Midterm Exam I

October 7, 2011
No books. No notes. No calculators. No electronic devices of any kind.

Name

Student Number

Problem 1. (6 points)
For each of the three matrices A, B, C find all values of the indeterminates, such that the matrix is in reduced row echelon form.

$$
A=\left(\begin{array}{lllll}
0 & 0 & 1 & y & 0 \\
0 & x & 0 & z & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
B=\left(\begin{array}{lllll}
1 & 2 & 0 & y & z \\
0 & 0 & 1 & x & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
C=\left(\begin{array}{lllll}
0 & 1 & y & 0 & 0 \\
0 & 0 & 0 & x & z \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

1	2	3	4	5	6	7	total $/ 40$

Problem 2. (6 points)
Solve the following system of linear equations.
Give the answer in parametric vector form.

$$
\begin{aligned}
2 x_{1}+4 x_{2}+2 x_{3}+2 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =3 \\
x_{1}+x_{2}-x_{3} & =3
\end{aligned}
$$

Problem 3. (5 points)
Decide whether or not the vector \vec{v} is in $\operatorname{span}\left(u_{1}, u_{2}\right)$. In other words, decide if there exist x_{1} and x_{2}, such that $\vec{v}=x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}$. Justify your answer.

$$
\vec{v}=\left(\begin{array}{l}
5 \\
3 \\
2
\end{array}\right) \quad \vec{u}_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \quad \vec{u}_{2}=\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right)
$$

Problem 4. (6 points)
Find all values of h, such that the vectors

$$
\left(\begin{array}{l}
1 \\
1 \\
2 \\
3
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
h \\
3 \\
5
\end{array}\right) \quad\left(\begin{array}{c}
-1 \\
0 \\
1 \\
2
\end{array}\right)
$$

are linearly independent.

Problem 5. (5 points)
Refering to the sketch, write the vectors \vec{a}, \vec{b} and \vec{c} as linear combinations of \vec{v}_{1} and \vec{v}_{2}.

Problem 6. (6 points)
For each transformation decide whether or not it is linear. If it is linear, find its matrix.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\binom{x}{y}=\left(\begin{array}{c}x+y \\ y-x \\ x\end{array}\right)$.
(b) $S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, which multiplies every vector by the scalar 5 .
(c) $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $U\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{x+y+1}{x-y-1}$

Problem 7. (6 points)
Consider the linear transformations S, and T, both with domain \mathbb{R}^{2} and codomain \mathbb{R}^{2}.
(a) The transformation S first rotates every vector by an angle of $\pi / 2$ counterclockwise about the origin, and then reflects the resulting vector across the x-axis. Find the matrix of S.

$$
[S]=
$$

(b) The transformation T first reflects every vector across the x-axis, and then rotates the resulting vector counterclockwise about the origin by an angle of $\pi / 2$. Find the matrix of T.

$$
[T]=
$$

(c) Describe the transformation S as a single geometric operation. Do the same for T.

