Lecture 10 Sept 26

HW 2 posted. Due date: Monday Oct 1 Collect HW 1 from MLC (LSK 301/302, 11am-5pm)

Clicker Q: Find the	following limits using the g	raph of fixs.
2	(1) $\lim_{x \to 0} f(x) = 1$	and f(o)=undefined
-1	A.O C.1 B.2 D1	E · NOT Sure ::
(2) $f(x) = -2$ right $f(x) = -2$ limit at 2 $(x \rightarrow 2^{+})$ approaching 2 from right	A1 C. 1 B2 D. 2	E. Again NOT Sure :
(3) $finite f(z) = -1$ left limit $z \rightarrow 2^{-1}$ at 2 approaching 2 from left	A1 C. 1 B2 D. 2	E. Again !!!

What is the full limit at 2 then: $\lim_{x \to 2} f(x) = Does$ NOT exist, because the one-sided limits are $x \to 2$ NOT equal and we don't get a unique value. Limit Exists or Does Not Exist (DNE)

$$\frac{Exists}{x}: \text{ If one-sided limits both from left and right existand they are equal then the full limit exists, andthe value of the limit is just the value of one-sidedlimits \rightarrow clicker Q: 1
$$\lim_{x\to 0^+} f(x) = 1 = \lim_{x\to 0^-} f(x) \text{ and } \lim_{x\to 0^-} f(x) = 1$$
$$\lim_{x\to 0^-} x_{\to 0^-} \text{ The full limit exists and it is equal to the left & right lim}$$
$$\frac{\text{Does Not Exist}}{\text{DNE}}: \text{ If one-sided limits are Not equal to each other then the full limit DNE \rightarrow clicker Q 2 & 3
$$\lim_{x\to 2^+} f(x) = -2$$
$$\lim_{x\to 2^-} f(x) = -1$$
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} f(x) = \text{Does Not Exist} = \text{DNE}$$
$$\lim_{x\to 2^-} f(x) = -1$$
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} f(x) = 1$$
$$\lim_{x\to 2^-} f(x) = -1$$
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 1$$
$$\lim_{x\to 2^+} f(x) = 1$$
$$\lim_{x\to 2^-} f(x) = 1$$$$$$

=> This is a two-way Conclusion:

 $\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^+} f(x) = L$

2

So far we could find the limits using the graph of a given
function, but what if there's no graph given and we only have
the expression for the function. Let's start with two easy
examples.
A.O C. 2
B. 1 D. 3
Clicker Q: what is
$$\lim_{x\to 1} (3) = 3$$

 $\frac{1}{2 \times 1}$
A.O C. 2
B. 1 D. 3
Clicker Q: what is $\lim_{x\to 2} x = 2$
 $\frac{1}{2 \times 2}$
 $\frac{1}{2$

$$\frac{1}{\sqrt{1-x}} = \frac{\sqrt{1-x}}{\sqrt{1-x}} = \frac{\sqrt{1-x}}{\sqrt{1-x}} = \frac{\sqrt{1-x}}{\sqrt{1-x}}$$

$$E_{x_{1}} = \frac{1}{12} + \frac{1}{12}$$

* We use the Simit laws everything into Sun cond Jui x until we could break everything into 2000 x00 x00

$$\frac{2+z}{z+z} = \frac{9+z}{z+z} = \frac{2+z}{z+z}$$

$$9 - = \frac{9 + (z-)}{z + (z-)\varepsilon_{z}(z-)} = \frac{z-\varepsilon_{z}}{z - \varepsilon_{z}} + \frac{z-\varepsilon_{z}}{z - \varepsilon_{z}} + \frac{z-\varepsilon_{z}}{(z - \varepsilon_{z})\varepsilon_{z}(z-\varepsilon_{z})} = \frac{z-\varepsilon_{z}}{z - \varepsilon_{z}} + \frac{z-\varepsilon_{z}}{(z - \varepsilon_{z})\varepsilon_{z}(z-\varepsilon_{z})} = \frac{z-\varepsilon_{z}}{z} = \frac{z-\varepsilon_{z}}{z - \varepsilon_{z}}$$

So the limit value is -6. $\partial - = \frac{z + (z -)z - z(z -)}{\partial + \varepsilon(z -)}$ the function: (-2)z - z(z -) = -6. $\partial - = \frac{z + (z -)z - z(z -)}{\partial + \varepsilon(z -)} = \frac{z + zz - zz}{\partial + \varepsilon z}$ where z = -6. $\partial - = \frac{z + (z -)z - z(z -)}{\partial + \varepsilon(z -)} = \frac{z + zz - zz}{\partial + \varepsilon z}$

$$\lim_{x \to 3} \frac{x^2 + x - 20}{x - 4} = \frac{(3) + 3 - 20}{3 - 4} = 8 v$$

Note:
The 1st step in finding a limit, Direct Substitution
If the function is "nice", direct substitution always
works.
"Nice" functions include: • polynomials (constant)
• rational functions of polynomials
with no zero in the denominator.
• Sin z, Con z, e^x
•
$$\sqrt{z}$$
 and $\log x$ (when $x > 0$)
 $z > 0$

Example 3: Find the following limits
Recall :
(1) $\lim_{x \to 2} (\ln x) = \ln 2$ $x \to 2$
*As long as, we are away from 0 (2) $\lim (\sqrt{x} + \cos x) = \sqrt{\pi} + \cos \pi$ $x \rightarrow \pi$ $= \sqrt{\pi} - 1$ $q \downarrow \uparrow \downarrow $
What if $f(x)$ is NOT "nice"? Let's re-do example 2 with limit in another x :
$\lim_{x \to +\infty} \frac{x^2 + x - 20}{7 - 4} = \frac{(4)^2 + 4 - 20}{4 - 4} = \frac{0}{0}$
$x \rightarrow 4$ $x - 4$ u' $4 - 4$ 0°°° always start with substitution
$\frac{0}{0}$ is NOT a number, we call $\frac{0}{0}$ an indeterminate form.
How to remove $\frac{0}{0}$? Manipulate the function doing some algebra
$\lim_{\substack{x \to 4 \\ x \to 4 \\ x \text{ approaches } 4, x \neq 4 \\ \text{Recall from Lab1:} f(x) = (x+5)(x-4) = \lim_{x \to 4 \\ x \to $
Recall from Lab 1: $f(x) = (x+5)(x-4) = \begin{cases} x+5 & x\neq 4 \\ x-4 & \\ wdefined & x=4 \\ worry about this in \\ undefined case. \\ \end{cases}$

Note Re-visit limit evaluation :
1st step : Always start with direct substitution
If you get a number
Voila !
Vou have the limit:
Find
$$\lim_{x \to -1} \frac{z^2 - 1}{z^2 + z} = \frac{(-1)^2 - 1}{(-1)^2 + (1)} = \frac{1 - 1}{1 - 1} = \frac{0}{0}$$
 !!!
Example 4.
Find $\lim_{x \to -1} \frac{z^2 - 1}{z^2 + z} = \frac{(-1)^2 - 1}{(-1)^2 + (1)} = \frac{1 - 1}{1 - 1} = \frac{0}{0}$!!!

$$\chi \rightarrow -$$