Practice Midterm Exam I

No books. No notes. No calculators. No electronic devices of any kind.
Problem 1. (0 points)
What conditions do x, y, z, u, w have to satisfy for the matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & y & u & w \\
0 & 0 & 0 & z & 0 \\
0 & x & 0 & 0 & 1
\end{array}\right)
$$

to be in reduced row echelon form?
Problem 2. (0 points)
List all matrices in reduced row echelon form, whose first row is $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$.
Problem 3. (0 points)
Find out for which values of k the vector \vec{v} is a linear combination of \vec{u}_{1} and \vec{u}_{2}

$$
\vec{v}=\left(\begin{array}{c}
k \\
2 \\
k
\end{array}\right) \quad \vec{u}_{1}=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) \quad \vec{u}_{2}=\left(\begin{array}{c}
13 \\
1 \\
8
\end{array}\right)
$$

Problem 4. (0 points)
Determine whether the vectors

$$
\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right) \quad\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right)
$$

are linearly dependent or linearly independent. Justify your answer.
Problem 5. (0 points)
Find an equation defining the plane through the origin in \mathbb{R}^{3}, which is spanned by the two vectors

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \quad \vec{u}_{2}=\left(\begin{array}{c}
0 \\
-2 \\
4
\end{array}\right)
$$

Problem 6. (0 points)
Find two vectors in \mathbb{R}^{3}, which span the plane defined by the equation

$$
2 x-3 y+6 z=0
$$

Problem 7. (0 points)
Decide whether or not $\vec{v}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is contained in $W=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$.
Problem 8. (6 points)
Write down the general solution in parametric vector form. Your answer will depend on k.

$$
\begin{array}{r}
2 x_{1}-4 x_{2}+x_{3}+k x_{4}=0 \\
x_{1}-2 x_{2}+2 x_{3}+k x_{4}=0 \\
x_{1}-2 x_{2}+x_{3}+2 k x_{4}=0 \\
x_{1}-2 x_{2}+x_{3}+k x_{4}=0
\end{array}
$$

Problem 9. (0 points)
For which values of k are the vectors $\binom{1}{k}$ and $\binom{2}{5 k-1}$ linearly independent?
Problem 10. (0 points)
Linear transformations:
(a) Find the matrix of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, defined by the formula

$$
T(a, b, c, d)=(a-b, a+c-d) .
$$

(b) Find the matrix of the linear transformation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which rotates every vector by an angle of π about the origin.
(c) Find the matrix of the linear transformation $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, which rotates every vector by an angle of $\frac{\pi}{2}$ about the x_{2}-axis. (The rotation is counterclockwise, if you view the (x_{1}, x_{3})-plane from the positive x_{2}-axis.)

Problem 11. (0 points)
Consider the two matrices

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Both A and B define matrix transformations.
(a) The domain of A is \qquad , the codomain of A is \qquad .
(b) Is A onto? Show your work.
(c) The domain of B is \qquad , the codomain of B is \qquad .
(d) Is B one-to-one? Show your work.

Problem 12. (0 points)
Consider the matrices

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Find the matrix of the linear transformation which first multiplies by A and then by B.

Problem 13. (0 points)
Find the matrix of the linear transformation which reflects across the line $x+2 y=0$.
Problem 14. (0 points)
Describe geometrically the matrix transformation given by $\left(\begin{array}{ll}3 & -4 \\ 4 & -3\end{array}\right)$.
Problem 15. (0 points)
Describe geometrically the range of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, whose matrix is

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

