X — a, that is

lim g(x) = lim h(x) =L,

X—a X—a

then
)16111(11 fx)=L.

We need to replace x — a by x — a* if a is the left endpoint of the interval I, or by x — a~ if a
is the right endpoint of the interval I. The theorem is illustrated in Figure 2.27.

y=nh(z)

y=f(z)

y=g()

Figure 2.27: Since g(x) < f(x) < h(x) and since both g(x) and h(x) converge to L as x — a, so does f(x).

Notice that the inequalities need not apply when x = a, since any of the three functions f, g, or h
may not be defined at this value. Even then, the result would still hold. This is shown in the following
example, where a = 0 and where f is not defined at x = 0 even though the limit lirr(l) f(x) exists.

X—

Example 2.7. Evaluate

1
lim x? sin (—) .
x—0 X
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Solution.

1
x

1
In this example, f(x) = x*sin (—) is not defined at x = 0. Furthermore, lim,_osin () is not defined
x

(try graphing this function near 0 to see why if you do not already see it) and 'Hospital’s Rule is of no
help here. However, we can once again use the fact that the sine function is always bounded by -1 and 1
and thus

-1 =< sin(%) < 1,

-x* < xzsin(%) < x°

.. . (1Y, .
What is important here is that x*sin (—) is squeezed between two functions that converge to the same
X

value as x approaches 0:

lim —x? = lim x*> = 0.
x—0 x—0

Therefore, using the Squeeze Theorem, we conclude that

1
lim x°sin (—) =0.

x—0

The Squeeze Theorem should only be used as a last resource, when other common and simpler meth-
ods have failed. It is usually difficult to apply because finding appropriate functions g and h that both
bound the function f and approach the same value when x — a is usually difficult to do. In particu-
lar, some knowledge of what the limit L. might be is necessary to find the appropriate inequalities. For
instance, the following limit

sinx

im
—01+x
involves again the sine function which is bounded and we could of course write
-1 sinx 1
< = .
1+x 1+x 1+x

We have bounded the expression in the center, but both functions ﬁlx and ﬁ are not approaching the

same value when x — 0 (one approaches -1, where the other approaches 1). In this case the inequality

we have written is useless and the Squeeze Theorem cannot be used. In fact, here it is much simpler to

. sinx
notice that

is a continuous function at x = 0 (it is a ratio of continuous functions) and that direct

+Xx
substitution can be used to obtain
sinx B sin0 0

1+x 140 1

lim
x—0

If one really wants to use the Squeeze Theorem, we first need to anticipate that the limit is 0 (using a
calculator for instance by substituting values of x increasingly close to 0, or by graphing the function

sinx
fl) = Tox near x = 0), and then we need to find two functions g and / such that
X

g(x) = f(x) = h(x)
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y=sin x

Figure 2.28: The graph of y = sin x is bounded above by its tangent line at x = 0 and below by the x-axis
y = 0 for nonnegative values of x.

on an interval which contains 0. For instance, we could use the fact that y = x is the tangent line of
y =sinx at x = 0 to deduce the inequalities 0 < sin x < x for 0 < x (notice here that I is the interval [0, c0)).
This is illustrated in Figure 2.28. From this we can write

0 sinx X
= < < ,
1+4x 1+x 1+x

for x = 0. Since the expression on the left is exactly 0, and since the limit of the expression on the right is

lim =
x—-01+x 1

)

the Squeeze Theorem can be applied to obtain

sinx
im =0.
x—0" 1+ x

Similarly, using the fact that —x < sinx < 0 for x < 0, we can deduce using the Squeeze Theorem that

sinx

lim =0.
x—0"1+x
Putting these two limits together yields once again
. sinx
lim =0.
x—01+x

Clearly this is not the simplest solution, which proves our point that the Squeeze Theorem should be
among the last options considered when trying to evaluate a limit.