
Security of Emerging IoT Systems

by

Mehdi Karimibiuki

M.A.Sc., University of British Columbia, 2012

B.A.Sc., University of British Columbia, 2009

Supervisors: André Ivanov and Karthik Pattabiraman

A THESIS PROPOSAL SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Electrical and Computer Engineering Department)

The University Of British Columbia

(Vancouver)

October 2017

c©Mehdi Karimibiuki, 2017

Contents

Contents . ii

List of Tables . iv

List of Figures . v

Glossary . vi

1 Introduction and Overview . 1
1.1 MiniCloud: A Local Cloud for Heterogeneous IoT Nodes 3

1.1.1 MiniCloud Database Server . 5

1.1.2 Platform . 9

1.2 Future of Internet of Things (IoT) Networks . 10

1.3 Research Questions . 11

2 Work Accomplished . 14
2.1 Answer to RQ1 . 14

2.2 Answer to RQ2 . 15

2.2.1 Related Work . 16

2.2.2 Dynamic Policy-based Access Control (DynPolAC) 18

2.2.3 Comparing Policy Rules Expressiveness 19

2.3 Performance Analyses . 20

2.3.1 Parsing Time Measurements . 20

2.3.2 System Design . 21

2.3.3 Simulation Results . 26

2.3.4 Discussion . 27

2.4 Summary . 28

ii

3 Work Planned . 30
3.1 Security Validation (RQ3) . 30

3.2 Attack Models (RQ4) . 33

3.3 Security of Software Defined IoT (SDIoT) Networks — RQ5 34

3.3.1 Software Defined IoT (SDIoT) Networks 34

3.4 Milestones . 35

Bibliography . 39

iii

List of Tables

Table 1.1 Group Access Control List (ACL) matrix . 7

Table 1.2 Group and user ACL matrix . 7

Table 1.3 Variable Types allowed in the MiniCloud server 9

Table 1.4 Examples of emerging IoT networks. 11

Table 2.1 Classes of IoT Constrained Nodes. 15

Table 2.2 Access control model fitness for high-speed dynamic IoT networks 17

Table 2.3 Queue theory notations. 24

iv

List of Figures

Figure 1.1 IoT growth forecast . 2

Figure 1.2 “MiniCloud” service node block diagram . 4

Figure 1.3 Shell snapshot of the MiniCloud query in JSON and XML. 6

Figure 1.4 Beagle Bone Black . 9

Figure 1.5 Dynamic IoT communication models. 10

Figure 2.1 Parsing XML vs XACML files comparison 21

Figure 2.2 Queue service schematic . 23

Figure 2.3 Code comparison between the MiniCloud and TinyDB. 25

Figure 2.4 Size of image comparison between the MiniCloud and TinyDB in KB. 25

Figure 2.5 Response time simulation results . 27

Figure 2.6 Sensitivity analyses simulation results . 29

Figure 3.1 Example of checking two rule blocks in a policy file 32

Figure 3.2 A trivial DoS attack in DynPolAC. 33

Figure 3.3 SDIoT environment . 35

v

Glossary

The following are abbreviations and acronyms used in this proposal, listed in alphabetical order:

ACL Access Control List

DynPolAC Dynamic Policy-based Access Control

IETF Internet Engineering Task Force

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

RQ Research Questions

SDC Self Driving Cars

SDIoT Software Defined IoT

UAS Unmanned Aircraft Systems

WSN Wireless Sensor Networks

vi

Chapter 1

Introduction and Overview

The state-of-the-art technology today is governed by the fourth industrial revolution, the Internet
of Things (IoT) [2]. Internet connection is not a fancy feature anymore and can nowadays be

found on almost all electronic devices [3]. Our social and networking services as well as science

and engineering resources are unconditionally dependent on the Internet. An IoT roadmap reports

that there will be 50 billion devices connected to the Internet by 2020 (Figure 1.1) [4].

