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1 Linear systems

A equation is called linear when it follows the following form:

a1x1 + a2x2 + ...+ anxn = b (1)

Example 1.1.

Example 1.2.

Example 1.3.

Example 1.4.

A set of linear equations with the same variables is called a linear system:

x1 + 2x2 − 1.5x3 = 8 (2)

2x1 − x3 = 0 (3)

A solution is a list of numbers which makes each equation a true statement. For
above set of linear equations for instance, (3,7,6) is a solution since by substituting
it to (2) and (3), it yields 8 = 8 and 0 = 0. For this particular example, another
solution is (4,8,8), meaning that the solution is not unique. All sets of numbers
satisfying a set of linear equations are called the solution set for that set of linear
equations. Two linear sets are equivalent if they have the same solution set.

For a better visualization of a set of linear equations, let’s start with a simple set
of two equations with two variables:

Example 1.5.

x2 + x1 = 1 (4)

x2 − 2x1 = 4 (5)

Each linear equation with two variables forms a line:
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x1

x2

Now the intersection point of these two lines ( , ) is a solution.

With the above representation, we can easily see that two lines (equations) might
be parallel (no solution), or might superpose (infinite solutions):

x1

x2

x1

x2

Thus, a system of linear equations has (i) no solution, or (ii) one solution (iii)
infinite solutions.

In Example 1.5, we have already seen that for a linear system with only two
unknowns, plotting the corresponding lines can give us the solution. Unfortunately,
solving a larger (with more unknown variables) linear system is not always an easy
task. However, there are some strategies to transform a complicated linear system to
an equivalent (i.e. one with exactly same solution set) simpler one. For instance in
Example 1.5, by subtracting (4) from (5) we can readily obtain x1. A systematic way
to solve systems of linear equations step by step is called "Gaussian Elimination".
Before detailing this algorithm, let’s see how a set of linear equations can be solved
by simple algebraic operations:

Example 1.6.

x1 − 3x2 + x3 = 4 (6)

2x1 − 8x2 + 8x3 = −2 (7)

− 6x1 + 3x2 − 15x3 = 9 (8)

To solve x1, x2, x3 we must eliminate some unknowns from the equations. Let’s
try to remove x1 from 7. To do that, we can add -2 times equation 6 to equation 7:
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x1 − 3x2 + x3 = 4 (9)

0x1 − 2x2 + 6x3 = −10 (10)

− 6x1 + 3x2 − 15x3 = 9 (11)

Similarly we can add 6 times equation 9 to the equation 11, to eliminate x1 from
the equation 11:

x1 − 3x2 + x3 = 4 (12)

0x1 − 2x2 + 6x3 = −10 (13)

0x1 +−15x2 − 9x3 = 33 (14)

We can simplify equations 13 and 14 by multiplying both sides with 1
2
and 1

3
, re-

spectively:

x1 − 3x2 + x3 = 4 (15)

0x1 − 1x2 + 3x3 = −5 (16)

0x1 +−5x2 − 3x3 = 11 (17)

Finally, in order to eliminate x2 17, we can add −5 times equation 16 to the
equation 17:

x1 − 3x2 + x3 = 4 (18)

0x1 − 1x2 + 3x3 = −5 (19)

0x1 + 0x2 − 18x3 = 36 (20)

Now we can easily solve equation 20 with only one unknown which is x3 = −2.
Plugging this solution to equation 19 yields x2 = −1. Finally, the last unknown can
be achieved by plugging known values for x2 and x3 into the equation 18, which
gives: x1 = 3.
The above operations can be performed in a more compact form with a Matrix
notation. Let’s look at another Example:

Example 1.7.
1x1 + 2x2 + 3x3 = 2 (21)

1x1 + 1x2 + 1x3 = 2 (22)

3x1 + 3x2 + 1x3 = 0 (23)

By identifying rows and columns, one can write the coefficients on the left hand
side in a matrix form: 

1 2 3

1 1 1

3 3 1

 (24)
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Which is called the coefficient matrix. By concatenating the right hand side of
the linear set (as a column) to the right of this matrix, we obtain the augmented
matrix:


1 2 3 2

1 1 1 2

3 3 1 0

 (25)

The compact form of a set of linear equations ease the task of solving a set of linear
equations. The system can be written in the form of Ax = b, where A is the coefficient
matrix, b is the right hand side vector and x is the unknown vector. Now let’s solve
the above set of linear equations in a matrix form:

1 2 3 2

1 1 1 2

3 3 1 0

















Threfore, the solution is: 


Let’s attack another example, in which we need to do a Row Interchange:
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Example 1.8. 
1 2 3 2

1 2 1 2

3 3 1 0




















As previously seen, a system of linear equations might not have a solution (in-

consistent):

Example 1.9. 
1 2 3 2

0 −1 −2 0

0 −3 −6 6





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Definition 1.

• A linear system is called consistent if ...

• A linear system is inconsistent if ...

In general, "Gaussian elimination comprises two principle steps:
(a)
(b)
In doing so, we benefit from three elementary operations:
(i)
(ii)
(iii)
Please note that none of these row operations change the solution set of the linear
system.

Definition 2. Row Echelon Form (REF):

• all rows with at least one nonzero are above any rows of all zeros,

• reading from left to right, the first non-zero entry in any row (called leading
entry) is in a column strictly to the right of the leading entry in the row above.

Row Echelon Form (RREF), if additionally we have:

• all pivots are equal to one,

• any column with a leading entry has zeros above and below it.

Example 1.10.

2x1 + 4x2 + 4x3 + 6x4 = 0

x1 + 2x2 + 3x3 + 4x4 = 1

x1 + 2x2 + x4 = −2

Ax = b




x1

x2

x3

x4

 =






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


So the Row Echelon Form (REF) is:





And the Reduced Row Echelon (RREF) Form:


m = the number of equations (rows)

n = the number of uknowns (columns)

r = the number of pivots

n− r = the number of free variables

If n− r > 0, we write the pivot variables in terms of free variables as parameters:

x =




With arbitrary values for the free variables.
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Example 1.11. 4 equations, 3 unknowns: Find the general solution of the linear
system: 

2 1 1

4 2 2

4 3 0

6 4 1



x1

x2

x3

 =


5

10

4

9























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Theorem 1. Existence and Uniqueness of reduced row echelon form (RREF): every
matrix A can be transformed into a matrix R in reduced row echelon form by using the
elementary row operations. Matrix R is unique. In other words, it does not depend on
the order in which the row operations are applied.

In short, we write a system of linear equations Ax = n in the form of augmented
matrix. Next:

1. the forward elimination returns the REF. If the system is inconsistent, then we
conclude that there is no solution and stop. Otherwise,

2. backward elimination returns the RREF (R|d). We identify pivot columns and
free columns in R to derive a general expression for all solutions x, which still
contains the free variables as parameters.

Now let’s concentrate on a more practical examples:

Example 1.12. Transportation:

Counts of vehicles per hour were collected
at various locations along four one-way
streets in downtown Vancouver. Assum-
ing that there is no parking available, how
many cars have passed the marked loca-
tions where no traffic counts were under-
taken?

x =




+ x4




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From a physical point of view, a solution is sensible only if

•

Thus, we only consider those solutions which satisfy


−−−→




−−−→




2 Sets of vectors
A n-tuple of numbers is called a vector. It can also be considered as a matrix with
only one column. Vectors have many useful properties which make them a popular
form of mathematical structure applicable to a wide range of real-life problems. We
start with some simple definitions:

Definition 3. • When the vector a belongs to a spaceRm it means that allm entries
of a belong to Real numbers,

• Additive closure: a1 + a2 ∈ V (Adding two vectors give a vector),

• Additive commutativity: a1 + a2 = a2 + a1. (Order of addition does not matter),

• Distributivity : c(a1+a2) (Scalar multiplication distributes over addition of vectors),

• Associativity: c(a1 · a2)

{a1, a2, a3, ..., an} ∈ Rm is called a set of vectors in Real numbers where the order
does not matter. One question that we need to answer is:

• Given b ∈ Rm, can it be represented as a linear combination of {a1, ..., an}?

