Practice Set

1. Differentiate the following functions.
(a) $y=\sqrt{13 x^{2}-5 x+8}$
(f) $y=\cos (4 x)-\tan \left(x^{2}+\sin x\right)$
(b) $y=\left(1-4 x+7 x^{5}\right)^{2016}+(\sqrt{x}+x)^{2017}$
(c) $y=\cos \left(x^{2} e^{x}\right)+\cos x$
(d) $y=x^{2} \cos \left(\frac{1}{x^{3}}\right)+\frac{1}{x}$
(e) $y=3 \tan \sqrt{x}+x e^{-x}$
(f) $y=\left(\frac{8 x-x^{6}}{x^{3}}\right)^{-\frac{4}{5}}$
2. Differentiate the following functions and evaluate their derivative at the given points for the specified functions. (You may apply chain rule twice).
(a) $y=\cos ^{2}\left(x^{3}\right) \quad x=\sqrt[3]{\frac{4 \pi}{3}}$
(b) $y=\tan ^{4}\left(z^{2}-\pi\right) \quad z=\sqrt{\frac{\pi}{6}}$
(c) $y=\sin ^{3}\left(e^{1-t}+3 \sin (6 t)\right) \quad t=1$
(d) $y=x^{-2} \sin ^{2}\left(x^{3}\right)$
(e) $y=\left(3+\cos ^{3}(3 x)\right)^{-\frac{1}{3}}$
(f) $y=\cos \left(\frac{1-e^{2 x}}{1+e^{2 x}}\right) \quad x=0$
3. Find the tangent line to $f(x)=4 \sqrt{2 x}-6 e^{2-x}$ at $x=2$.
4. Find the point(s) where the tangent line to the graph of $h(t)=e^{5 t^{2}+7 t-13}$ is parallel to the line $y=-5$.
5. Find the point(s) where the tangent line to the graph of $g(x)=\sqrt{\frac{x^{2}+x}{x^{2}}}$ is horizontal.
6. Find the point(s) where the tangent line to the curve of the function $y=e^{\tan x}$ is parallel to the line $y+3 x=4$
7. Assume that $h(x)=f(g(x))$, where both f and g are differentiable functions. If $g(-1)=2, g^{\prime}(-1)=3$, and $f^{\prime}(2)=-4$, what is the value of $h^{\prime}(-1) ?$
8. Assume that $h(x)=\left(f(x)^{3}\right)$, where f is a differentiable function. If $f(0)=-\frac{1}{2}$ and $f^{\prime}(0)=\frac{8}{3}$, determine an equation of the line tangent to the graph of h at $x=0$.
