Factoring Review:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2}=(a-b)(a+b)
\end{aligned}
$$

Lecture 11
Sept 28

Clicker Q : Let $f(x)=\left\{\begin{array}{ll}x+3 & x \geq 2 \\ -x^{2}-1 & x<2\end{array}\right.$. Choose the correct value for each of the following limits.
A. 5
B. -5
C. 2
D. DNE E.A\&B
(1) $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}-x^{2}-1=-2^{2}-1=-5 \rightarrow B$
(2) $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} x+3=2+3=5 \rightarrow A$

$$
{\underline{x \rightarrow 2^{+}}}^{x>2 \rightsquigarrow 1^{\text {st }} \text { line of } f}
$$

(3) $\lim _{x \rightarrow 2} f(x)=$ DNE because $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$ so D the full limit DNE.
(4) $\operatorname{lnin}_{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} x+3=3+3=6 \rightarrow$ No option \because
${ }^{L_{x}}>2 \longrightarrow$ approach 3 from left $\longrightarrow x 2$
\leftrightarrows or approach 3 from night $\longrightarrow x>2$

* For a piecewise function, we need to be careful about the "border x-values where the function breaks into multiple hines. $(x=2$ in this ramp For other values than the "border" point we usually do not need to evaluate the one-sided limits separately.

Examples:
(1) $\lim _{x \rightarrow-4} \frac{x+4}{\frac{1}{4}+\frac{1}{x}}=\frac{-4+4}{\frac{1}{4}+\frac{1}{-4}}=\frac{0}{0}!!!$

Find the common denominator of the bottom fractions:

$$
\begin{gathered}
\lim _{x \rightarrow-4} \frac{x+4}{\frac{1}{4}+\frac{1}{x}}=\lim _{x \rightarrow-4} \frac{x+4}{\frac{x+4}{4 x}}=\lim _{x \rightarrow-4}(x+4) \div \frac{x+4}{4 x} \\
\text { problem found: } \\
x+4 \rightarrow-4
\end{gathered} \lim _{x \rightarrow 4}(x+4) \cdot \frac{4 x}{x+4}=4 \cdot(-4)=-16
$$

(2) $\lim _{x \rightarrow 0} \frac{\sin x \cdot \cos x}{e^{x}}=\tau^{\text {substitute }} \frac{\sin 0 \cdot \cos 0}{e^{0}}$

$$
=\frac{0 \cdot 1}{1}=\frac{0}{1}=0 \cdots
$$

Substitution worked.
(3) $\lim _{x \rightarrow 0}|x|=\underset{\substack{<\\ \text { substitute }}}{ }|0|=0$

(4) $\lim _{x \rightarrow 0} \frac{|x|}{x}=\frac{|0|}{0}=\frac{0}{0}!!!$

How to simplify? Break $|x|$ into pieces.
Recall : $|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}$
if $x \geq 0 \leadsto x \rightarrow 0^{+}$so

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1
$$

if $x<0 \rightarrow x \rightarrow 0^{-}$so $\quad \Longleftrightarrow \lim _{x \rightarrow 0} \frac{|x|}{x}=$ ONE

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1
$$

(5) $\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}=\frac{3-\sqrt{9}}{9-9}=\frac{0}{0}!!!$

Method 1 : Use the identity: $a^{2}-b^{2}=(a-b)(a+b) \leadsto 9-x=(3-\sqrt{x})(3+\sqrt{x})$
so $\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{(3-\sqrt{x})(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{1}{3+\sqrt{x}}=\frac{1}{3+\sqrt{9}}=\frac{1}{3+3}=\frac{1}{6}$
Method 2: Multiplying by conjugate
Conjugate of $a-b$ is $a+b\}$ keep the order but conjugate of $\sqrt{a}-\sqrt{b}$ is $\sqrt{a}+\sqrt{b}$ Change + to -

- identity again:

$$
\begin{aligned}
& (\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a-b \\
& (a-\sqrt{b})(a+\sqrt{b})=a^{2}-b \\
& (\sqrt{a}-b)(\sqrt{a}+b)=a-b^{2}
\end{aligned}
$$

Multiply both top and bottom by the conjugate of $3-\sqrt{x}$ and use the identity to simplify:

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x} \cdot \frac{3+\sqrt{x}}{3+\sqrt{x}}=\lim _{x \rightarrow 9} \frac{9-x}{(9-x)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{1}{3+\sqrt{x}}=\frac{1}{3+\sqrt{9}}=\frac{1}{6}
$$

Now lets do a different example:
$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\frac{1}{0} \leadsto$ what is this in the sence of limits?
$\frac{1}{O}$ is infect $\frac{1}{O^{+}}=\frac{1}{\begin{array}{c}\text { a small number } \\ \text { close to } 0\end{array}}$ for example:
and

Exactly the same process

$$
\begin{aligned}
& \frac{1}{0.01}=\frac{1}{\frac{1}{100}}=1 \cdot \frac{100}{1}=100 \\
& \frac{1}{0.001}=\frac{1}{\frac{1}{1000}}=1000 \\
& \vdots \\
& \frac{1}{0.00 \cdots .01}=100 \ldots 0
\end{aligned}
$$

As $x \rightarrow 0^{-}, \frac{1}{0^{-}}$keeps
getting largely negative So $\lim _{-\infty} \frac{1}{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$

* $\pm \infty$ is NOT a real number. These are math notations to express very large or very small quantities usually in the context of limits.

Check the above limits graphically. $f(x)=\frac{1}{x}$ looks as So: follows:

The limit DNE, because
one-sided limits are Not equal.

going down so

$$
f(x) \rightarrow-\infty
$$

Example: What about $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=$
A. ∞
B. $-\infty$
C. ANE
D. $\pm \infty$

- $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\frac{1}{\left(0^{+}\right)^{2}}=\frac{1}{0^{+}}=\infty$
- $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\frac{1}{\left(0^{-}\right)^{2}}=\frac{1}{0^{+}}=\infty$

$$
\frac{1}{(-0.001)^{2}}=\frac{1}{+}
$$

* What is the mathematical name for the vertical line $x=0$ in the two previous examples? Vertical Asymptote Next Class \leadsto Asymptotes.

Limit : Practice Problems
(1) $\lim _{x \rightarrow 2} \frac{x^{2}+x+6}{x-2}$
(2) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}$
(3) $\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x-5}$
(4) $\ln \left(\frac{1}{5+x}-\frac{1}{5-x}\right)$

$$
x \rightarrow 0
$$

(5) $\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}$
(6) $\lim _{x \rightarrow 4} \frac{(x-4)^{3}}{|x-4|}$

