Math 190 Quiz 4: Solutions

1. A 20 m tree has has been bent in a storm and makes an angle of 60° with the ground. Some sap is moving down the tree moving at speed $2 \mathrm{~m} / \mathrm{min}$. How fast is the distance from the sap to the ground decreasing when the sap is half way down the tree?
Solution: Call the distance from the sap to the ground x and call the distance along the tree from the sap to the ground y. We know that $d y / d t$ is decreasing at a rate of $2 \mathrm{~m} / \mathrm{min}$ and would like to find $d x / d t$.

Using the above figure and trigonometry we see that

$$
\sin \left(\frac{\pi}{3}\right)=\frac{x}{y} .
$$

We know that $\sin \pi / 3=\sqrt{3} / 2$ and we rearrange the equation to read

$$
\frac{\sqrt{3}}{2} y=x
$$

We now differentiate both sides with respect to t to achieve

$$
\frac{\sqrt{3}}{2} \frac{d y}{d t}=\frac{d x}{d t} .
$$

With some substitution we find the desired value.

$$
\frac{d x}{d t}=\frac{\sqrt{3}}{2}(-2 \mathrm{~m} / \mathrm{min})=-\sqrt{3} \mathrm{~m} / \mathrm{min}
$$

In this way we now know that $d x / d t$ is decreasing at a rate of $\sqrt{3} \mathrm{~m} / \mathrm{min}$.
Solution 2: We can also use quotient rule after

$$
\sin \left(\frac{\pi}{3}\right)=\frac{x}{y} .
$$

Let $x^{\prime}=d x / d t$ and $y^{\prime}=d y / d t$ then

$$
0=\frac{x^{\prime} y-x y^{\prime}}{y^{2}}
$$

or rather

$$
\begin{aligned}
x^{\prime} y & =x y^{\prime} \\
x^{\prime} & =\frac{x}{y} y^{\prime} .
\end{aligned}
$$

We now note that $x / y=\sin \pi / 3$ and so

$$
x^{\prime}=\sin \left(\frac{\pi}{3}\right) y^{\prime}=\frac{\sqrt{3}}{2}(-2)=-\sqrt{3}
$$

Solution3: We can try to use the Pythagorean Theorem but we have a hard time with it and end up having the use more or less the same trig anyway. Call the remaining side length z so then

$$
x^{2}+z^{2}=y^{2} .
$$

We don't like having z since we know nothing about $d z / d t$. Let's get rid of it now in favour of y and x. Using some trig we know that $\cos \pi / 3=z / y$ so $z=y \cos \pi / 3$. There follows

$$
x^{2}+\cos ^{2}(\pi / 3) y^{2}=y^{2}
$$

and

$$
\begin{aligned}
x^{2} & =\left(1-\cos ^{2}(\pi / 3)\right) y^{2} \\
& =\sin ^{2}(\pi / 3) y^{2}
\end{aligned}
$$

with our favourite trig identity. Taking now the derivative of both sides in t we see

$$
2 x x^{\prime}=2 \sin ^{2}(\pi / 3) y y^{\prime}
$$

so

$$
x^{\prime}=\sin ^{2}(\pi / 3) \frac{y}{x} y^{\prime}
$$

Recall that $y / x=1 / \sin (\pi / 3)$ to finally achieve

$$
\begin{aligned}
& x^{\prime}=\frac{\sin ^{2}(\pi / 3)}{\sin (\pi / 3)} y^{\prime} \\
& x^{\prime}=\sin (\pi / 3) y^{\prime}
\end{aligned}
$$

as before.