Example 2.1. Verify if b =

(
1

4

)
can be expressed by a linear combination of a1 =

(
1

1

)

and a2 =

(
1

−2

)
. Find the coefficients of the linear combination.
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x1

x2

Definition 4. Vector form for a linear set:
A linear combination of equations can be viewed as a sum of basis vectors with un-
known coefficients:

a11x1 + a12x2 = b1

a21x2 + a22x2 = b2

(
a11

a21

)
x1 +

(
a21

a22

)
x2 =

(
b1

b2

)

Definition 5. For any set of {a1, ..., an} in Rm, the set of all linear combinations of
{a1, ..., an} is called the span of this vector set:

Span{a1, ..., an} := {x1a1 + ...+ xnan|x1, ..., xn ∈ R}

Example 2.2. Verify if the following sets span the given space ?

a1 = (1, 1), a2 = (2, 2),

a3 = (−1,−1)

x1

x2

a1 = (−1, 2), a2 = (1, 1)

x1

x2

11



0 1 2 3 0
1

2
3

0

1

2

3

a1

a2

a3

x
y

z

a1(2, 1, 1), a2(1, 2, 2), a3(3, 3, 3)

• span(a1, a2, a3)
?
= R3

0 1 2 3 0
1

2
3

0

1

2

3

a1

a2

a3

x
y

z

a1(0, 0, 0), a2(0, 4, 3), a3(3, 0, 3)

• span(a1, a2, a3)
?
= R3

0 1 2 3 0
1

2
3

0

1

2

3

a1

a2a3

x
y

z

a1(0, 2, 1), a2(2, 2, 3), a3(0, 1, 3)

• span(a1, a2, a3)
?
= R3

Example 2.3. For what values of h will b be in Span{a1, a2, a3}?

a1 =


1

−1
−2

 , a2 =


5

−4
−7

 , a3 =


−3
1

0

 , b =


−4
3

h


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Definition 6. Matrix form Ax = b for a linear set:
A linear combination of equations can be viewed as a product of coefficient matrix A
and vector of unknowns x:

a11x1 + a12x2 = b1

a21x2 + a22x2 = b2

[a1 a2]

[
x1

x2

]
= b

A.x = b

(
a11 a12

a21 a22

)(
x1

x2

)
=

(
b1

b2

)

How to compute A.x = b more efficiently ?

Theorem 2. if A is a m× n matrix, u and v are vectors in Rn, and c is a scalar, then:

• A(u+ v) = Au+ Av

• A(cv) = c(Au)

Theorem 3. The following statements are equivalent:

• span(a1, a2, ..., an) = Rm.

• For any vector b ∈ Rm there exist numbers x1, .., x2 such that:

x1a1 + ...+ xnan = b.

• For any vector b ∈ Rm the problem Ax = b has at least one solution x ∈ Rn.

• The matrix A has m pivots, one pivot in each row.

Example 2.4. Does {a1, a2, a3} span the R3 ?

a1 =


1

0

1

 , a2 =


3

−2
2

 , a3 =


−4
6

−1


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3 Solution sets of linear systems

3.1 Homogeneous system

Any linear system in the form of Ax = 0 is called a homogeneous system. There
is always at least one solution for any homogeneous system, that is: x = 0. This
solution is called the trivial solution. Any other non-zero vector that satisfies the
linear system is called a non-trivial solution.

Example 3.1. 
2 1 1

4 2 2

4 3 0

6 4 1



x1

x2

x3

 =


0

0

0

0



−2−1 0 1 2 3 4 5 6−6
−4
−2−1

0
2

0

1

2

3

x
y

z

Hence, a homogeneous system has a non-trivial
solution if and only if there is at least one free vari-
able in the system.

3.2 Nonhomogeneous system

Example 3.2. 
2 1 1

4 2 2

4 3 0

6 4 1



x1

x2

x3

 =


5

10

4

9



−2−1 0 1 2 3 4 5 6−6
−4
−2−1

0
2

0

1

2

3

x
y

z
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Summery: Writing the solution of a linear system in parametric form can be achieved
by following steps:

• Row reduction (Forward/backward elimination)

• Express pivot variables in terms of free variables (put free variables on the right
hand side)

• Write the solution vector x in terms of free variables, if any.

• Decompose x into a linear combination of vectors using the free variables as
parameters.

Example 3.3. A muesli company is planning to introduce a new product. The new
muesli mix will be composed of rolled oats, raisins, almonds, dried blueberries and
banana chips, for which the following nutritional values are known:

nutrition per 100 gr Rolled oats Raisins Almonds Dried blueberries Banana chips
Carbohydrates 70 gr 80 gr 20 gr 90 gr 60 gr

Fat 6 gr 1 gr 50 gr 2 gr 35 gr
Protein 15 gr 3 gr 21 gr 3 gr 2 gr
Other 9 gr 16 gr 9 gr 5 gr 3 gr

In what proportion the nutrients should the ingredients be combined to achieve
a nutrietion profile of carbohydrates: fat : protein : other = 6 : 1 : 2 : 1

From a physical viewpoint, a solution is only sensible if:
•

Therefore,
Conclusion: To solve a problem that stems from an application of linear algebra,
we first identify equations and unknowns to set up a system of linear equations that
models this problem. Once we have found all mathematical solutions of this linear
system by Gaussian elimination, we interpret these solutions from the perspective
of the application. It is important to note that mathematically correct answers may
not always be meaningful in real life.
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4 Linear independence

Let {a1, a2, ..., an} ∈ Rm. Can we write any of vectors a1, a2, ..., an in the form of a linear
combination of other vectors?
Example 4.1.

a1 = [1, 2, 0],

a2 = [1, 1, 0],

a3 = [1, 1, 3]

a1 = [1, 2, 0],

a3 = [1, 1, 3],

a4 = [2, 3, 3]

0 1 2 3 4 0
1

2
3

4

0

1

2

3

4

a1
a2

a4
a3

x
y

z

Definition 7. A set of vectors a1, a2, ..., an is called linearly independent if the equation

a1x1 + a2x2 + ...+ xnan = 0

has only the trivial solution.

The following statements are equal:

• The family (a1, a2, ..., an) = Rm is linearly independent.

• The problem
x1a1 + x2a2 + ...+ xnan = 0

has only one solution which is x1 = x2 = x3 = ... = xn = 0.

• The problem Ax = 0 has only the trivial solution x = 0 ∈ Rn.

• The matrix A has n pivots, one pivot in each column.

These ideas can be better pictured in the following example.

Example 4.2. Determine if the following families of vectors span the full space Rm, if
they are linearly independent?

a1 =


1

1

3

 a2 =


2

1

3

 a3 =


3

1

1

 (c.f. Example 1.7)

a1 =


1

1

3

 a2 =


2

2

3

 a3 =


3

1

1

 (c.f. Example 1.8)

a1 =


1

0

0

0

 a2 =


2

−1
0

0

 a3 =


3

−2
−6
5

 a4 =


3

−2
−6
5


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a1 =


1

0

0

0

 a2 =


2

−1
0

0

 a3 =


3

−2
−6
5

 a4 =


3

−2
−6
5

 a5 =


1

2

8

2



a1 =


1

0

0

0

 a2 =


2

−1
0

0

 a3 =


3

−2
−6
5



Example 4.3.

a1 =


1

2

0

 a2 =


3

1

0


0 1 2 3 4 0

1
2

3
4

0

1

2

3

4

a1

a2

x
y

z

a1 =


1

2

0

 a2 =


3

1

0



a3 =


1

1

3

 0 1 2 3 4 0
1

2
3

4

0

1

2

3

4

a1

a2

a3

x
y

z

a1 =


1

2

0

 a2 =


3

1

0



a3 =


1

1

3

 a4 =


2

3

3

 0 1 2 3 4 0
1

2
3

4

0

1

2

3

4

a1

a2

a3

a4

x
y

z
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Sets of Vectors Linear Systems Pivots
The vectors a1, ..., an ∈ Rm Existance of solutions: for any The matrix A ∈ Rm×n has a
span the whole space: b ∈ Rm the problem Ax = b pivot in each of its m rows.
span(a1, ..., an) = Rm. has at least one solution. In particular we must have

m ≤ n

The vectors a1, ..., an ∈ Rm Uniqueness of the solutions: for The matrix A ∈ Rm×n has a
are linearly independent. any b ∈ Rm the problem pivot in each of its n columns.

