$$
\begin{aligned}
& \text { Clicker } Q: \quad \text { Simplify } \frac{\left(2^{x}\right)^{3} \cdot\left(6^{x}\right)^{4} \cdot 2^{x}}{3^{5 x} \cdot 2^{10 x}} \\
& \text { A. } 6^{-x}: C \cdot 6^{4 x}
\end{aligned}
$$

$$
B \cdot 12^{x}
$$

C. $6^{4 x}$

$$
D \cdot 12^{-x}
$$

$$
\begin{aligned}
& \text { Start with the top terms } \\
& *\left(a^{n}\right)^{m}=a^{n m} \Rightarrow \frac{2^{3 x} \cdot 6^{4 x} \cdot 2^{x}}{3^{5 x} \cdot 2^{10 x}}=\frac{\left|a^{n} \cdot a^{m}=a^{n+m}\right|}{3^{5 x+x} \cdot 6^{4 x}}
\end{aligned}
$$

$$
=\frac{2^{4 x} \cdot 6^{4 x}}{3^{5 x} \cdot 2^{10 x}}
$$

How to simplify the denominator?

$$
\text { * } a^{m} \cdot b^{m}=(a b)^{m}=\frac{12^{4 x}}{3^{5 x} \cdot 2^{10 x}}
$$

Not equal base, NOT equal exponent

$$
\begin{aligned}
\text { But } & \begin{aligned}
2^{10 x}=\left(2^{2}\right)^{5 x}= & 4^{5 x} \\
& =\frac{12^{4 x}}{3^{5 x} \cdot 4^{5 x}} \\
& =\frac{12^{4 x}}{12^{5 x}} \\
a^{m}=a^{n-m} r & =12^{4 x-5 x}=12^{-x} \backsim D D
\end{aligned}
\end{aligned}
$$

Logarithmic Functions:

Suppose weird like to solve $2^{x}=16 \leadsto x=\ldots$
But what if $e^{x}=16$, then $x=$?
we need loganithm
What is logarithm?

$$
x=\log _{e}^{16}
$$

Closely related to exponential :

$$
2^{x}=16 \quad \underset{\text { represatitation }}{\text { another }} \log \frac{16_{2}}{}=4
$$

In general $b^{x}=y \quad \log _{b} y=x$
Now, we can consider a logarithmic function in a base $b>0$ $(b \neq 1)$ to be

Example. Find y :

- $\log _{3} 9=y \xrightarrow[\text { to exp }]{\text { Convert }} 3^{y}=9 \Rightarrow y=2$
- $\log _{10}^{y}=0 \rightarrow 10^{0}=y \Rightarrow y=1$
- $\log _{17} 1=y \leadsto 17^{y}=1 \Rightarrow y=0$
- $\log _{5}^{y}=1 \longrightarrow 5^{1}=y \Rightarrow y=5$
* Log has important physical applications:
- Earth quack intensity and Richter scale
- Sound intensity
- Stars brightness

We see that if $b^{x}=y$
$\underset{\text { we take } \log _{b}}{\text { to find } x} \quad x=\log _{b} y \rightarrow \log$ undo exp we take $\log _{b} \quad b$ and vice versa
\Rightarrow What is the relation between

$$
f(x)=b^{x} \quad \text { and } \quad g(x)=\log _{b} x \quad ?
$$

b^{x} and $\log _{b}^{x}$ are inverse of each other. One of them makes the other one undo.

$$
x \xrightarrow{f(x)=b^{x}} b^{x} \xrightarrow[x]{g(x)=\log _{b}^{x}} \log _{b}^{b^{x}}=x \rightarrow \text { Remember this rale? }
$$

* Start with $x \longrightarrow$ find $b^{x} \leadsto$ take \log of $b^{x} \leadsto$ operation is undone

$$
\begin{aligned}
& \begin{array}{lll}
g(x)=\log _{b}^{x} & g(f(x))=x & \\
& \log _{b}^{x} \xrightarrow{f(x)=b^{x}} \rightarrow \log _{b}^{b^{x}}=x \quad \rightarrow \text { Remember to this } x
\end{array} \\
& f(g(x))=x
\end{aligned}
$$

\Rightarrow What other functions do we know that ore inverse of each other?

- $f(x)=x^{2}, g(x)=\sqrt{x}$

This is property of

- In general x^{n} and $\sqrt[n]{x}$ are inverse of inverse functions. each other. $x^{3} \& \sqrt[3]{x}, x^{4} \& \sqrt[4]{x}, \ldots$
- What about $f(x)=x$ and $g(x)=\frac{1}{x}$?

Leis ven fy: $f \circ g(x)=f\left(\frac{1}{x}\right)=\frac{1}{x} \quad x$

$$
g \circ f(x)=g(x)=\frac{1}{x} \quad x
$$

* Graphical relation between two inverse functions:
f and g inverse of each other, to find graph of g reflect graph of f across the line $y=x$. the line that divides $1^{\text {st }}$ and $3^{\text {rd }}$ quadrant into halves.

