MATH 110－003，QUIZ 4
November 15， 2016
Time： 15 minutes

Show all your work．No calculators，no books／notes are allowed．
Name（please print）： \qquad
Student number： \qquad

1．a）Differentiate the following function

$$
y=\tan ^{4}\left(z^{2}-\pi\right)
$$

b）Evaluate the derivative at $z=\sqrt{\frac{\pi}{6}}$ ．

$$
y=\tan ^{4}\left(z^{2}-\pi\right)=(\tan \text { en })^{4}
$$

a）$y^{\prime}=4(\tan)^{3} \cdot \underbrace{\left(1+\tan ^{2}\right.})$ ．

derivative of inside：$z^{2}-\pi$

$$
\begin{aligned}
& =4 \tan ^{3}\left(z^{2}-\pi\right) \cdot\left(1+\tan ^{2}\left(z^{2}-\pi\right)\right) \cdot 2 z \\
& =8 z \tan ^{3}\left(z^{2}-\pi\right)\left(1+\tan ^{2}\left(z^{2}-\pi\right)\right)
\end{aligned}
$$

b）\leadsto NEXT PAGE
2．Find the point（s）where the tangent line to the graph of $h(t)=e^{5 t^{2}+7 t-13}$ is parallel to the line $y=-5$ ．

$$
\begin{aligned}
& \text { slope }=0 \xrightarrow{\text { solve }} h^{\prime}(t)=0 \\
& h(t)=e^{\text {世分 }} \rightarrow h^{\prime}(t)=e^{\frac{e}{l}} . \\
& \text { derivative of } \\
& \text { outside } \\
& h^{\prime}(t)=e^{5 t^{2}+7 t-13}(10 t+7)=0
\end{aligned}
$$

either $e^{5 t^{2}+7 t-13}=0 \rightarrow$ NOT possible \rightarrow Exponential
1 is ALWAYS positive．
or $\quad 10 t+7=0 \leadsto t=\frac{-7}{10}$
(1)
b) $y^{\prime}\left(\sqrt{\frac{\pi}{6}}\right)=4 \tan ^{3}\left(\frac{\pi}{6}-\pi\right) \cdot\left(1+\tan ^{2}\left(\frac{5 \pi}{6}-\pi\right)\right) \cdot 2 \sqrt{\frac{\pi}{6}}$

Locate $\frac{-5 \pi}{6}$ in the unit circle:
Negative direction
number comes from $\tan \frac{\pi}{6}$ in the

memorized table $\rightarrow \frac{1}{\sqrt{3}}$
Sign comes from the quadrant
$\longrightarrow 3^{\text {rd }}$ quadrant \rightarrow tan is \oplus because \sin is $\Theta<\cos$ is Θ

$$
\begin{aligned}
& \Rightarrow \quad \tan \left(-\frac{5 \pi}{6}\right)=\frac{1}{\sqrt{3}} \\
& \Rightarrow y^{\prime}\left(\sqrt{\frac{\pi}{6}}\right)=8 \sqrt{\frac{\pi}{6}} \cdot\left(\frac{1}{\sqrt{3}}\right)^{3} \cdot\left(1+\left(\frac{1}{\sqrt{3}}\right)^{2}\right) \\
&=8 \sqrt{\frac{\pi}{6}} \cdot \frac{1}{3 \sqrt{3}} \cdot \frac{4}{3}
\end{aligned}
$$