Ax = b has at most one solution. In particular we must have
m ≥ n

The vectors a1, ..., an ∈ Rm Existance and uniqueness of The matrix A ∈ Rm×n has a
form a basis of Rm. solutions: for any b ∈ Rm the pivot in each of its m rows

problem Ax = b has exactly and n columns. In particular,
one solution. we must have m = n

Reminder: To find the number of pivots in A, we use Forward elimination to
transform A to REF.

Example 4.4. The two homogeneous equations, below, define two planes through
the origin in R3. Find a parametric vector form for the line of intersection of the two
planes.

y − z = 0

−x − y + z = 0

0
1

2
3

4 0

1

2

3

4

0

1

2

3

4

x

y

z
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5 Linear transformation
In this sections we are considering functions between vector space Rm and Rn.
Example 5.1.

R −→ R R2 −→ R3 R3 −→ R1

Definition 8. • (Domain) The set of all vectors x for which T (x) is defined

• (Range) The set of all vectors of the form T (x) for some x in the domain of T .

• (Codomain) The set that contains the range of T.

Figure 1: X: Domain, Y : Codomain, f(x): range

However we will only be looking at functions with a special property that we refer
to as linearity. As it turns out, such linear maps provide yet another interpretation
of matrices multiplied with vectors.

Definition 9. A function T : Rn 7→ Rm is said to be a linear map or a linear transfor-
mation if it satisfies the following two properties:

(Additivity) T (u+ v) = T (u) + T (v) for any u, v in Rn

(Homogeneity) T (cu) = cT (u) for any u, v in Rn and c in R
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These two properties can be simply combined and represented by:

T (cu+ cv) = cT (u) + cT (v) for any u, v in Rn and c ∈ R

Example 5.2. Check if T is linear:

T : R2 7→ R2 T

[
x1

x2

]
=

[
2x1 − x2

3x1

]

Example 5.3. Check if T is linear:

T : R1 7→ R1 T
[
x1

]
=
[
2x1 − 1

]

5.1 Matrix of linear transformation

Up to now, we have looked at linear transformation as a formula. In the following
we show that linear transformation is simply another interpretation of matrices
multiplied by vectors. In particular, a linear transformation can be seen as matrix
A that "acts" on the vector x and produces the vector b:

A.x = b
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Hence, many familiar properties of the linear systems in matrix form can be related
to the linear transformations.
Example 5.4. (dilation or contraction)

T : R2 7→ R2

A =

(
c 0

0 c

)
, c ∈ R

x1

x2

Example 5.5. ( rotation by 90◦)
T : R2 7→ R2

A =

(
0 −1
1 0

)

x1

x2

Example 5.6. (reflection across the line l1 :
x2 = x1)

T : R2 7→ R2

A =

(
0 1

1 0

)
x1

x2 l1

Example 5.7. (reflection across the line l2 :
x2 = −x1)

T : R2 7→ R2

A =

(
0 −1
−1 0

)
x1

x2l2
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Example 5.8. (reflection across the origin)
T : R2 7→ R2

A =

(
−1 0

0 −1

)

x1

x2

Example 5.9. (Projection on the axis x2)
T : R2 7→ R2

A =

(
0 0

0 1

)

x1

x2

Example 5.10. (Horizontal expansion)
T : R2 7→ R2

A =

(
c 0

0 1

)
, c ∈ R

x1

x2

Example 5.11. (Horizontal shear)
T : R2 7→ R2

A =

(
1 c

0 1

)
, c ∈ R

x1

x2

Example 5.12. (Vertical shear)
T : R2 7→ R2

A =

(
1 0

c 1

)
, c ∈ R

x1

x2
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Example 5.13. Imagine T is a linear transformation R2 7→ R3. For given input unit

vectors e1 =

[
1

0

]
, e2 =

[
0

1

]
(these vectors are columns of the identity matrix I =

[
1 0

0 1

]
),

the outputs are the followings:

T (e1) =


2

3

1

 , T (e2) =


−1
2

0

 ,
Find the standard matrix of T.

Theorem 4. Let T : Rn 7→ Rm be a linear transformation. There exists a unique matrix
A such that:

T (x) = Ax, for all x in Rn

Matrix A is a m × n matrix whose jth column is the vector T (ej), where ej is the jth
column of the identity matrix in Rn:

A = [T (e1) ... T (en)]

Example 5.14. Find the standard matrix A for the transformation T”R2 7→ R2 which
rotates all the inputs with the angle φ

x1

x2
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Example 5.15. Let T : R2 7→ R3 be a linear transformation with following formula:

T (x1, x2) =


x1 + 2x2

2x1 + x2

0


First, identify the standard matrix of transformation. Second, identify the domain,
codomain and range of the transformation. Is any arbitrarily chosen vector in R3 an
image of at least one x ?

Theorem 5. A mapping T : Rn 7→ Rm is said to be onto Rm if each b ∈ Rm is the image
of at least one x ∈ Rn. This is true if and only if the columns of standard matrix A
span Rm

Example 5.16. In Example 5.15, for an arbitrarily chosen vector b ∈ R3, how many
input vectors x ∈ R2 exist for which T (x) = b?

• if b is outside the range of T (x)...

• if b is inside the range of T (x)...

Theorem 6. A mapping T : Rn 7→ Rm is said to be one-to-one if each b ∈ Rm is the
image of at most one x ∈ Rn. This is true if and only if the columns of standard matrix
A are linearly independent

Example 5.17. Consider the following linear transformation T : R3 7→ R2:

T (x1, x2, x3) =

[
x1 + 2x2

x1 + x2 + 2x3

]
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Is T one-to-one ? Is T onto Rm ?

Linear Maps Sets of Vectors Linear Systems Pivots
T : Rn 7→ Rm Vectors For any b ∈ Rm The matrix A ∈ Rm×n has a
is onto Rm. a1, ..., an ∈ Rm the problem Ax = b pivot in each of its m rows.

span Rm. has at least In particular we must have
one solution. m ≤ n

T : Rn 7→ Rm Vectors For any b ∈ Rm The matrix A ∈ Rm×n has a
is one-to-one. a1, ..., an ∈ Rm the problem Ax = b pivot in each of its n columns.

are linearly has at most In particular we must have
independent. one solution. m ≥ n

T : Rn 7→ Rm Vectors For any b ∈ Rm The matrix A ∈ Rm×n has a
is onto Rm a1, ..., an ∈ Rm the problem Ax = b pivot in each of its m rows
and one-to-one. form a basis has exactly and n columns. In particular,

of Rm. one solution. we must have m = n

Reminder: To find the number of pivots in A, we use Forward elimination to
transform A to REF.

Example 5.18. Find the standard matrix
for a linear transformation T : R2 7→ R2 with
the following features: it first performs a
horizontal shear: it maps e2 to e2− 2e1 (and
it leaves e1 unchanged). Then it reflects
the results through the origin. Is this lin-
ear map onto R2? Is it one-to-one ?

x1

x2

x1

x2
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Example 5.19. Find the standard matrix
for a linear transformation T : R2 7→ R2

with the following features: it first rotates
the points (about the origin) through −π/2.
Next, it projects every point onto the x2 axis
? Is this linear map onto R2? Is it one-to-
one ?

x1

x2

x1

x2

6 Matrix Algebra

In linear algebra, we encounter three basic types of arithmetic operations that in-
volves scalars λ ∈ R and matrices:

A =


a11 · · · a1n
... ..

. ...

am1 · · · amn

 ∈ Rm×n B =


b11 · · · b1q
... ..

. ...

bp1 · · · bpq

 ∈ Rp×q

• Multiplication with scalars : λA =


λa11 · · · λa1n
... ..

