Last Week:
\rightarrow Definite Integral:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} F^{\prime}(x) d x=F_{\text {Find an anti-denivative }}^{F(b)-F(a)} \rightarrow \text { This is a number. }
$$

$F(x)$ suede that cancel each other.

$$
F^{\prime}(x)=f(x)
$$

\rightarrow Indefinite Integral:
$\int f(x) d x=\frac{F(x)+C}{} \leadsto A$ function $f(x)$ can have many This isafunction. anti-denvatives $F(x)$, but there all different by a constant term.

* for any Constant C :

$$
(F(x)+C)^{\prime}=F^{\prime}(x)=f(x)
$$

Clicker Q. Find the general anti-denvative of

$$
f(x)=\frac{x}{2}-e^{x}+\sin x-\frac{5}{\sqrt{x}}+2
$$

A. $\quad F(x)=x^{2}-e^{x}-\operatorname{Cos} x-10 \sqrt{x}+2+C$
B. $F(x)=\frac{x^{2}}{4}-e^{x}+\cos x+10 \sqrt{x}+2 x+C$
(C). $F(x)=\frac{x^{2}}{4}-e^{x}-\operatorname{Cos} x-10 \sqrt{x}+2 x+C$

$$
\text { D. } F(x)=2 x^{2}-e^{x}-\cos x-10 \sqrt{x}+C+\frac{2 x}{=}
$$

Term by Term: $\frac{x}{2} \leadsto \frac{1}{2} \cdot \frac{1}{1+1} x^{1+1}=\frac{1}{4} x^{2}, e^{x} \leadsto e^{x}, \sin x \rightsquigarrow-c_{0}$

$$
\frac{5}{\sqrt{x}}=5 x^{-\frac{1}{2}} \leadsto 5 \cdot \frac{1}{-\frac{1}{2}+1} x^{-\frac{1}{2}+1}=5 \cdot \frac{1}{\frac{1}{2}} x^{\frac{1}{2}}=10 \sqrt{x}
$$

Clicker $Q:$ The general anti-denvative of $f(x)=(2 x+1)^{2}$ is

$$
F(x)=\frac{1}{6}(2 x+1)^{3}+C
$$

(A.) Yes How to verify ? Check if $F^{\prime}(x)=f(x)$.
B. NO

$$
F(x)=\frac{1}{6} \operatorname{men}^{3}+C
$$

$\xrightarrow{\left(\begin{array}{c}\text { chain } \\ \text { rule }\end{array}\right.} F^{\prime}(x)=\frac{1}{6} \cdot 3{ }^{2}+O=\frac{1}{6} \cdot 3 \cdot(2 x+1)^{2} \cdot 2$

Question: How should we compute

$$
=\frac{6}{6}(2 x+1)^{2}=(2 x+1)^{2} \downarrow
$$

$$
\int(2 x+1)^{2} d x
$$

* We want to find anti-denivative of $(2 x+1)^{2}$ by using integration techniqu From the question above, we know that the answer should be

$$
F(x)=\frac{1}{6}(2 x+1)^{3}+c \quad \text { Now, lets see how we find it. }
$$

Easy case: $\int x^{2} d x=\frac{1}{3} x^{3}+C$
Let's write the integral in a form whose integral is easy to find:
Take $2 x+1=u$. Then integral becomes $\int u^{2} d x$
The variables in the integral must be all the same, so we need to char $d x$ to du:
we have $2 x+1=u$
Derive both sides with respect to x

$$
\frac{d}{d x}(2 x+1)=\frac{d u}{d x} \Rightarrow 2=\frac{d u}{d x} \xrightarrow[d x]{\text { solve for }} d x=\frac{d u}{2}
$$

Now integral becomes: $\int u^{2} \cdot \frac{d u}{2}=\frac{1}{2} \int u^{2} d u \rightarrow$ we know how to compui this

$$
=\frac{1}{2} \cdot \frac{1}{3} u^{3}+C
$$

$$
=\frac{1}{6} u^{3}+C=\frac{1}{6}(2 x+1)^{3}+C
$$

2

Example.

