Recall our first class: Our main tool in differential calculus is derivative and derivative is based upon tangent line to the graph of a function $y=f(x)$.

Goal : info about the slope of the tangent line.

We need to have info about $f(x)$ "close" to the tangency point $x=a$ and for this

To see what limit means, we need limits.
letis start with graph of a function:

Question: When x "gets close" to 1 $f(x) \rightarrow 2 \mid f(x) \quad$ " gets close" to 2

* track function values on the y-axis when x gets close to 1 .
* Translation of "As $x \rightarrow 1$ then $f(x) \rightarrow 2$ " in math language is:

$$
\lim _{x \longrightarrow 1} f(x)=2
$$

We can compute some values of $f(x)$ for $x^{\prime} s$ close to 1 and See what is going on.
Lets make a table of values with some x close to 1 and find

$$
f(x)=x+1
$$

$$
\left.\begin{array}{l}
\underset{\substack{\text { approaching } \\
\text { from left }}}{ } \leftarrow\left\{\begin{array}{c|c}
0.9 & f(x)=x+1 \\
0.99
\end{array}\right. \\
\left.\begin{array}{l}
0.9 \\
\text { approaching } \\
\text { from right }
\end{array}\right\} \begin{cases}1.99 \\
1.01\end{cases} \\
\hline 2.1
\end{array}\right\} \quad f(x) \longrightarrow 2
$$

$$
\lim f(x)=2
$$

$$
x \rightarrow 1
$$

Question 2.
when x "gets close" to $-2, f(x)$ "gets close" to . -1
Again let's track y-values.

$$
\left.\begin{array}{c|c}
x & f(x)=x+1 \\
\underset{\substack{x \\
\text { from left } \\
\text { of }-2}}{ }\left\{\begin{array}{l}
-2.1 \\
-2.01 \\
-1.1 \\
\text { right of } \\
\text { from }
\end{array}\right\} \begin{array}{c}
-1.01 \\
-1.99
\end{array} & -0.9 \\
-0.99
\end{array}\right\} f(x) \rightarrow-1
$$

But $f(-2)=1$

* From graph and from the table of values it can be seen that:

As we approach -2 on the x-axis, the values of function on the y-axis approaches to -1 i.e. $\lim _{x \rightarrow-2} f(x)=-1$
Note that the exact value of the function and $x=-2$ is $f(-2)=1$ So

* In finding limit the exact value at the given x-value does NOT matter. We are checking the values close to that x Not exactly at x.

The limit is an operation that we perform on a function $y=f(x)$.
$\uparrow^{\text {output variable }}$ to y-axis.
mpytraibe $-x \rightarrow a$

Meaning: As the x-values are getting closer and closer to the value " a ", the y-values of the function are getting closer and closer to the value L on the y-axis.

* Again, note that limit is all about being close to some value NOT exactly at that value.

Note: Different letters can be used for variable on the x-axis and functions and the given numbers.

Example: Let $f(x)$ be a function given by the following graph.

Evaluate the following limits :
(1) $\lim _{x \rightarrow 1} f(x)=2 \quad$ *in this case: $\lim _{x \rightarrow 1} f(x)=2=f(1)$
A. 1
C. 2.5

$$
B \cdot 2
$$

D. 3
E. Does NOT exist.
(2) $\lim _{x \rightarrow 2} f(x)=2 \quad$ *In this case $: \lim _{x \rightarrow 2} f(x)=2$ but $f(2)=1$
A. 1
C. 2.5
B. 2
D. 3
E. Does not Exist.
(3) $\lim _{x \rightarrow 3} f(x)=1 \quad *$ In this case: $\lim _{x \rightarrow 3} f(x)=1$ but $f(3)$ is undefined.

$$
x \rightarrow 3 \text { A. } 1
$$

C. 2.5
D. 3
E. Does NOT Exist (DNE)
(4) $\ln \cdot f(x)=$ we get two different limits from left and right
$\underset{\substack{\text { light } \\ \text { limit }}}{\text { limit }}\left\{\begin{array}{l}x \rightarrow 5 \\ \lim _{x \rightarrow 5+} f(x)=2 \\ \lim _{2} f(x)=3\end{array}\right.$
A. 1
C. 2.5 \rightarrow NO unique limit
\square
E. DUE

Practice: Use the following graph for the function $y=g(x)$ to find the limits.

- $\lim f(x)=$

$$
x \rightarrow 0
$$

Compare with $f(0)$

- $\ln f(x)=$

$$
x \rightarrow 1
$$

Compare with $f(1)$

- $\ln m f(x)=$

$$
x \rightarrow 2
$$

with $f(2)$

- $\lim _{x \rightarrow 3} f(x)=$
with $f(3)$
- $\ln \ln f(x)=$

$$
x \rightarrow 4
$$

with $f(4)$