. ...

λam1 · · · λamn


• Matrix addition −→ only works if A and B have the same size:

A+B =


a11 + b11 · · · a1n + b1q

... ..
. ...

am1 + bp1 · · · amn + bpq


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• Matrix multiplication −→ only works if n = p (number of columns in A is equal
to number of rows in B):

AB =



[a11 · · · a1n]


b11
...

bp1

 · · · [a11 · · · a1n]


b1q
...

bpq


... ..

. ...

(am1 · · · amn)


b11
...

bp1

 · · · [am1 · · · amn]


b1q
...

bpq




Example 6.1. Compute the matrix multiplication when possible.

• AB =

(
1 2

2 1

)(
1 0

1 1

)

• AB =


1 2

3 4

5 6


(
1 2

3 4

)

• AB =


1

3

5

(7 8
)

• AB =
(
7 8

)
1

3

5


If A is a m× n matrix, and if B is a n× p matrix with columns b1, · · · bp, another way
to compute the multiplication is to write AB as a linear combination of columns of
matrix B:

AB = A[b1 b2 · · · bp] = [Ab1 Ab2 · · · Abp]

Example 6.2. Compute AB where A =

(
1 2

2 3

)
and B =

(
1 2 2

3 1 1

)
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Properties of matrix multiplication: Let A be a m × n matrix, and let B and C

have sizes for which the indicated sums and products are defined.

• A(BC) = (AB)C Associativity

• A(B + C) = AB + AC Distributivity

• (B + C)A = BA+ CA

• r(AB) = (rA)B = A(rB),

• ImA = A = AIn, In is a n× n identity matrix

• Ak = A · · ·A︸ ︷︷ ︸
k

Example 6.3. Given A =

(
0 1

0 0

)
and B =

(
1 2

0 0

)
, compute AB and BA and verify if

AB = BA.

Warning: in matrix multiplication order matters !
Example 6.4. Let T : R2 7→ R2 and P : R2 7→ R2

be the linear transformations corresponding to the
rotation by π/2 and the projection on the axis x1.
What is the standard matrix corresponding to the
composition of these two linear maps (first T and
second P ). Hint: use the associativity rule !

T (x) = A1x P (x) = A2x

A1 =

(
0 −1
1 0

)
A2 =

(
1 0

0 0

) x1

x2
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x1

x2

Definition 10. Given an m × n matrix A, the transpose of A is the m × n matrix,
denoted by AT , whose columns are formed the corresponding rows of A.

A =

(
a b

c d

) (
a c

b d

)

Example 6.5. Find the transpose of the following matrices:

•

A =


1 2

3 4

5 6

 , AT =

•

A =

(
1 2 3 4

5 6 7 8

)
, AT =

Properties of the transpose of a matrix:

• (AT )T = A

• (A+B)T = AT +BT

• for any scalar r, (rA)T = rAT

• (AB)T = BTAT → General Form: (AB · · ·Y Z)T = ZTY T · · ·BTAT

7 Inverse of a matrix
This section addresses the question how we can undo the action of a matrix or linear
map, provided that this is possible at all: if Ax give b, the A−1b should give x. Such
an inverse matrix can only exist if:

• for any b ∈ Rm there is an x ∈ Rn such that Ax = b (Existence of the solution)

• there are not two or more x ∈ Rn such that Ax = b. (Uniqueness of the solution)
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Hence, we only consider square matrices A ∈ Rn×n in this section and look for A−1

of the same size.

Definition 11. If for a matrix A ∈ Rn×n there exist a matrix A−1 ∈ Rn×n such that :

AA−1 = In and A−1A = In

then A is said to be invertible and A−1 is called the inverse of A. Otherwise A is
singular.

Note that if A ∈ Rn is invertible, after row reduction it reduces to In (Why ?).
If A is invertible, how can we compute A−1 ? If A ∈ R2×2, this is very easy:

Theorem 7. Let A =

(
a b

c d

)
. If ad− bc 6= 0, then A is invertible and

A−1 =
1

ad− bc

(
d −b
−c a

)

Example 7.1. A =

(
1 2

3 4

)
, A−1 =

For an invertible matrix A = [y1 y2 · · · yj] ∈ Rn×n:

(1th column of A−1) = y1 = A−1e1 −→ Ay1 = e1

(jth column of A−1) = yj = A−1ej −→ Ayj = ej

(nth column of A−1) = yn = A−1en −→ Ayn = en

Therefore, we have to solve n simultaneous linear system:

(A | e1 e2 · · · en) −→ (In | y1 y2 · · · yn)

(A−1 | In) −→ (In | A−1)
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Example 7.2. Determine whether or not

A =


1 0 4

0 1 −2
0 1 2


is invertible and if so, find its inverse matrix.

Properties of matrix inversion:

• (AB)−1 = B−1A−1

• (A−1)−1 = A

• (AT )−1 = (A−1)T

8 Characteristics of invertible matrices

We already know that matrix A ∈ Rn×n is invertible if and only if the linear system
Ax = b has exactly one solution. This can be interpreted in terms of properties of
linear transforamtion. A linear transformation T : Rn 7→ Rn is said to be invertible if
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there exist a function S : Rn 7→ Rn such that:

S(T (x)) = x for all x ∈ Rn

T (S(x)) = x for all x ∈ Rn

In that case, A is also invertible and S(x) = A−1x.

Theorem 8. A linear transformation T : Rn 7→ Rn is invertible, if and only if the
corresponding standard matrix A ∈ Rn 7→ Rn is also invertible. In that case, the
inverse of the linear transformation S : Rn 7→ Rn reads as S(x) = A−1x

Example 8.1. Let A ∈ Rn×n. Check if the following statements are true:

• if A is invertible, then its columns span Rn.

• If A is invertible, then the corresponding linear transformation is one-to-one.

• if the columns of A are linearly independent, then A is invertible.

• if the equation Ax = b is inconsistent for some b ∈ Rn, then the equation Ax = 0

has only the trivial solution.

• If the first two columns of A are equal, A is not invertible.

• If the equation Ax = 0 has only the trivial solution, then A is row equivalent to
the n× n identity matrix.

• Let B ∈ Rn×n. If AB is invertible, then A is invertible.
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9 Subspace and basis

We have already encountered various subsets of vector spaces, e.g.

•

•

•

Some subsets are especial because they form another vector space inside the larger
vector space:

Definition 12. A non-empty set H ⊂ Rn is said to be a subspace of Rn if it satisfies
the following two properties:

• (Closedness under Addition)

• (Closedness under Scalar Multiplication)

Or it can be combined to:

• (Closedness under Linear Combination)

Example 9.1. Determine if the following subsets of R2 are subspaces?

• H = {x ∈ R2|x2 = 2x1}

x1

x2

• H = {x ∈ R2|x2 = x1 − 1}

x1

x2

• H = {x ∈ R2|x2x1 ≥ 0}
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x1

x2

• H = Span(u, v) u, v ∈ Rn

Example 9.2. If H is a subspace of R3, then H is either

•

•

•

•

Definition 13. A family of vectors (v1, ..., vd) ⊂ Rn is said to

• span the subspace H ⊂ Rn if

• be a basis for the subspace H ⊂ Rn if

Definition 14. (Dimension of a vector space) The dimension dim H of a vector space
H is the number of vectors in every basis for H.
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Example 9.3. Let

H = span



2

1

1

 ,

1

2

2

 ,

3

3

3




0 1 2 3 0
1

2
3

0

1

2

3

a1

a2

a3

x
y

z

Conclusions:

• A subspace is a vector space nested inside another vector space.

• To prove that a subset H ⊂ Rn is also a subspace we have to show that:
1)H 6= ∅ by giving an example of one vector inH (0 always works ifH is actually a
subspace) 2) if u and v are any two vectors inH, the all their linear combinations
λu+ µv must be contained in H as well.

To prove that a subset H ⊂ Rn is not a subspace we need to find a counterex-
ample that violates one of the conditions.

