Composition of Functions: Given two functions, say $f(x)$ and $g(x)$; we can take the output from one function and use it as the input for the second function.

Example:-
(1)

becomes the input for the second function

(2)

$$
\begin{aligned}
& f(x)=x+1 \\
& g(x)=x^{2}
\end{aligned}
$$

Notation:
Function composition is denoted by "O", so

$$
\begin{array}{ll}
f(g(x)) & =f \circ g(x) \\
g(f(x)) & =g \circ f(x)
\end{array}
$$

Question: Is $f \circ g(x)=g_{\circ} f(x)$ in general ? NO, check example 2 above:

$$
\begin{aligned}
& g \circ f(x)=g(f(x))=g(x+1)=(x+1)^{2} \\
& f \circ g(x)=f(g(x))=f\left(x^{2}\right)=x^{2}+1
\end{aligned}
$$

Example Let $f(x)=\frac{x}{x-3}, g(x)=\sqrt{1+x}$ and

$$
h(x)=\left\{\begin{array}{ll}
2 x & x \leq 1 \\
5-x & x>1
\end{array} . \quad\right. \text { Evaluate }
$$

- $f \circ g(3)=f\left(\begin{array}{c}\text { sits in } f \\ f\left(\frac{r}{g}\left(\frac{\pi}{t}\right)\right. \\ \text { sits in } g(x)=\sqrt{1+x} \\ =\end{array} f(\sqrt{1+3})=f(\sqrt{4})=f(2) \stackrel{f(x)=\frac{x}{=}=\frac{2}{2-3}=\frac{2}{-1}=-2}{ }\right.$
- $g \circ f(4)=g(f(4))=g\left(\frac{4}{4-3}\right)=g(4)=\sqrt{1+4}=\sqrt{5}$
- hoff (5) $\begin{aligned} & h(f(5))=h\left(\frac{5}{5-3}\right)=h\left(\frac{5}{\frac{5}{2}}\right) \stackrel{h(x)=5-x}{=} 5-\frac{5}{2}=\frac{10-5}{2}=\frac{5}{2} \\ & h(x)=2 x\end{aligned}$
- $g \circ h(-1)=g(h(-1)) \stackrel{h(x)=2 x}{\stackrel{i}{=}} g(2 .(-1)) \quad g^{\frac{5}{2}}>1 \rightsquigarrow 2^{\text {nd }}$ line of h
- hah $(4)=h(h(4))^{h(x)=5-x} \xlongequal{\stackrel{1}{2}} h^{(5-4)} \quad \Rightarrow$ domain of doh
$h_{(x)=2 x}^{=}=2.1=2$
- $g \circ f(x)=g(f(x))=g(\underbrace{\frac{x}{x-3}}_{(x)=\sqrt{1+x}})=\sqrt{1+\frac{x}{x-3}}=\sqrt{\frac{x-3+x}{x-3}}=\sqrt{\frac{2 x-3}{x-3}}$
- $f \circ h(x)=* h(x)$ is a piecewise function so to find $f(h(x))$ we need to consider the two intervals of the domain: $x \leq 1$ and $x>1$.
* if $\quad x \leq 1 \Rightarrow h(x)=2 x m f(h(x))=f(2 x)=\frac{2 x}{2 x-3}$
* if $x>1 \Rightarrow h(x)=5-x \rightarrow f(h(x))=f(5-x)=\frac{5-x}{(5-x)-3}=\frac{5-x}{2-x}$
so $\quad f_{0} h(x)= \begin{cases}\frac{2 x}{2 x-3} & x \leq 1 \\ \frac{5-x}{2-x} & x>1\end{cases}$
$\frac{\text { Example }}{\text { Clicker }}$ Let $f(x)=\left\{\begin{array}{ll}1-3 x & x \geqslant 3 \\ -4+x & x<3\end{array}\right.$ and

$$
g(x)=\left\{\begin{array}{ll}
x^{2}+1 & x>-1 \\
-5 x & x \leq-1
\end{array} \quad \text { what is } \quad \operatorname{fog}(-2)\right. \text { ? }
$$

A. 6
B. -14
C. -29
D. 1
E. NOT defined.

$$
f_{\circ}(-2)=f(g(-2))
$$

To find $g(-2)$ we use the $2^{\text {nd }}$ line of $g(x)$ because $-2 \leqslant-1$ so $\quad g(-2)=-5 \cdot-2=10$

$$
g(x)=-5 x
$$

Now $f(g(-2))=f(10)$
since $10 \geqslant 3$, we use the $1^{\text {st }}$ line of f and plug 10 into

$$
\begin{align*}
& 1-3 x \leadsto f(10)=1-3 \cdot(10)=-29 \\
& \Rightarrow \quad \log (-2)=-29 \quad c
\end{align*}
$$

