Midterm Exam I

October 7, 2011

No books. No notes. No calculators. No electronic devices of any kind.

Name _____

Student Number _____

Problem 1. (6 points)

For each of the three matrices A, B, C find all values of the indeterminates, such that the matrix is in reduced row echelon form.

$$A = \begin{pmatrix} 0 & 0 & 1 & y & 0 \\ 0 & x & 0 & z & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 & 0 & y & z \\ 0 & 0 & 1 & x & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 1 & y & 0 & 0 \\ 0 & 0 & 0 & x & z \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1	2	3	4	5	6	7	total/40

Problem 2. (6 points)

Solve the following system of linear equations. Give the answer in **parametric vector form**.

$2x_1$	+	$4x_2$	+	$2x_3$	+	$2x_4$	=	6
x_1	+	$2x_2$	+	x_3			=	3
x_1	+	x_2	—	x_3			=	3

Math 221, Midterm Exam ${\cal I}$

Page 3 of 9

Problem 3. (5 points)

Decide whether or not the vector \vec{v} is in span (u_1, u_2) . In other words, decide if there exist x_1 and x_2 , such that $\vec{v} = x_1\vec{u}_1 + x_2\vec{u}_2$. Justify your answer.

$$\vec{v} = \begin{pmatrix} 5\\3\\2 \end{pmatrix} \qquad \vec{u}_1 = \begin{pmatrix} 1\\2\\2 \end{pmatrix} \qquad \vec{u}_2 = \begin{pmatrix} -3\\1\\2 \end{pmatrix}$$

Problem 4. (6 points)

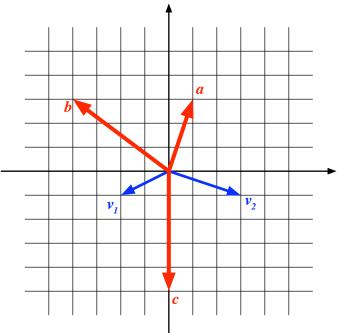
Find all values of h, such that the vectors

$$\begin{pmatrix} 1\\1\\2\\3 \end{pmatrix} \qquad \begin{pmatrix} 0\\h\\3\\5 \end{pmatrix} \qquad \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}$$

are linearly independent.

Problem 5. (5 points)

Referring to the sketch, write the vectors \vec{a} , \vec{b} and \vec{c} as linear combinations of $\vec{v_1}$ and $\vec{v_2}$.



Problem 6. (6 points)

For each transformation decide whether or not it is linear. If it is linear, find its matrix. (n + n)

(a)
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y-x \\ x \end{pmatrix}$.

(b) $S: \mathbb{R}^4 \to \mathbb{R}^4$, which multiplies every vector by the scalar 5.

(c)
$$U : \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $U \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+1 \\ x-y-1 \end{pmatrix}$

Problem 7. (6 points)

Consider the linear transformations S, and T, both with domain \mathbb{R}^2 and codomain \mathbb{R}^2 .

(a) The transformation S first rotates every vector by an angle of $\pi/2$ counterclockwise about the origin, and then reflects the resulting vector across the x-axis. Find the matrix of S.

[S] =

(b) The transformation T first reflects every vector across the x-axis, and then rotates the resulting vector counterclockwise about the origin by an angle of $\pi/2$. Find the matrix of T.

[T] =

(c) Describe the transformation S as a single geometric operation. Do the same for T.