• Rn is the space of all vectors with n real-valued components. A d−dimensional
subspace H ⊂ Rn is isomorphic to ("of the same shape as") the space of all
vectors with only d components: H ∼= Rd.

10 Column space and Null space

In this section we are going to use vector-space language to describe general linear
system Ax = b and their solutions. Two subspaces associated with the matrix A:

• column space:

• null space: All solutions of Ax = 0
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Definition 15. Let A ∈ Rm×n be the matrix with columns a1, · · · an ∈ Rm.

• the set of all linear combinations of the columns of A is called the column space
col(A)

• The set of all solutions of the homogeneous problem Ax = 0 is called the null
space nul(A) or the kernel ker(A).

Example 10.1. Let A ∈ Rm×n. Show that col(A) and null(A) are subspace.

Example 10.2. For each of the following matrices (from examples 1.10 and 1.11),
find a basis C for the column space and a basis N for the null space.

A =


2 4 4 6

1 2 3 4

1 2 0 1

 A =


2 1 1

4 2 2

4 3 0

6 4 1


Solution:
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RREF(A) =


1 2 0 1

0 0 1 1

0 0 0 0



In Example 1.10 we found that for

b =


0

1

2


all solutions of Ax = b are

x =


−2
0

1

0

+ x2


−2
1

0

0

+ x3


−1
0

−1
1



RREF(A) =


1 0 3/2

0 1 −2
0 0 0

0 0 0



In Example 1.10 we found that for

b =


5

10

4

9


all solutions of Ax = b are

x =


11/2

−6
0

+ x3


−3/2
2

1


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Definition 16. (Rank A) The rank of a matrix A, is the dimension of the col(A). That
is equivalent to say that the rank of A is equal to the number of pivots in A.

Theorem 9. (Rank theorem) Let A ∈ Rm×n (m rows and n columns) be a matrix of rank
r.

dim col(A) = dim null(A) =

Conclusions: We assume that A ∈ Rm×n ∈ has m rows and n columns and r

pivots.

• The null space of A is a subspace of the input space Rn. The column space is
a subspace of the output space Rm.

• The dimension of the subspace is the number of free columns in A, namely
n− r. The dimension of the column space is the number of pivots in A, namely
r.

• In order to find a basis for col(A) and null(A), we first do the row reduction and
achieve the RREF. The solution of Ax = 0 in a parametric vector form readily
provide us with a basis for null(A). The pivot columns of A (from the original
matrix A, not the RREF of A) forms a basis for col(A).

• Important special cases are the smallest possible null space null(A) = {0} and
the largest possible column space col(A) = Rm:

Linear Maps Sets of Vectors Linear Systems Rank Pivots
T : Rn 7→ Rm Vectors For any b ∈ Rm A has full A has a pivot
is onto Rm. a1, ..., an ∈ Rm the problem Ax = b row rank in every row.

span Rm. has at least r = m

one solution.
T : Rn 7→ Rm Vectors For any b ∈ Rm A has full A has a pivot
is one-to-one. a1, ..., an ∈ Rm the problem Ax = b column in every column.

are linearly has at most rank r = n

independent. one solution.
T : Rn 7→ Rm Vectors For any b ∈ Rm A has full A has a pivot
is onto Rm a1, ..., an ∈ Rm the problem Ax = b rank r = in every row
and one-to-one. form a basis has exactly = m = n and column.

of Rm. one solution.
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Knowing about the two fundamental subspaces ofAwhich are null(A) and col(A),
we can know about the number of solutions of the system Ax = b:

Example 10.3. Let {a1, a2} be a basis for subspace H. Show that b is in the subspace
H.

a1 =


1

2

0

 , a2 =


2

1

0

 , b =


3

3

0



0 1 2 3 4 0
1

2
3

4

0

1

2

3

4

a1

a2

x
y

z

Definition 17. Suppose thatB = b1, · · · bp is a basis for a subspaceH, the coordinate
of x relative to the basis are the weights c1, · · · cp such that x = c1b1 + · · · cpbp, and
the vector in Rp

[x]B =


c1
...

cp


is called the coordinate of x (relative to B) or the B-coordinate vector of x.

Exercise: Show that aB-coordinate vector of x is unique (assume twoB-coordinates,
and show that these two are necessarily equal).
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Ho can we transfer B-coordinates to standard coordinates?

Example 10.4. B-coordinates of the vector x be:

[x]B =

[
1

2

]
B =

([
1

2

]
,

[
2

1

])

Find the coordinates of x.
x1

x2

In general if B-coordinates of x is [x]B and B = {b1, · · · bn} is a basis, one can find
the coordinates of x with respect to the standard bases (columns of In) with the
following formula:

x = [b1 · · · bn][x]B

Inversely, B-coordinates of a given vector x can be written as:

[x]B = [b1 · · · bn]
−1x

11 Determinants
For the remainder of this course, we are going to work with square matrices A ∈
Rn×n. The determinant is a single number, that compresses a lot of information
about an entire matrix. We will use it as another test for invertibility and singularity:

• detA = 0 −→

• detA 6= 0 −→

An interpretation of that is used in multivariable calculus is as follows:

If we apply A to the unit cube in Rn, the det(A) gives the n−dimensional volume of
the output.
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x1

x2

x1

x2

Definition 18. The function det: Rn×n 7→ R with the properties:

A.

B.

C.

is called the determinant of a n× n matrix.

Some important properties of the determinant of A ∈ Rn×n are as follows:

(I) If A has a row of zeros then
proof.

(II) if A has two equal rows then
proof.
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(III) If we add a multiple of one row to another row, then
proof.

(IV) If A is upper triangular, then

det A =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
proof.

(V) det A = 0 if and only if A is singular. det A 6= 0 if and only if A is invertible.
proof.
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(VI) The determinant of a 2× 2 matrix is ∣∣∣∣∣a b

c d

∣∣∣∣∣
proof.

(VII) For two matrices A,B ∈ Rn×n, det(AB) =

(VIII) If A is invertible, then det(A−1) =
proof.

(IX) for any exponent p ∈ N,det(Ap) =

(X) For λ ∈ R,det(λA) =

(XI) det(AT ) =

Conclusion: In this introductory section, we have defined the determinant as a
function that satisfies the three properties (A), (B) and (C): the determinant of the
identity matrix is 1, every row exchange reverses the sign of the determinant and
the determinant is a linear map with respect to one fixed row. Of the properties
derived from (A), (B) and (C), the most important ones are the invertibility criterion
(V), the product formula (VII) and the fact (XI) that the transpose has no effect on
the determinant.
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11.1 How to compute the determinant in practice?

One of these three rules can be used:

1. formula for a 2× 2 matrix.

2. forward elimination

3. co factor expansion

Theorem 10. (Determinant by Gaussian elimination) Let A ∈ Rn×n. Then

det(A) =

Theorem 11. (Derivation of the Cofactor Formula for the Determinant):

Idea: Use property (C) to split thematrix into "basic matrices", which contain exactly
on entry in every row and every column, all other entries being zero. Then, by
row exchanges (using property (B)), every "basic matrix" can be transformed into a
diagonal entries (by properties). Factoring out all the entries of one particular row
or one particular column will then yield the cofactor formula.
2× 2 Case: ∣∣∣∣∣ a b

c d

∣∣∣∣∣ =
∣∣∣∣∣ c d

∣∣∣∣∣+
∣∣∣∣∣ c d

∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣

∣∣∣∣∣+
∣∣∣∣∣

∣∣∣∣∣+
∣∣∣∣∣

∣∣∣∣∣
=
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3× 3 Case:

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣ a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣ a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣ a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
=

= ( ) a11 + ( ) a12 + ( ) a13

=

∣∣∣∣∣∣∣∣
+a11

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

−a12
∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

+a13

∣∣∣∣∣∣∣∣

n× n Case:

Theorem 12. (Determinant by Cofactor Expansion)

1. Cofactor expansion across row i:

det A = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

2. Cofactor expansion across column j:

det A = aa1jC1j + a2jC2j + · · ·+ anjCnj
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If Aij is the matrix that is formed by deleting row i and column j from A, then the
cofactor is

Cij = (−1)i+jdetAij.

signs =

∣∣∣∣∣∣∣∣∣∣
+ − + −
− + − +

+ − + −
− + − +

∣∣∣∣∣∣∣∣∣∣
A =

∣∣∣∣∣∣∣∣∣∣
? ? ?

