Indefinite integral
Recap:
To find $\int_{0}^{2} 2 x d x$, we can:

1) Use the definition (the hard way!):

Choose left/right Riemann sum

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

2) Find the area under the graph $y=f(x)$:

$$
\begin{aligned}
\int_{0}^{2} 2 x d x & =\text { Area at triangle } \\
& =\frac{4 x^{2}}{2}=4
\end{aligned}
$$

3) Use the Fundumental Theorem at Calculus (FTC): FTC raughly says, integeration and differentiation are oppasite each other!
io use FTC:
Find a function, $F(x)$, such that $F^{\prime}(x)=f(x)$.
Ne call $F(x)$ an anti-derivative of $f(x)$.
Then FTC Sens:

In our example, $f(x)=2 x$.
Take $F(x)=x^{2}$, then we see $F^{\prime}(x)=\left(x^{2}\right)^{\prime}=2 x=f(x)$
So FTC implies:

$$
\int_{0}^{2} 2 x d x=\int_{0}^{2}\left(x^{2}\right)^{1} d x=(2)^{2}-(0)^{2}=4
$$

But is x^{2} the andy anti-derivative at $2 x$?
Haw about $x^{2}+8$? Check: $\left(x^{2}+8\right)^{\prime}=\left(x^{2}\right)^{\prime}+\underbrace{(8)^{\prime}}_{0}=2 x$
Haw about $x^{2}+\lambda^{e}$? Check: $\left(x^{2}+\pi^{e}\right)^{\prime}=2 x$

The general anti-derivative $f_{a r} f(x)=2 x$ is given by
$F(x)=x^{2}+C$ where C is Same Constant
Indefinite integral \longleftrightarrow The general anti-derivative
Indefinite integral: $\int_{2} 2 x d x=x^{2}+C$ far C same Constant Defmete integral: $\int_{0}^{2} 2 x d x=4$ Another example:
$\int x^{2} d x=\frac{1}{3} x^{3}+C$ where C is a constant
Cheek: $\left(\frac{1}{3} x^{3}+C\right)^{\prime}=\frac{1}{3}\left(3 x^{2}\right)+0=x^{2}$
Also
$\int e^{x} d x=e^{x}+C$ For some C constant
Cheek:

$$
\left(e^{x}+c\right)^{\prime}=\left(e^{x}\right)^{\prime}+(c)^{\prime}=e^{x}+0=e^{x}
$$

Does this Constant mess up "using FTC to Find definite integrals"?

$$
\begin{aligned}
& \int_{0}^{2} 2 x d x=\int_{0}^{2}\left(x^{2}+4\right)^{1} d x \\
& F T C \curvearrowleft=x^{2}+\left.4\right|_{0} ^{2}=\left((2)^{2}+4\right)-\left((0)^{2}+4\right) \\
& =4+4-0-4=4
\end{aligned}
$$

No matter C is, the answer is always the same! So, F TC works for any anti-derivative.
Important remark:
When using FTC ta salve definite integrals, you Can take any anti-derirative (usually $C=0$)
But be careful, when Solving an indefinite integral your answer must have Canstent C.
general anti-derivatives For same elementary Junctions: In $x^{n \neq-1}, n$ is a rational number
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ where C is a constant , $\int e^{x} d x=e^{x}+C$ \qquad
$\int \sin x d x=-\cos x+C$ \qquad
\qquad
$\int \cos x d x=\sin x+C$ \qquad
\qquad

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

\qquad
\qquad
"ubsointer value as" In "only takes pasitic values
Also, as betore:

$$
\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x
$$

and
$\int_{k} f(x) d x=k \int f(x) d x$ where k is a constant.

Example 1:
Find the general anti-derivative of

$$
\begin{aligned}
& f(x)=9 e^{x}+\frac{5}{\sqrt{x}}-2 \cos x+5 \\
& \int f(x) d x=\int 9 e^{x}+5 x^{-\frac{1}{2}}-2 \cos x+5 d x \\
& =\int 9 e^{x} d x+\int 5 x^{-\frac{1}{2}} d x+\int-2 \cos x d x+\int 5 d x \\
& =9 \int e^{x} d x+5 \int x^{-\frac{1}{2}} d x-2 \int \cos x d x+5 \int x^{0} d x \\
& \text { ane Cantant......s } \\
& \text { isenangh! }=9\left(e^{x^{y}}+C\right)+5\left(\frac{1}{-1 / 2+1} x^{-\frac{1}{2}+1}\right) \text { where } C \text { is a Constant } \\
& \text { Da nat need jo put duffenut } \\
& -2 \mid \sin x)+5\left(\frac{1}{0+1} x^{\prime}\right) \\
& \text { Constant for each indetinits }
\end{aligned}
$$

$$
\begin{aligned}
& \text { instant }=9 e+9 C+5\left(2 x^{2}\right)-2 \sin x+5 x: \text { constant } \\
& \text { Say D } \\
& =9 e^{x}+10 x^{\frac{1}{2}}-2 \sin x+5 x+D
\end{aligned}
$$

where D is a constant.

Example 2:
Use your answer to example 1 to find

$$
\begin{aligned}
& \int_{0}^{\pi} 9 e^{x}+\frac{5}{\sqrt{x}}-2 \cos x+5 d x \\
& \text { by FTC }=9 e^{x}+10 x^{\frac{1}{2}}-2 \sin x+5 x+\left.D\right|_{0} ^{\pi} \\
&\left.=\left[9 e^{\pi}+10 \sqrt{\pi}-2 \sin (\pi)+5(\pi)+1\right)\right] \\
&-[9 e^{0}+10 \sqrt{0}-2 \sin (a)+\underbrace{5}_{0}(0)+D] \\
&=9 e^{\pi}+10 \sqrt{\pi}-0+5 \pi+D \\
&-[9+0-0+0+D] \\
&=9 e^{\pi}+10 \sqrt{\pi}+5 \pi-9
\end{aligned}
$$

Example 3:
et $f(x)=\frac{1}{2} \sin x+\sqrt{3} \cos x$.
Find $F(x)^{2}$ such that $F^{\prime}(x)=f(x)$ and $F(0)=2$.

$$
\begin{aligned}
& \int f(x) d x=\int \frac{1}{2} \sin x+\sqrt{3} \cos x d x \\
&=\frac{1}{2} \int \sin x d x+\sqrt{3} \int \cos x d x \\
&=\frac{1}{2}(-\cos x+C)+\sqrt{3}(\sin x) C \text { is a Constant } \\
&=-\frac{1}{2} \cos x+\sqrt{3} \sin x+P \text { whee } P \text { is a Constant } \\
&=F(x) \\
& * F(0)=2 \\
& F(0)=-\frac{1}{2} \cos (0)+\sqrt{3} \frac{0}{\sin (0)}+P=-\frac{1}{2}+P \stackrel{(x)}{=} 2 \\
& \Rightarrow P=\frac{5}{2} \\
& F(x)=-\frac{1}{2} \cos x+\sqrt{3} \sin x+5 / 2
\end{aligned}
$$

