Last Class: Meaming of

$\int_{a}^{b} f(x) d x \xrightarrow{\text { meaning }}$ Area under the curve of $y=f(x)$ from $x=a$ to $x=b$.
$\xrightarrow{\longrightarrow}$ Mathematical Definition :
Consider the interval $[a, b]$. We want to divide the interval into " n " rectangles with equal width Δx so $\Delta x=\frac{b-a}{n}$.

This gives us the points on the x-axis, hence subintervals are

Now depending on whether we choose the left or right endpoint in each
subinterval we get:

Sum the areas of the rectangles using the left end point

$$
\begin{aligned}
f\left(x_{0}\right) \cdot \Delta x+f\left(x_{1}\right) \cdot \Delta x & +f\left(x_{2}\right) \cdot \Delta x+\cdots+f\left(x_{n-1}\right) \cdot \Delta x \\
& =\sum_{i=0}^{n-1} f\left(x_{i}\right) \cdot \Delta x \quad \text { Left Riemann Sum }
\end{aligned}
$$

using the right endpoint:

$$
\begin{aligned}
& f\left(x_{1}\right) \cdot \Delta x+f\left(x_{2}\right) \cdot \Delta x+f\left(x_{3}\right) \cdot \Delta x+\cdots+f\left(x_{n}\right) \cdot \Delta x \\
&=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x \quad \text { Right Riemann sum }
\end{aligned}
$$

Now, to have the actual area we need to Consider many rectangles which means $n \longrightarrow \infty$, this makes Δx smaller and smaller. As the number of rectangles grow, the approximated area gets closer and closer to the actual area so:
as $n \rightarrow \infty$:

* both left and right Riemann sums become equal to each other and also equal to the actual area: $\int_{a}^{b} f(x) d x$.

Clicker: Consider the following graphs:
Larger than the actual area
under. estimate

Less than the actual area
(II)

can NOT tell without computation
 Under-estimate

(V)

which
Without doing any computation, find the graphs) for the left Riemann sum is an underestimate of the actual area: $\int_{a}^{b} f(x) d x$

$$
\begin{array}{ll}
\text { A. (I), (I), (IV) } & \text { C. (II), (IV), (IV) } \\
\text { B. } . \text { (I), (I) } & \text { D. (II) , (IV) }
\end{array}
$$

If we have an always increasing or decreasing graph then we can predict under and over estimate:
increasing

left end-paint

decreasing

Some integral Rules

$$
\begin{aligned}
& \text { - } \int_{a}^{b} k d x=k(b-a) \cdots \int_{3}^{5}-4 d x=-4(5-3)=-8 \\
& \text { - } \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \underset{\sim}{\int_{0}^{2} x^{2} d x=\frac{8}{3}} \int_{0}^{2} 5 x^{2} d x=5 \int_{0}^{2} x^{2} d x \\
& \text { - } \int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x \\
& =5 \cdot \frac{8}{3}=\frac{40}{3} \\
& \cdots \int_{0}^{2}\left(x^{2}+5\right) d x=\int_{0}^{2} x^{2} d x+\int_{0}^{2} 5 d x \\
& =\frac{8}{3}+5 \cdot(2-0)=\frac{8}{3}+10
\end{aligned}
$$

Question: How do we find that

$$
\int_{0}^{2} x^{2} d x=\frac{8}{3} \quad ? ? ?
$$

The hard and long way:
Use the limit definition of the integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \cdot \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x
$$

Does NOT matter which Riemann Sum we pick:
Lets pick the right one

$$
\int_{0}^{2} x^{2} d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{1}\right) \cdot \Delta x
$$

We need to find $a, b, x_{i}, f\left(x_{i}\right)$ \& Δx :

$$
\int_{0}^{2} x^{2} d x: \quad \begin{aligned}
& a=0 \\
& b=2
\end{aligned} \Rightarrow \Delta x=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}
$$

* Note: n is changing,
$\Delta x=\frac{2}{n} \rightarrow$ steps in each subinterval: it is not a fixed number $n \rightarrow \infty$

$$
\begin{aligned}
& \Rightarrow x_{0}=0 \\
& x_{1}=\frac{2}{n} \\
& x_{2}=2 \cdot \frac{2}{n} \\
& x_{3}=3 \cdot \frac{2}{n} \\
& \vdots \\
& x_{100}=100 \cdot \frac{2}{n} \\
& \vdots \\
& x_{i}=i \frac{2}{n}=\frac{2 i}{n} x_{i}=\frac{2 i}{n} \\
& \int_{0}^{2} x^{2} d x \text { and } f(x)=x^{2} \\
& x_{0}
\end{aligned}
$$

$=$.. we do algebra to simplify the summation and finding the limit. (You don't need to do this part!)

$$
=\frac{8}{3}
$$

What is the short way?
Fundamental Theorom of Calculus
"Link between "Denivative" \& "Integral"
Idea: Denvatives \& Integrals are opposite or inverse operations.

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F^{\prime}(x)=f(x)$
The Function $F(x)$ is called the anti-derivative of $f(x)$. Let's start with a simple example:

Example 1: Compute $\int_{1}^{3} 2 x d x$
(a) using graph of the function and the area under that.
(b) using FTC.
(a) plot $y=2 x$

x	y
0	0
1	2

Find A :
either as a Trapzoid or as area between two triangles:

$$
\begin{aligned}
A_{\text {trapzoid }} & =\frac{(\text { longer bax }+ \text { shorter bane }) \cdot \text { height }}{2} \\
& =\frac{1}{2}\left(b_{1}+b_{2}\right) \cdot h \\
& =\frac{1}{2} \cdot(2+6) \cdot 2=8
\end{aligned}
$$

Or $\underset{\text { Area of triangle }}{\text { big }}=\frac{1}{2} b h=\frac{1}{2} \cdot 3 \cdot 6=9$

$$
\begin{aligned}
& \text { A. of } \\
& \text { smaller thangle }
\end{aligned}=\frac{1}{2} \cdot 1 \cdot 2=1 \quad \begin{aligned}
& \Rightarrow \text { Area in } \\
& \text { between }
\end{aligned}=9-1=8
$$

(b) $\int_{1}^{3} 2 x d x$

Find a function $F(x)$ such that $F^{\prime}(x)=2 x$
One option: $F(x)=x^{2} \leadsto$ antidenvative of $2 x$
so $\int_{1}^{3} 2 x d x=F(3)-F(1)=3^{2}-1^{2}=8$
Notation :

$$
\int_{1}^{3} 2 x d x=\left.x^{2}\right|_{x=1} ^{x=3}=3^{2}-1^{2}=8
$$

In general:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} F^{\prime}(x) d x=\left.F(x)\right|_{x=a} ^{x=b}=F(b)-F(a)
$$

