No books. No notes. No calculator. No electronic device of any kind.

1. (4 points) Determine for what value or values of h the following vectors are linearly independent? Show your work.

in order to have only trivial solut => No free >> one pirot @ each column => h-8 #0

(2 pts) h #8

2. (4 points) Find the standard matrix for a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with the following features: it first reflects the points through the line $x_1 = x_2$. Next, it expands every point horizontally with a factor of c = 2. Show your work.

e1 =
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 reflection $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ endure $\begin{bmatrix} 2(1) \\ 0 \end{bmatrix}$ = $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ = T(e2) (2 pts.)

A = $\begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix}$ = $\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ = $\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ = $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ = $\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ reflection $(1, 1)$ reflection $(2, 1)$ refle

Scanned by CamScanner

3. (4 points) Each of the following standard matrices correspond to a linear transformation of $T(x): \mathbb{R}^n \to \mathbb{R}^m$ (recall the matrix form Ax = b). For the linear transformation corresponding to each matrix answer these two questions: Does the linear transformation map \mathbb{R}^n onto \mathbb{R}^m ? Is the linear transformation one-to-one? No need to explain why.

•
$$T(x): \mathbb{R}^3 \mapsto \mathbb{R}^2$$
, $A = \begin{pmatrix} \boxed{1} & 2 & 1 \\ 0 & \boxed{1} & 3 \end{pmatrix}$

$$ullet T(x): \mathbb{R}^2 \mapsto \mathbb{R}^3, \qquad A = egin{pmatrix} \boxed{1} & 2 \ 0 & \boxed{1} \ 0 & 0 \end{pmatrix}$$