Page 1 of 3

Practice Midterm Exam I

No books. No notes. No calculators. No electronic devices of any kind.

Problem 1. (0 points)

What conditions do x, y, z, u, w have to satisfy for the matrix

$$A = \begin{pmatrix} 0 & 1 & y & u & w \\ 0 & 0 & 0 & z & 0 \\ 0 & x & 0 & 0 & 1 \end{pmatrix}$$

to be in reduced row echelon form?

Problem 2. (0 points)

List all matrices in reduced row echelon form, whose first row is $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$.

Problem 3. (0 points)

Find out for which values of k the vector \vec{v} is a linear combination of \vec{u}_1 and \vec{u}_2

$$\vec{v} = \begin{pmatrix} k \\ 2 \\ k \end{pmatrix}$$
 $\vec{u}_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ $\vec{u}_2 = \begin{pmatrix} 13 \\ 1 \\ 8 \end{pmatrix}$

Problem 4. (0 points)

Determine whether the vectors

$$\begin{pmatrix} 1\\3\\2 \end{pmatrix} \qquad \begin{pmatrix} 4\\-1\\2 \end{pmatrix} \qquad \begin{pmatrix} 3\\0\\1 \end{pmatrix}$$

are linearly dependent or linearly independent. Justify your answer.

Problem 5. (0 points)

Find an equation defining the plane through the origin in \mathbb{R}^3 , which is spanned by the two vectors

$$\vec{u}_1 = \begin{pmatrix} 1\\1\\2 \end{pmatrix} \qquad \vec{u}_2 = \begin{pmatrix} 0\\-2\\4 \end{pmatrix}$$

Problem 6. (0 points)

Find two vectors in \mathbb{R}^3 , which span the plane defined by the equation

$$2x - 3y + 6z = 0$$

Problem 7. (0 points)

Decide whether or not $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is contained in $W = \operatorname{span}\{\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}\}.$

Problem 8. (6 points)

Write down the general solution in parametric vector form. Your answer will depend on k. $2x_1 - 4x_2 + x_3 + kx_4 = 0$

$2x_1$	_	$4x_2$	+	x_3	+	kx_4	=	0
x_1	—	$2x_2$	+	$2x_3$	+	kx_4	=	0
x_1	—	$2x_2$	+	x_3	+	$2kx_4$	=	0
x_1	—	$2x_2$	+	x_3	+	kx_4	=	0

Problem 9. (0 points)

For which values of k are the vectors $\begin{pmatrix} 1 \\ k \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 5k-1 \end{pmatrix}$ linearly independent?

Problem 10. (0 points)

Linear transformations:

(a) Find the matrix of the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$, defined by the formula

$$T(a, b, c, d) = (a - b, a + c - d).$$

- (b) Find the matrix of the linear transformation $R : \mathbb{R}^2 \to \mathbb{R}^2$, which rotates every vector by an angle of π about the origin.
- (c) Find the matrix of the linear transformation $S : \mathbb{R}^3 \to \mathbb{R}^3$, which rotates every vector by an angle of $\frac{\pi}{2}$ about the x_2 -axis. (The rotation is counterclockwise, if you view the (x_1, x_3) -plane from the positive x_2 -axis.)

Problem 11. (0 points)

Consider the two matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}.$$

Both A and B define matrix transformations.

- (a) The domain of A is _____, the codomain of A is _____.
- (b) Is A onto? Show your work.
- (c) The domain of B is _____, the codomain of B is _____.
- (d) Is B one-to-one? Show your work.

Problem 12. (0 points)

Consider the matrices

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \,.$$

Find the matrix of the linear transformation which first multiplies by A and then by B.

Problem 13. (0 points) Find the matrix of the linear transformation which reflects across the line x+2y = 0.

Problem 14. (0 points) Describe geometrically the matrix transformation given by $\begin{pmatrix} 3 & -4 \\ 4 & -3 \end{pmatrix}$.

Problem 15. (0 points)

Describe geometrically the range of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$, whose matrix is

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}$$