? ? ?

aij

? ? ?

∣∣∣∣∣∣∣∣∣∣
Example 11.1. ∣∣∣∣∣∣∣∣∣∣

1 2 3 4

0 1 2 3

2 4 6 7

−1 −2 2 2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
Example 11.2.∣∣∣∣∣∣∣∣∣∣

1 2 3 4

0 1 0 3

2 4 0 7

−1 −2 0 2

∣∣∣∣∣∣∣∣∣∣
Conclusions: Our default method for calculating determinants is forward elimi-
nation. With every row exchange, the determinant changes sign. Only in two cases
we use a different method:

• If the matrix is 2× 2, then we use the formula: ad− bc.

• If the matrix is 3 × 3, or if it is larger but it has many rows and/or columns
with many zeros, the cofactor expansion may be faster than elimination.
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12 Eigenvalues and Eigenvectors

We already know one powerful set of numbers associated with a (rectangular) ma-
trix:

•

In this chapter, we will introduce another set of numbers for a (square) matrix, which
is even more relevant for a huge range of applications in mathematics, physics,
computer science, engineering and economics:

•

Definition 19. (Eigenvalues and eigen vectors) Let A ∈ Rn×n. A nonzero vector v ∈
Rn\{0} is said to be an eigenvector of A if:

for some eigenvalue λ ∈ R.

Example 12.1. Check that v =

[
1

1

]
is an eigenvector for matrix A ?

A =

(
0 −2
−4 2

)

Example 12.2. (Illustration of eigenvalues and eigenvectors) (a) projection onto a line

x1

x2

x1

x2
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Remark: Why fo we need Eigenvalues and Eigenvectors ? Remember about the
linear transformations corresponding to contraction/dilation (Example 5.4)? Those
are simple linear transformations which are represented by a diagonal matrix and
can be easily understood by their geometrical representations:

A =

(
2 0

0 3

)
A : R2 7→ R2 A

[
x1

x2

]
=

[
2x1

3x2

]

x1

x2

x1

x2

Now if we have a non-diagonal matrix A, eigenvectors and eigenvalues help us to
better understand the "action" of A on the input vectors:

A =

(
9
5

2
5

2
5

6
5

)
A : R2 7→ R2

Eigenvalues: λ1 = 2, λ2 = 1

Eigenvectors: v1 =

[
2

1

]
, v2 =

[
−1
2

]

x1

x2

x1

x2
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How can we find the eigenvalues and eigenvectors ? Let’s first start with the eigen-
values:

Example 12.3. Find the eigenvalues of A.

A =

(
9
5

2
5

2
5

6
5

)

Theorem 13. A scalar λ ∈ R is an eigenvalue of a matrix A ∈ Rn×n, if and only if:

det(A− λIn) = 0

Example 12.4. Find the eigenvalues of A.

A =


5 0 3

1 2 1

3 0 5


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Remark: The degree of the characteristic polynomial (i.e. det(A − λIn)) is equal to
the size of A. Thus, the characteristic polynomial has at most n roots.
Sometimes it might have less than n roots and sometimes it might have no roots.

Some practical tips to find the roots of the characteristic polynomial:

1. If the degree is 2, use the quadratic formula:

aλ2 + bλ+ c = 0

−b±
√
b2 − 4ac

2a

2. If there is no constant, factor out as many λs as possible:

3. As in the example 12.4, one root might be explicitly visible:

4. Try if λ = 1, λ = 2, ... is a root. Then we can factor out (λ − p), p being the
guessed root: p(λ) = (λ− p)(...)

5. If A is upper triangular, then the eigenvalues are the entries in the diagonal
positions:

det (A− Inλ) =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
Attention: You are not allowed to do row reduction on A before computing the
eigenvalues. Row reduction usually changes the eigenvalues of a matrix.

Definition 20. Algebraic multiplicity is a property of the eigenvalue λi, and it denotes
the multiplicity of λi as a root in the characteristic polynomial.

Example 12.5. Find the eigenvalues and their corresponding algebraic multiplicity
for the following characteristic polynomial:
λ4(λ− 2)(λ− 3) = 0
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Now let’s turn our attention to the eigenvectors:

Example 12.6. For the following matrix A, λ1 = 2 is an eigenvalue. Find all of the
eigenvectors corresponding to λ1 = 2.

A =

(
9
5

2
5

2
5

6
5

)

Definition 21. The span of all eigenvectors with the same eigenvalues λ is called the
eigenspace of A corresponding to λ, denoted by eigλ. In other words, eigλ is equal to
the set of all solutions to Ax = λx (including 0)

Theorem 14. (Eigenspace and Nullspaces) If λ ∈ R is an eigenvalue of A ∈ Rn×n, then

eigλA = nul(A− λIn)

Conclusions:

• If a matrix A ∈ Rn×n is applied to any vector x ∈ Rn, then the vector Ax usually
has a different length than x and points in a different direction than x.

• If we can find a special vector x that does not change direction when we apply
A to it, then this vector x is an eigenvector. The eigenvalue is the scaling factor
λ that turns x into Ax = λx

• If λ is an eigenvalue of the matrix A, then the matrix A− λIn must be singular.
Therefore:

– its determinant is zero: det(A− λIn) = 0

– its nulspace nul(A− λIn) = eigλA is larger than just {0}
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Conclusions (continued):

• Finding all eigenvalues and corresponding eigenvectors (eigenspaces) for the
matrix A is a two-step procedure:

1. Find all eigenvalues λ1, ..., λN by computing the roots of the characteristic
polynomial:

det(A− λIn) = 0 at most n real λs

2. For each eigenvalue λi, i ∈ {1, · · · , N}, find a basis Ei for the corresponding
eigλiA:

Ei = (v1i , v
2
i , · · · , v

g
i ) at least one eigenvector

by computing all the "special solutions" of:

(A− λIn)vi = 0

• If A is a n× n matrix, then A is invertible if and only if the number 0 is not an
eigenvalue.

Example 12.7. Find all eigenvalues and eigenvectors of

A =


2 3 3

0 2 0

0 0 −1


• 1st step: Eigenvalues

• 2nd step: Eigenvectors

– for λ1,2 =
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– for λ3 =

Definition 22. (Geometric multiplicity of an Eigenvalue) Let λi ∈ R be an eigenvalue of
a matrix A ∈ Rn×n, the geometric multiplicity gi of λi is the dimension of its Eigenspace
eigλiA

Theorem 15. ( 1 ≤ Geometric Multiplicity ≤ Algebraic Multiplicity) the geometric mul-
tiplicity gi of the eigenvalues λi is at least 1 and at most equal to the algebraic multi-
plicity ai:

1 ≤ gi ≤ ai

Example 12.8. Find the eigenvalues and eigenspaces, and specify the algebraic and
geometric multiplicity of the following matrices. In addition, specify if the collection of
eigenbases form an eigenvector basis for R3?

(a) A =


5 0 3

1 2 1

3 0 5


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(b) A =

(
1 2

0 1

)

Theorem 16. (Linearly independent eigenvectors) If v1, · · · vr ∈ Rn are eigenvectors cor-
responding to distinct eigenvalues λ1, · · · , λr ∈ R, then these eigenvectors are linearly
independent. (Proof on page 150 in textbook)
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Theorem 17. (Eigenvectors that span Rm) The following statements are equivalent:

• The characteristic polynomial of A ∈ Rn×n can be decomposed into a product of
linear factors:

det(A− λIn) = (λ1 − λ)a1(λ2 − λ)a2 · · · (λr − λ)ar

and all r distinct eigenvalues λ1, · · · , λr ∈ R have

ai = gi (i = 1, · · · , r)

algebraic multiplicity = geometric multiplicity

• The n eigenvectors v11, · · · , v
g1
1 , v

1
2, · · · , v

g2
2 , · · · , v1r , · · · vgrr span the full space Rn.