The result of connecting every and many objects (things) to the Internet is dealing with the net-

work complexity and data explosion. In particular, our current IoT networks inherit the following

specifics:

• Network connected IoT devices generate live data and hold ubiquitous information, ex-

changed between objects in real-time. Consequently, connecting “smart devices”1 implies

dealing with dynamic data exchange intricacy continuously.

• Dealing with enormous amounts of data pushed and pulled every second necessitates large

bandwidth and connection strategies. A dynamic and scalable management system is re-

quired to deal with transfer, sharing, storage, privacy and security challenges.

• IoT connected devices are heterogeneous — the data generated by the sensors or consumed

by the actuators are different in structure and diverse in communication. Usually, information

needs to pass through more than one communication medium to reach a target platform [5].

1A “smart device” is any electronic device that can communicate to other devices via a wired or wireless communica-
tion medium like LoRa, CoAP, WiFi, LAN, Modbus, CAN, NFC, BLE, MAVLINK, WAVE, etc. Several notable types
of smart devices are smartphones, tablets, laptops, smart-watches, smart-bands, smart TV, thermostats, energy meters,
and many other smart home and office appliances.

1

Figure 1.1: Bubble boom — 50 billion devices shall connect to the Internet by 2020 [4].

As a result of the above particulars to IoT systems, and during the time that I started my PhD

program in September 2015, I realized that main stream IoT research has generated different data

models and information management solutions to mitigate the complexities involved with such

networks. There had been proposals which described a universal architecture in IoT between het-

erogeneous devices [3, 6]. There were also IoT architectures that developed cloud connectivity

in their network architecture [7–10]. These IoT architecture proposals are very numerous2; how-

ever, most of them lack implementation details, or did not provide any open-source access to their

implementations to be able to evaluate their process.

Therefore, in the first year of my PhD work as I learned about the IoT network specifics and

the fact that previous research has modeled IoT space with little effort in implementing envisioned

architectures, I started designing my own IoT system that implements a gateway node.

In this PhD proposal, my design is used as a substrate for experimenting our IoT ideas and has

the capacity to have several devices connected to it based on the available interfaces of the board.

The IoT node that I developed is an abstract model for covering heterogeneous devices’ connectiv-

2A Google Scholar search for “IoT + architecture + cloud” reveals more than 16,000 results by 2015.

2

ity and is called “MiniCloud”. I called my design “MiniCloud” because it can be used as a cloud

storage to a local network. It is capable of covering device connection and data management at the

local network level, and at the same time, publish or subscribe, filter and distribute requests coming

from the enterprise cloud services such as the Microsoft Azure. I will describe the characteristics

of the MiniCloud in Section 1.1.

In addition to the communication and data exchange complexities in IoT networks, security

in IoT devices is known to be the biggest challenge yet — many devices and communication

channels that are being used in IoT space today, initially, were not meant to be universally applied

in public network communications 3.

Additionally, in the MiniCloud, I overlooked the confidentiality of information and protection

of data. This fact required me to study the security in IoT systems and learn about their common

attacks. I took two graduate courses in this field (EECE 571R and EECE 512). By having the

knowledge and understating that there are many security deficits in the IoT space, I have decided

to conduct my PhD research in the security of the IoT systems, in particular, the emerging IoT

networks. Throughout the course of conducing my research I am using the MiniCloud as the real

embedded system to carry forward and implement my security ideas with it.

My main concentration in this PhD proposal is answering research questions (Section 1.3)

pertaining to information security for dynamic IoT nodes. Information security, in general, can

be looked at from two angles. A first is to keep the confidentiality of information from unknown,

untrusted parties or adversarial attacks, especially in the emerging highly interactive environments

such as Self Driving Cars (SDC) and Unmanned Aircraft Systems (UAS) where highly dynamic

information exchanges occur in time windows of one second or less. In such compounds, adoptable

data protection techniques needed to cope with such high level of dynamism. A second is to keep

the integrity of information from the source (research questions related to tampering concerns) and

from their exchange media (snooping and sniffing concerns). I will discuss the main findings of

my research about the security of highly dynamic IoT nodes in detail from Section 1.2 onward.

