Quiz 8 - Math221 - Sec 203
Name: \qquad

Mar 22, 2017
Student number: \qquad

No books. No notes. No calculator. No electronic device of any kind.

1. (12 points) Let $B=\left\{b_{1}, b_{2}\right\}$ be a basis for \mathbb{R}^{2}. If $b_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $b_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$,
(a) find $\left[b_{2}\right]_{B}$.
(b) if $a=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, find $[a]_{B}$.
(c) if $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is a linear map, and

$$
T\left(b_{1}\right)=2 b_{1}-b_{2} \quad T\left(b_{2}\right)=b_{1}+b_{2}
$$

Find $[T]_{B}$ and T.
Solution:

$$
P=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right) \quad P^{-1}=\left(\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right)
$$

(a) $\left[b_{2}\right]_{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(b) $[a]_{B}=P^{-1} a=\left(\begin{array}{cc}-1 & 2 \\ 2 & -3\end{array}\right)\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}3 \\ -4\end{array}\right]$
(c)

$$
\begin{aligned}
& {\left[T\left(b_{1}\right)\right]_{B}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \quad\left[T\left(b_{2}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {[T]_{B}=\left[\left[T\left(b_{1}\right)\right]_{B} \quad\left[T\left(b_{2}\right)\right]_{B}\right]=\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)} \\
& T=P[T]_{B} P^{-1}=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right)=\left(\begin{array}{cc}
6 & -7 \\
3 & -3
\end{array}\right)
\end{aligned}
$$