Properties:

Domain : $(0, \infty) \leadsto$ NOT allowed to input 0 and negative numbers for $\log _{b} x$ $R_{\text {ange }}:(-\infty, \infty) \longrightarrow \log _{b}^{0}=$ undefined, $\log _{b}^{-2}=$ undefined,
No y-intercept \longrightarrow the output of $\log _{b} x=y$ can be any real number. x-int $=1 \rightarrow$ graph never crosses the y-axis.

Compare with $y=b^{x}$:
Since $b^{x}=y$ and $\log _{b} x=y$ are inverse of each other
Domain of $b^{x}=$ Range of $\log _{b} x$

$$
\begin{aligned}
& \text { Range of } b^{x}=\text { Domain of } \log _{b}^{x} x \\
& y \text {-int of } b^{x}=x \text {-int of } \log _{b}^{x} \\
& x \text {-int of } b^{x}=y-i t \text { of } \log _{b}^{x}
\end{aligned}
$$

Especially important case:
$b=e \leadsto \log _{e}^{x}=\ln x \leadsto$ when the \log base is e, we remove the base and change

* $\ln x$ is sometimes called natural \log to \ln. logarithm.
* $y=e^{x}$ and $y=\ln x$ are inverse functions

$$
\text { i.e. } \ln \left(e^{x}\right)=x \text { \& } e^{\ln x}=x
$$

Laws of Logarithm $\quad(b>1)$

- $\log _{b}^{b}=1 \quad \xrightarrow{b=e} \ln e=1$
- $\log _{b}^{\prime}=0 \quad \xrightarrow{b=e} \ln 1=0$
- $\log _{b}(x y)=\log _{b} x+\log _{b} y \xrightarrow{b=e} \ln (x y)=\ln x+\ln y$

Common mistakes : $\log _{b} x y=\log _{b} x \cdot \log _{b} y$
or $\log _{b} x+y=\log _{b} x \cdot \log _{b}^{y}$

$$
\begin{aligned}
& \text { - } \log _{\left(\frac{b}{y}\left(\frac{x}{y}\right)\right.}^{\operatorname{common~mistakes:~}^{\log _{b}\left(\frac{x}{y}\right)}=\log _{b}^{x} \log _{b}^{y} \text { or } \log _{b} x-y}=\log _{b} x-\log _{b}^{y} \\
& \log _{b}\left(x^{n}\right)=\ln \left(\frac{x}{y}\right)=\ln x-\ln y
\end{aligned}
$$

- $\log _{b}\left(x^{n}\right)=n \log _{b} x \xrightarrow{b=e} \ln x^{n}=n \ln x$

Examples. Simplify (a) $\log 5+\log _{10}^{2}=$

$$
\begin{aligned}
& \text { (b) } \ln \left(e^{2}\right)-\ln \sqrt[{\sqrt[5]{e^{2}}}]{e^{\frac{2}{5}}}=2 \ln e-\frac{2}{5} \ln e=2-\frac{2}{5}=\frac{8}{5} \\
& * \ln e=1
\end{aligned}
$$

Worksheet Practice: Loganthms

1. Evaluate the following logarithms.
a) $\log _{2} 16=$
d) $\log _{\frac{2}{3}} 27 / 8=$
b) $\log _{7} 1=$
e) $\log _{10} 10=$
c) $\ln \sqrt[3]{e}=$
f) $\ln 1=$
2. Use properties of logs and write the following logs in expanded form.
a) $\log _{2}\left(\frac{2 a b}{c^{3}}\right)$.
b) $\quad \ln [(x-4)(2 x+5)]^{2}=$
c) $\quad \ln \left[(x-4)(2 x+5)^{2}\right]=$
d) $\quad \log _{8} \sqrt{x y}=$
3. Express each of the following as a single log.
a) $3 \log _{5} x+\log _{5} y-2 \log _{5} w=$
b) $\frac{1}{2}[(2 \ln a+\ln b)-5 \ln c]=$
C) $\frac{1}{2} \ln x-\frac{1}{3} \ln y=$
4. Solve the following equations:
a) $\log _{2}(x+1)+\log _{2} 3=1$
h) $\log _{2}\left(x^{2}-6 x\right)=3+\log _{2}(1-x)$
b) $\log _{2}(x+3)+\log _{2} x=2$
i) $5+e^{x+1}=20$
c) $\ln (x-4)+\ln x=\ln 21$
j) $2^{x}=7$
d) $4 \ln (3 x)=4$
k) $4^{x-3}=9$
e) $\ln x=\ln (1-x)$
f) $7+2 \ln x=6$
g) $\log x+\log (x-1)=\log (3 x+12)$
5) Simplify each log.
a) $\ln e^{5}=$
b) $e^{2 \ln 5}=$
c) $10^{2+\log 5}=$
d) $\frac{\log 100}{\log 10}=$
e) $\frac{\log _{3} 9}{\log _{2} 8}=$
