One more Related Rates problem.
Your lumberjack fiend is chimbing a tree at a constant speed of $0.5 \mathrm{~m} / \mathrm{s}$. You stand 6 meters from the tree and film with your camera. How fast is the camera's angle changing when your friend is 6 m up.

(1) Diagram \& Notation

* Changing quantities:
\rightarrow distance of your friend from the ground: y
\rightarrow angle between the camera \& the ground : θ
* fixed quantity:
\rightarrow your distance from the Tree
(2) Information: $\left\{\begin{array}{l}\frac{d y}{d t}=y^{\prime}(t)=0.5 \mathrm{~m} / \mathrm{s} \\ \frac{d \theta}{d t}=\theta^{\prime}(t)=\text { ? when } y=6 \mathrm{~m}\end{array}\right.$
(3) Relate the variables: Use trigs $u \sin$, cos or \tan ? y is opposite to θ and 6 m distance is adjacent so:

$$
\tan \theta(t)=\frac{y(t)}{6}
$$

(4) Differentiate both sides:

Do we need the Quotient rule ? Notreally because $\frac{y}{6}=\frac{1}{6} \cdot y \leadsto$ Constant multiple

$$
\underbrace{\tan }_{\text {outside }}(\underbrace{\theta(t)}_{\text {inside }})=\frac{1}{6} y(t)
$$

* Recall $:(\sum_{\text {out }}^{f}(\underbrace{g(x)}_{\text {in }}))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
(\tan (\theta(t)))^{\prime}=(\tan)^{\prime}=(\underbrace{1+\tan ^{2}}_{\text {outside derivat }}) .
$$

$$
(1+\underbrace{\tan ^{2} \theta(t)}_{\text {find this }}) \cdot \underset{\text { unknown }}{\theta^{\prime}(t)}=\frac{1}{6} \stackrel{y^{\prime}(t)}{\underset{\leftrightarrow}{\longleftrightarrow} \text { given }}
$$

(5) Substitute the info and solve fer the unknown Θ^{\prime} ?

At this moment $y=6$ so $\tan \theta=\frac{6}{6}=1$

$$
\begin{gathered}
\Rightarrow 1+\tan ^{2} \theta=1+1^{2}=2 \\
\Rightarrow 2 \cdot \theta^{\prime}(t)=\frac{1}{6} \times 0.5 \Rightarrow \theta^{\prime}(t)=\frac{1}{6} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{24} \mathrm{rad} / \mathrm{sec} \\
\end{gathered}
$$

* Note: You could use $(\tan \theta(t))^{\prime}=\sec ^{2} \theta \cdot \theta^{\prime}(t)$ as well.
this gives you the same answer but with one extra step in Computation.
$\sec \theta=\frac{1}{\operatorname{Cos} \theta}$ so what is $\operatorname{Con} \theta$?

$$
\begin{aligned}
& \cos \theta=\frac{\text { adjacent }}{\text { hyp }}=\frac{6}{\sqrt{6^{2}+6^{2}}}=\frac{6}{6 \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \sec \theta=\frac{1}{\cos \theta}=\sqrt{2} \Rightarrow \sec ^{2} \theta=2 .
\end{aligned}
$$

which is exactly equal to $1+\tan ^{2} \theta=1$ as we calculated above.

MATH 190: Part I : Differential Calculus \checkmark
Part II: Integral Calculus

Example 1. We want to find the area under the curve $y=x^{2}$ when x is between 1 and 3 .

This is not a shape whose area has a formula. We need other methods

Question: How do 1 find this area?
Approximate the area with rectangles
Recall : ${ }^{h}{\underset{b}{ } \rightarrow \text { Area }=\text { base } \text {. height }=b \times h ~}_{\text {b }} \rightarrow$.

2 rectangles between 1 and 3

Attempt 1: In each sub interval use the left endpoint i.e.
$x=1$ and $x=2$

$$
\begin{aligned}
& R_{1}=\text { height } \times \text { base }=\mid \times 1=1 \\
& R_{2}=1 \times 4=4
\end{aligned}
$$

Actual area $\approx R_{1}+R_{2}=1+4=5$

Attempt 2: Make 2 rectangles with Right endpoints in each subinterval i.e. $x=2$ \& $x=3$

$$
\begin{aligned}
& R_{1}=\text { base } \times \text { height }=1 \times 4=4 \\
& R_{2}=1 \times 9=9
\end{aligned}
$$

Actual area $\approx R_{1}+R_{2}=4+9=13$

Problem with this approximation: It is not accurate \rightarrow crude approx. We only get that $5<A<13$

How to make the approx. more accurate?
Use more rectangles $\rightsquigarrow 4$ rectangles between $x=1$ and $x=3$.

4 rectangles in $[1,3]$:

$$
\Delta x=\text { base length }=\frac{3-1}{4}=\frac{2}{4}=0.5
$$

- 4 rectangles with left end-points: $x=1,1.5,2,2.5$

$$
\begin{aligned}
& R_{1}=\text { base } \times \text { heigh }=\Delta x \times \text { function value at left end points } \\
& \Rightarrow R_{1}=0.5 \times 1^{2}=0.5 \\
& R_{2}=0.5 \times(1.5)^{2}=1.125 \\
& R_{3}=0.5 \times\left(2^{2}\right)=2 \\
& R_{4}=0.5 \times(2.5)^{2}=3.125
\end{aligned} \quad \text { Actual area } \begin{aligned}
\approx R_{1} & +R_{2}+R_{3}+R_{4} \\
=0.5 & +1.125+2 \\
& +3.125=6.75
\end{aligned}
$$

Better approx:

$$
6.75<\underset{\text { area }}{\text { Actual }}<10.75
$$

- 4 rectangles with right end points: $x=1.5,2,2.5,3$

$$
\begin{aligned}
R_{1}=0.5 \times(1.5)^{2}=1.125 \\
R_{2}=0.5 \times(2)^{2}=2 \\
R_{3}=0.5 \times(2.5)^{2}=3.125
\end{aligned} \quad R_{4}=0.5 \times 3^{2}=4.5 \Rightarrow \begin{array}{r}
\text { Actual area } \approx \\
R_{1}+R_{2}+R_{3}+R_{4} \\
\\
=10.75
\end{array}
$$

