Justify your answers and show all your work. Unless otherwise indicated simplification of answers is not required.

1. Consider the following function

$$
f(x)=-2 x+4 \sqrt{x}-\frac{1}{x^{2}}+\pi
$$

4 marks (a) Compute the derivative of the function $f(x)$.

4 marks (b) Compute the general anti-derivative of the function $f(x)$.

4 marks 2. (a) Compute

$$
\int_{1}^{2} \frac{2-x}{\sqrt{x}} d x
$$

4 marks (b) Find a function $g(x)$ satisfying $g(\pi)=1$ such that

$$
g^{\prime}(x)=\sin x+\cos (4 x)+e^{x} .
$$

5. Compute the following integrals.

5 marks
(a)

$$
\int \frac{e^{x}}{\left(e^{x}+1\right)^{2}} d x
$$

(b)

$$
\int_{0}^{\pi / 2} \sin x \cos x d x
$$

5 marks (c)

$$
\int x^{2} \ln x d x
$$

4 marks 7. (a) Approximate the following integral using Riemann Sums

$$
\int_{1}^{3}(-2 x+7) d x
$$

Use right endpoints and $n=4$ (ie. four bars).

2 marks (b) Is your approximation less than, greater than, or exactly equal to the true value of the integral? Explain why.

3 marks (c) Sketch the graph of a new function where an approximation with Riemann Sums is exactly equal to the area under the curve.

7 marks
8. The rate of change of the height of an elevator is give by

$$
r(t)=t e^{t}
$$

in meters/second. If at $t=0$ seconds the elevator is 1 meter off the ground, how high is the elevator after 2 seconds have passed?

4 marks 9. (a) Sketch the graph of a function $f(x)$ satisfying the following two properties:

- $\int_{-2}^{2} f(x) d x=0$
- $\int_{0}^{4} f(x) d x=2$

You do not need to find an equation for your function.

4 marks (b) Find two values of b such that

$$
\int_{-\pi}^{b} \sin (2 x) d x=0
$$

Ensure you justify your answer fully.

5 marks 10. Compute the integral

$$
\int_{-1}^{\pi / 2} f(x) d x
$$

where

$$
f(x)=\left\{\begin{array}{ll}
\cos x & \text { if } x \geq 0 \\
-x^{2}+1 & \text { if } x<0
\end{array} .\right.
$$