$$
\int e^{5 x} d x=
$$

We know how to compute $\int e^{x} d x$, so let's rewrite the integral with a u-substitution:
take $5 x=u$ then $\frac{d}{d x}(5 x)=\frac{d u}{d x} \Rightarrow 5 d x=d u \Rightarrow d x=\frac{d u}{5}$

$$
\begin{aligned}
& \int e^{5 x} d x=\int e^{u} \frac{d x}{\underline{ }}=\int e^{u} \cdot \frac{d u}{5} \\
&=\frac{1}{5} \int e^{u} d u \\
&=\frac{1}{5} e^{u}+C \\
&=\frac{1}{5} e^{5 x}+C
\end{aligned}
$$

* This technique in integration is
called substitution. We need to know which piece should be substi by u so that when we replace $d x$ and $\operatorname{simplify}$, we are left wi a relatively easier integral. Only in terms of u.

Example. $\int 3 x \cos \left(x^{2}\right) d x=$
\rightarrow What substitution you would use ...
3 choices: $A \cdot x^{2}=u$

$$
\begin{aligned}
& B \cdot \quad \operatorname{Cos}\left(x^{2}\right)=u \\
& C \cdot \quad 3 x=u
\end{aligned}
$$

1stchoice : $x^{2}=u \Rightarrow 2 x=\frac{d u}{d x} \Rightarrow 2 x d x=d u \Rightarrow d x=\frac{d u}{2 x}$

$=\frac{3}{2} \int \cos u d u \leadsto$ easy to evaluate and only in term of u

$$
=\frac{3}{2} \operatorname{Sin} u+C
$$

$$
=\frac{3}{2} \operatorname{Sin}\left(x^{2}\right)+C
$$

What about other choices:
B. if $\operatorname{Cos}\left(x^{2}\right)=u \Rightarrow \frac{d}{d x}\left(\operatorname{Cos}\left(x^{2}\right)\right)=\frac{d u}{d x}$
chain

$$
\Rightarrow-\sin \left(x^{2}\right) \cdot 2 x=\frac{d u}{d x}
$$

solve for

$$
\underset{d x}{\Rightarrow}-\sin \left(x^{2}\right) \cdot 2 x d x=d u \Rightarrow d x=-\frac{d u}{\sin \left(x^{2}\right) \cdot 2 x}
$$

$=\frac{-3}{2} \int \frac{u}{\operatorname{Sin}\left(x^{2}\right)} d u \leadsto$ NoT an improvement from the
C. If $3 x=u \Rightarrow 3 d x=d u \Rightarrow d x=\frac{d u}{3}$

$$
\begin{aligned}
\int 3 x \cos \left(x^{2}\right) d x & =\int u \cos \left(x^{2}\right) \frac{d u}{3} \\
& =\frac{1}{3} \int u \cos \left(x^{2}\right) d u \leadsto \text { NOT an easier integral }
\end{aligned}
$$

Conclusion. There is no fixed rule that tells us how to substitute. By practicing, we'll learn how to foresee one step ahead to know that what substitution will eventually simplifies all x 's and we get an integral only in terms of u.
\longrightarrow Hint: Choose the substitution, such that its derivative is someho existing in the integral.

Worksheet.

1) Evaluate the following indefinite integrals.
a) $\int \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x$
e) $\int \tan x d x$
f) $\int \sin ^{2} x \cos x d x$
b) $\int \frac{\ln x}{x} d x$
g) $\int \frac{\cos (5 x)}{e^{\sin (5 x)}} d x$
c) $\int \sqrt{4-x} d x$
d) $\int(2 x+5)\left(x^{2}+5 x\right)^{7} d x$
h) $\int x^{2} e^{-4 x^{3}}$
2) Evaluate the following definite integrals.
a) $\int_{-1}^{1} \frac{x+1}{\left(x^{2}+2 x+2\right)^{3}} d x$
b) $\int_{0}^{\pi} \cos x \cdot \sqrt{\sin x} d x$
c) $\int_{-1}^{1} x^{2} \sqrt{x^{3}+1} d x$
d) $\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)^{2}} d x$
