Last Class:
Recall the main anti-derivatives:

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \\
& \int x^{-1} d x=\int \frac{1}{x} d x=\ln |x|+C \\
& \int e^{x} d x=e^{x}+C \\
& \int \sin x d x=-\cos x+C \\
& \int \cos x d x=\sin x+C
\end{aligned}
$$

when $n \neq-1$

* Remember the Constant of integration in indefinite integral

One
Integration technique we learned lass class: Substitution
The original integral does NOT look like one of the above simple integrals, but if we apply substitution $=u$ and also find $d x$ and replace them into the original and simplify, we, II get one of the $a b$
Worksheet (Ia):

$$
\int \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x=
$$

Sita
u
Then

$$
d u=3 x^{2} d x \Rightarrow d x=\frac{d u}{3 x^{2}}
$$

This appears in the integrand
$\frac{\text { Clicker } Q:}{(\text { wish } 1 b)}: \int \frac{\ln x}{x} d x$, what u would you choose?

$$
\begin{aligned}
& \text { if } u=\ln x \\
& \Rightarrow d u=\frac{1}{x} d x
\end{aligned} \leftarrow \cdot \ln x
$$

appears in the
integrand

What about :
(wIsh 1h) $\int x^{2} e^{-4 x^{3}} d x \quad$ then $u=$?
A. x^{2}
if

$$
\begin{aligned}
& u=-4 x^{3} \\
& d u=-\frac{12 x^{2}}{L} d x
\end{aligned} \leftarrow-4 x^{3}
$$

$C \cdot \frac{\ln x}{x}$
D. None of the above/No idea.
(C. $e^{-4 x^{3}}$ This also works.
D. Still No idea \because is there!

$$
\begin{array}{rlr}
\int \frac{\ln x}{x} d x=\int_{\text {Rewrite }}=u_{x}^{x} \cdot x d u & =\int u d u \\
u=\ln x \\
\Rightarrow d u=\frac{1}{x} d x \\
\Rightarrow d x=x d u & & =\frac{1}{1+1} u^{1+1} \\
\Rightarrow & & =\frac{1}{2} u^{2}+ \\
& &
\end{array}
$$

- $\int x^{2} e^{-4 x^{3}} d x$

$$
=\int_{\text {Rewrite }} x^{2} e^{u} \cdot \frac{d u}{-12 x^{2}}=-\frac{1}{12} \int e^{u} d u
$$

$$
u=-4 x^{3}
$$

Rewrite

$$
\Rightarrow d u=-12 x^{2} d x
$$

$$
\Rightarrow d x=\frac{d u}{-12 x^{2}}
$$

$$
\begin{aligned}
& =-\frac{1}{12} \frac{e^{u}+C}{--\frac{1}{12} e^{-4 x^{3}}+C}
\end{aligned}
$$

Use the other substitution for

$$
\begin{aligned}
& u=e^{-4 x^{3}} \\
& \Rightarrow d u=-12 x^{2} e^{-4 x^{3}} d x \\
& \Rightarrow d x=\frac{d u}{-12 x^{2}\left(e^{-4 x^{3}}\right.} u
\end{aligned}
$$

$$
\begin{aligned}
& \int x^{2} e^{-4 x^{3}} d x \\
& C \int x^{3} \mu \frac{d u}{-12 x^{2} u} \\
&=-\frac{1}{12} \int \frac{1}{12} u \\
&= e^{-\frac{1}{12}} e^{-4 x^{3}}+C
\end{aligned}
$$

Substitution in the case of definite integrals:

$$
\int_{0}^{1} x^{2} e^{-4 x^{3}} d x
$$

There are two choices:
(1) Transform the integral bounds to "un" as well and in the final step, you don't need to convert back to x, just apply FTC with the u-bounds.

$$
\begin{aligned}
& \int_{0}^{1} x^{2} e^{-4 x^{3}} d x \\
& \begin{array}{l}
u=-4 x^{3} \\
d u=-12 x^{2} d x
\end{array} \\
& \Rightarrow d x=\frac{d u}{-12 x^{2}} \\
& \perp=\int_{0}^{-4}-\frac{1}{12} e^{u} d u=\left(-\frac{1}{12}\right)-\int_{-4}^{0} e^{u} d u \\
& =\left.\frac{1}{12} e^{u}\right|_{u=-4} ^{u=0}=\frac{1}{12} e_{1}^{9}-\frac{1}{12} e^{-4} \\
& \text { Also transform the bounds. } \\
& =\frac{1}{12}-\frac{1}{12} e^{-4}
\end{aligned}
$$

lower bound: $x=0 \quad u=-4 x^{3} \longrightarrow \quad u=-4(0)^{3}=0$
upper bound: $x=1 \sim u=-4(1)^{3}=-4$

* Note that we prefer to have lower bound smaller than the upper bound, if not we can easily swap the bounds but we should multiply by -1 :

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

(2) To find the definite integral by substitution, we can ignore the bounds and find the general anti-denivative, then in the final step we convert back to the original variable x and we apply FTC with the x-bounds:

$$
\begin{aligned}
\int_{0}^{1} x^{2} e^{-4 x^{3}} d x=-\frac{1}{12} e^{u} d u & =-\frac{1}{12} e^{u}+C \\
& =-\frac{1}{12} e^{-4 x^{3}}+\left.C\right|_{x=0} ^{x=1} \\
& =-\frac{1}{12} e^{-4(1)^{3}+c}-\left(-\frac{1}{12} e^{0}+C\right) \\
& =-\frac{1}{12} e^{-4}+\frac{1}{12}
\end{aligned}
$$

Same answer as method (1).
(*) Recall that in definite integral, the constant C does N matter since it ill be cancelled when FTC is applied.

Another Example:

$$
\begin{aligned}
& \int_{0}^{\pi} \cos x \cdot \sqrt{\sin x} d x \\
& u=\sin x \\
& \Rightarrow d u=\cos x d x \\
& \Rightarrow d x=\frac{d u}{\cos x}
\end{aligned}
$$

$$
I=\int_{0}^{0} \cos x \cdot \sqrt{u} \cdot \frac{d u}{\cos x}=\int_{0}^{0} \sqrt{u} \cdot d u=0
$$

lower \& upper bound are equal: this means NO area under the curve

$$
\Rightarrow \int=0
$$

*) Note: $\int_{a}^{a} f(x) d x=0$

* These examples are all from the worksheet for substitution. Make sure you solve all the integrals on that. worksheet.