• These eigenvectors form a basis for Rn, a so-called eigenvector basis.

12.1 Diagonalization

Diagonal matrices are very easy to deal with: The inverse of a diagonal matrix is
simply:

(Other) powers of diagonal matrices are also straightforward to evaluate:

We will now use eigenvalues and eigenvectors to transform a matrix A ∈ Rn×n to a
diagonal matrix D ∈ Rn×n, if possible, which will allow for very simple calculations.

Definition 23. (Similar matrices): Two matrices A and B are said to be similar, if
there exists an invertible matrix P ∈ Rn×n such that:

A = PBP−1

Theorem 18. If A and B are similar, then A and B have the same characteristic
polynomial and hence the same eigenvalues.

Definition 24. A matrix is said to be diagonalisable, if it is similar to a diagonal
matrix: there exist an invertible matrix P ∈ Rn×n and a diagonal matrix D ∈ Rn×n such
that:

A = PDP−1
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Example 12.9. (Power of a matrix) We define:

P =

(
2 −1

2

−1 1
2

)
, D =

(
−1 0

0 1
2

)
, A = PDP−1 =

(
−5

2
−3

3
2

2

)

Derive a formula for Ak, where k ∈ N is any positive integer.

Theorem 19. (Continuation of Theorem 17) The following statements are equivalent:

• The characteristic polynomial of A ∈ Rn×n can be decomposed into a product of
linear factors:

det(A− λIn) = (λ1 − λ)a1(λ2 − λ)a2 · · · (λr − λ)ar

and all r distinct eigenvalues λ1, · · · , λr ∈ R have

ai = gi (i = 1, · · · , r)

algebraic multiplicity = geometric multiplicity

• The matrix A is diagonalisable.
In this case we have A = PDP−1 with

Example 12.10. (Denationalization) Determine whether or not the matrix

(a) A =

(
4
5

2
5

2
5

1
5

)
(b) A =


2 3 3

0 2 0

0 0 −1


is diagonalisable. If so, write down a corresponding diagonal matrix D and a trans-
formation matrix P such that A = PDP−1.
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Conclusions: Denationalisation allows us to extend the very simple calculations
with diagonal matrices to diagonalisable matrices:

• A ∈ Rn×n is diagonalisable if and only if it has n real eigenvalues (not necessarily
distinct) and n linearly independent eigenvectors, i.e. an eigenvector basis for
Rn.

• In the similarity transformation A = PDP−1, D ∈ Rn×n is a matrix with the
eigenvalues of A on the diagonal, P ∈ Rn×n has the corresponding eigenvectors
as columns.

• Powers of a diagonalisable matrix A can easily be calculated as Ak = PDkP−1.

57



Example 12.11. (Predetor-prey system) A dynamical system is defined by the follow-
ing equations: (please refer to the dynamical systems lecture notes, page 27, for a
complete description of the problem)

gn+1 = 0.38gn + 0.24yn

yn+1 = −0.36gn + 1.22yn

Or in matrix form:

fn+1 =

(
0.38 0.24

−0.36 1.22

)
fn, f0 =

[
g0

y0

]

Find the general formula for fn+1 in terms of f0, with the method of diagonalization:
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Summery and conclusions of Discrete Dynamical Systems: The linear discrete
dynamical system is described by the formula xn+1 = Axn with an initial condition
x0 and A ∈ Rk×k. With the help of eigenvalues/spaces/vectors, we can achieve the
following two goals:

(a) Find an explicit formula for xn+1 in terms of n and x0. Depending on the problem,
x0 might be given as a vector of numbers or simply given in parametric form.
Remind that the explicit formula should not include xn (that is why it is called
explicit after all).

(b) Find the general behavior of the discrete dynamical system in long-run, based
on different values of x0.

In doing so the following steps should be taken:

Step 1: Find all the eigenvalues and eigenspaces of A.

Step 2: Check for each eigenvlaue λi, if the geometric multiplicity and algebraic
multiplicity are equal (ai = gi). If this condition does not hold at least for
one eigenvalue, the method breaks down. It means that we cannot find an
explicit formula for fn+1, for any initial condition x0. If this condition holds
for all eigenvalues, we can find the eigenvector basis which spans the full
space, i.e. a set which contains all bases corresponding to all eigenspaces
P = (v1, · · · , vk) (refer to the Theorem 17 to recall about the eigenvector basis)

Step 3: Now we need to decide which method we prefer to choose in order to find
the general solution:

(a) Method of undetermined coefficients: If the initial condition is not given
in terms of numbers, there is not much left to do. The explicit solution
can be written in the following form (to see why, refer to page 30 in the
discrete dynamical system lecture note):

xn = c1λ
n
1v1 + · · ·+ ckλ

n
1vk (26)

In the above equation, only c1, · · · , ck are unknown (recall that n is only
the time variable, and the general solution will always depend on it).
They will remain unknown if we do not know about the initial condition.
If x0 is given, then it can be expressed as a linear combination of the
eigenvector basis (Why?):

x0 = c1v1 + c2v2 + · · ·+ ckvk

The above vector equation is simply a linear system with k unknown
variables c1, · · · , ck. After finding those unknown variables, the general
solution 26 is explicitly expressed in terms of n.

59



(b) Method of diagonalization In this method, we first diagonalize the matrix
A (refer to the Theorem 19 ). Since we already know the eigenvector
basis, we can write:

A = PDP−1,

Next, the general solution can be directly expressed as:

xn+1 = PDnP−1x0

. In the above vector equation, the only unknown variable is n, which is
the time variable).

Step 4: Describing the general behavior of the system in long run: First, we need
to plot the phase diagram (a diagram whose axes are each component of
our input vector) with all eigenspaces. We want to know if we start from
any initial vector, what will be the behavior of the system in the future.
Starting from an initial vector on the eigenspace, xn either gets attracted by
the origin (if |λ| < 1), or it gets repelled by the origin (if |λ| > 1). If the initial
vector is not on the eigenspace, we look at the explicit general formula that
we found on the previous step in order to predict the behavior of the system.
In short, any arbitrary initial vector gets attracted by the eigenspaces with
|λ| > 1 and get repelled by the eigenspaces with |λ| < 1, and are neutral with
respect to eigenspaces with |λ| = 1.

60



13 Orthogonality and Least Squares

Vectors allow us to use analytical tools to solve geometric problems and to extend
the notions of length and angles to very general vector spaces. All the necessary
information is contained in the

Definition 25. (Dot product on Rn) The dot product of two vectors x, y ∈ Rn is defined
by

x.y = x1y1 + x2y2 + · · ·+ xnyn ∈ R

Theorem 20. (Properties of the dot product) The dot product on Rn is

(a) positive definite:

(b) symmetric:

(c) linear in each argument:

Definition 26. (Euclidean Norm on Rn) The (Euclidean norm), 2-norm or length of a
vector is defined by:

Theorem 21. (Properties of the Euclidean Norm) The Euclidean norm on Rn is

(a) positive definite

(b) absolutely homogeneous

(c) subadditive

A vector is called a unit vector if ||x|| = 1.
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Example 13.1. (Normalization) We define x =

[
−3
4

]
and x̂ =

||x|| =

||x̂|| =

Example 13.2. (Distance between Two Vectors) Find the distance between x =


1

−3
2



and y =


1

−1
−1

.

Theorem 22. For two vectors x, y ∈ Rn, that span the angle θ:

Theorem 23. (Angle between two vectors) Find the angle between x =


1

−3
2

 and

y =


1

−1
−1

.

Definition 27. (Orthogonality) Two vectors x, y ∈ Rn are said to be orthogonal if
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Definition 28. (Orthogonal Complement) Let H be a subspace of Rn. The set of all
vectors that are orthogonal to all vectors in H:

is called the orthogonal complement of H.

