Second Derivative
$$f'' = (f')'$$

Lecture 15. Feb 5

In term 1, we defined the derivative to be the rate of change. $f' \longrightarrow Rate of change in f.$ $f''=(f')' \longrightarrow Rate of change in f'$

For example, if $\chi(t)$ is the position of a particle at time t, then $\chi'(t) \longrightarrow Rate$ of change in position : $\chi(t) = V(t) \longrightarrow velocity$ $\chi''(t) \longrightarrow Rate$ of change in velocity : $\chi''(t) = V(t) = \alpha(t)$ $\longrightarrow acceleration$.

On the other we also know that at any point, the derivative of f is the slope of the tangent line to f at that point.

f' ~ slope of the tangent line.

f = (f) change in the slope of the tangent line. slope

Relationship between
$$f'$$
 and shape of f .
f: Guean f' is cheaper f' is concave f' for any χ in $(a,b) \Rightarrow f(x)$ is concave down in (a,b) .
Relationship between f' and shape of f .
F: Guean f' is concave f' for any χ in $(a,b) \Rightarrow f(x)$ is concave down in (a,b) .
Relationship between f' and shape of f .
Relationship determines how the curve of function is bent. If the
concavity determines how the curve of function is bent. If the
curve opens upward f' , it is concave up.
If the curve opens downward f' , it is concave down.
Shape of f and sign of f''
If $f(x)$ is concave up in an interval (a,b) , then $f'(x) > 0$
for any χ in (a,b) .
If $f(x) > 0$ for any χ in $(a,b) \Rightarrow f(x)$ is concave up in (a,b) .
Nice versa:
If $f'(x) > 0$ for any χ in $(a,b) \Rightarrow f(x)$ is concave up in (a,b) .
If $f'(x) < 0$ for any χ in $(a,b) \Rightarrow f(x)$ is concave down in (a,b) .

Now, in the examples, by determining the sign of
$$f(x)$$
 we find
the intervals where $f(x)$ is concave down /up.
Example. Find the intervals where f is concave down and concave up.
Determine the inflection point if there is any.
 $f(x) = 2x^3 - 15x^2 + 24x - 7$
 $f(x) = 6x^2 - 30x + 24 \longrightarrow No need to find critical numbers, local
 max or min.
 $f(x) = 12x - 30$
 $f'(x) = 0 \Rightarrow 12x - 30 = 0 \Rightarrow 2 = \frac{30}{12} = \frac{5}{2}$
Sign Chart for f'' :
 $\frac{x}{1-\infty} = \frac{12x}{7x^2} = \frac{5}{2} + \frac{1}{7x^2} + \frac{1}{7x^2} = \frac{5}{7x^2} + \frac{1}{7x^2} = \frac{5}{7x^2} + \frac{1}{7x^2} = \frac{1}{7x^2} + \frac{1}{7x^2} = \frac{1}{7x^2} + \frac{1}{7x^2} = \frac{1}{7x^2} + \frac{$$