Example 13.3. (Orthogonal complement of a plane)

• in R2: Let H = span

((
1

2

)
,

(
3

2

))
=

• in R3: Let H = span



1

2

1

 ,


3

2

1




Theorem 24. (Properties of Orthogonal Complement)

(a) The orthogonal complement H⊥ of any subspace is a subspace as well.

(b) If H ∈ Rn is a subspace, then
(H⊥)⊥ = H

(c) Let A ∈ Rm×n:
(Row A)⊥ = Nul A

(Col A)⊥ = Nul (AT )
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13.1 What is the significance of Orthogonal and Orthonormal
bases?

In this section, we’re revisiting the problems of finding the coordinates of a vector
x ∈ H in terms of a given basis B = (u1, · · ·ur) of the space H ⊆ Rn: find weights
(B-coordinates) c1, · · · , cr ∈ R such that

x = c1u1 + · · ·+ crur

the solution is given by the solution of the linear system:

For orthogonal and orthonormal bases, the solution is a lot shorter.

Definition 29. (Orthogonal and orthonormal sets and bases) A set {u1, · · · , ur} ⊆ Rn

or a basis (u1, · · · , ur) ⊆ Rn of a subspace H is said to be

• orthogonal, if

• orthonormal, if

Theorem 25. (Nonzero orthogonal sets are linearly independent) if {u1, · · · , ur} ⊆
Rn\{0} is an orthogonal set, then the vectors u1, · · · , ur must be linearly independent.
Proof.
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Example 13.4. (Orthogonal basis for R3 ) Show that

U =



0

4

3

 ,


−20
−9
12

 ,


−15
12

−16




is an orthogonal basis for R3.

Example 13.5. (Orthonormal bases forR3) Examples for orthonormal bases ofR3 are:

Theorem 26. (Coordinates in orthogonal and orthonormal bases) If U = (u1, · · · , ur) ⊆
Rn is an orthogonal basis of a subspace H, then any vector x ∈ H has a unique repre-
sentation in that basis:

If U is even orthonormal, then

proof.

65



Example 13.6. (Coordinates in an orthogonal basis) In the standard basis E = (e1, e2, e3)

of R3, a vector is given as

x =


1

1

1


Find its coordinates in the basis U from example 13.4

Theorem 27. (Matrix with orthonormal columns) a matrix U ∈ Rm×n has orthonormal
columns if and only if UTU = In.
Proof.

Definition 30. (Orthogonal matrix) A square matrix U ∈ Rn×n is called orthogonal if
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Theorem 28. (Angle and Length-Preserving Linear Transformation) If U ∈ Rm×n has
orthonormal columns, then

13.2 How to project a vector orthogonally onto a subspace

Given some vector x ∈ Rn, how can we find its projection onto a subspace H ⊆ Rn,
e.g. onto a line/plane/hyperspace through the origin ?

Theorem 29. (Orthogonal decomposition) Let H ⊂ Rn be a subspace.

• Each vector x ∈ Rn can be decomposed into the sum of a vector x̂ ∈ H and a
vector e ∈ H⊥

x = x̂+ e

This orthogonal decomposition is unique.

• If (u1, · · · , ur) is an orthogonal basis for H, then

x̂ =

e =
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Theorem 30. Let H ⊆ Rn be a subspace, x ∈ Rn and x̂ ∈ H the projection of x onto H.
Then x̂ is the closest point in H to x:

∀h ∈ H : ||x− x̂|| ≤ ||x− h||

Example 13.7. (Calculating the Orthogonal Projection) Let H be the plane spanned
by the two orthogonal vectors

u1 =


1

2

1

 and u2 =


−5
2

1


Find the point x̂ on the plane H which is closest to the point

x =


−7
9

7


and calculate the distance of x from H.

Example 13.8. Consider the plane x− y + z = 0.

(a) Find the 3× 3 matrix T1 which represents projection of R3 onto a vector orthogonal
to this plane.
Solution:
In general, an orthogonal vector to any plane in R3 written in the form ax+by+cz =

dis given as:


a

b

c

. Thus, in this particular example, the orthogonal vector is:

u1 =


1

−1
1


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We are asked to find a linear transformation T2(x) : R3 7→ R3 which projects any
point on the subspace spanned by u1, that is a line in R3. Let’s call this line the
subspace H, and a basis for it is U = {u1}. Obviously, this is an orthogonal basis
(Why?). As we learned previously about finding the standard matrix of a linear
transformation, we need to find the "action" of the linear map on the columns of
identity matrix. Thanks to the orthogonality of this basis, from Theorem 29 in the
lecture notes (or Theorem 8 in the textbook) we have:

T1(e1) = projHe1 =
u1 · e1
u1 · u1

u1 =
1

3


1

−1
1



T1(e2) = projHe2 =
u1 · e2
u1 · u1

u1 =
−1
3


1

−1
1



T1(e3) = projHe3 =
u1 · e3
u1 · u1

u1 =
1

3


1

−1
1



A1 = [T1(e1) T1(e2) T1(e3)] =
1

3


1 −1 1

−1 1 −1
1 −1 1



(b) Let a =


1

1

1

. Find vectors v and w such that a = v+w, where v is in the plane and

w is perpendicular to the plane.
Solution:

w = projHa =
a · u1
u1 · u1

u1 =
1

3


1

−1
1



v = a− w =


1

1

1

−


1
3

−1
3

1
3

 =


2
3
4
3
2
3


(c) Find the 3× 3 matrix T2 which represents projection of R3 onto this plane.

Solution:
Similar to (a), we want to find a the "action" of the linear map to the columns of
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the identity matrix. As we did for vector a in part (b), we can find the projection of
e1, e2, e3 on the plane x− y + z = 0 by:

T2(e1) = e1 − T1(e1)

T2(e2) = e2 − T1(e2)

T2(e3) = e3 − T1(e3)

A2 = [T2(e1) T2(e2) T2(e3)] = I3 − A1 =
1

3


2 1 −1
1 2 1

−1 1 2


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13.3 How to find Approximate Solutions to Inconsistent Linear
System?

With this b, the problem Ax = b has no solution, since b /∈ col(A), i.e. it is impossible
to make ||b−Ax|| = 0. Instead, we will try to make ||b−Ax|| as small as possible. To
find such approximate solutions of Ax = b, we proceed as follows:

• Approximate the right hand side b with b̂ = projcol(A)b

• Solve Ax = b̂ instead. If the approximation error ||b − b̂|| = ||b − Ax|| is small,
then Ax ≈ b.

Definition 31. (Least square solution) Let A ∈ Rm×n and b ∈ Rm. A vector x̂ ∈ Rn is
called a least-square solution of Ax = b if

∀x ∈ Rn : ||b− Ax̂|| ≤ ||b− Ax||

How to find that approximate solution x̂?
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Example 13.9. Let

A =


2 0

0 1

2 2

 b =


1

2

3


Check if the system Ax = b is consistent. If not, find the approximate solution and the
error.
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Theorem 31. The set of least square solutions of Ax = b concides with nonempty set
of solutions of the normal equations ATAx = AT b.

Remark: Equation ATAx = AT b always has a solution. However, this solution is
not always unique:

Theorem 32. The following statements are equivalent:

• The problem Ax = b has a unique least-squares solution.

• The problem ATAx = AT b has a unique solution.

• nul(A) = 0

• A has full column rank n.

• The columns of A are linearly independent.

• The matrix ATA is invertible.

Example 13.10. Find the least-square solution of the linear system:
2 1

−1 0

0 1


(
x1

x2

)
=


3

5

1


Is this least-square solution unique?
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Example 13.11. (Calculating the Orthogonal Projection) Let H be the plane spanned
by the two (non-orthogonal) vectors:

a1 =


2

−1
0

 and a2 =


1

0

1


. Find the point b̂ on the plane H which is closest to the point

b =


3

5

1


and calculate the distance of b from H.

Example 13.12. (Least-square fitting) An experimental study has produced the fol-
lowing data:

m1 =

(
1

1

)
m2 =

(
2

2

)

m3 =

(
3

2

)
m4 =

(
4

3

)

x1

x2

m4

m3

m2

m1

Find the best linear fit with the least square error to these data.
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