1.1 MiniCloud: A Local Cloud for Heterogeneous IoT Nodes
For the pupose of evaluating my research ideas particularly in the security domain, I have con-

structed a middleware called “MiniCloud” that is capable of collecting and recording live-stream

3Some communication protocols such as Modbus [11] and Message Queuing Telemetry Transport (MQTT) [12]
do not even have any security measures in their core stack design. This is while many of our home and enterprise
equipment such as thermostats (like Nest [13]), video streaming cameras (like Dropcam [13]), energy meters, and
sensors extensively use similar vulnerable communication solutions for streaming live private data.

3

data. MiniCloud is comparable in size and implementation to similar in-house embedded IoT stor-

age systems such as TinyDB45 [14]. It is also close to the smart gateways such as the one imple-

mented by the Pervasive Computing Lab at ETH6 [15].

Figure 1.2: “MiniCloud” service node block diagram.

MiniCloud as shown in Figure 1.2, consists of two components, a server and a shared library.

The server is accessible via only the shared library bundle. The shared library APIs are provided

as C functions. The source code written in 3,091 lines of code (source and header) at image size

31,145B. The server implemented in C language at 4,854 lines (sources and headers), compiled

with gcc v4.77 sized 34,796B. For connecting to the server, the client must first open and register

connection with the MiniCloud to obtain access to the database. The client side provides a collec-

tion of Open, Close, Register, Set, Get, and Print APIs to communicate with the server. Any other

method to contact with the MiniCloud server other than the provided APIs is inhibited by memory

protection nature of the underlying operating system8. Figure 2.3 and Figure 2.4 show quantitative

comparison between the MiniCloud and TinyDB. These Figures are provided as a proof that my
4TinyDB is comprised of 10,000 lines of C code excluding driver sections with compiled size 58KB [14].
5We picked TinyDB for out-of-the-box comparison because it is similar to our MiniCloud implementation design.

Similar to TinyDB, MiniCloud provides a set of APIs for recording data that sample sensory events periodically.
6Details of the gateways designed by ETH Lab has not been provided nor their detail implementation method [15].
7GCC is the GNU C Compiler.
8Current implementation of the MiniCloud is developed in QNX real-time operating system (RTOS) supported by

BlackBerry [16]. QNX is a reliable software service platform with exclusive Inter-Process Communication (IPC) that
yields memory and stack protection. QNX is currently running in many mission-critical platforms and gives support to
numerous embedded IoT hardware with excellent documentation and tool-chain diagnostic capabilities.

4

data storage service is a sizable implementation and a design close to TinyDB. One exception is

with my design, since I have developed the code myself, I can easily modify the code as needed

to suite the context of my PhD research. If I have picked TinyDB for instance as our node storage

system to test our security ideas, there could have been risks involved in learning their system and

to come up to speed with understanding their system deficits. Therefore, I chose not to pick third

party IoT systems and, instead, had the knowledge and experience to come up with my own design.

In the following, I describe MiniCloud key characteristics (Subsection 1.1.1) with platform

implementation (Subsection 1.1.2).

1.1.1 MiniCloud Database Server

The MiniCloud IoT hub is a real-time storage and sharing node implemented as an umbrella for

collecting local heterogeneous devices’ data. MiniCloud is “easy-to-connect-to” via a set of APIs.

Below are the MiniCloud property highlights:

• MiniCloud presents an abstraction layer for heterogeneous data, which allows loose coupling

between different IoT devices. Modules can be added or dropped at run-time without service

interruption. Product behaviors can be extended or reduced at run-time depending on the

detection of other modules within the system. For example, a module could query Ambient

Temperature of the system, simply by requesting it by name. If the requested datapoint

(variable) is not found, the requesting module knows that the Ambient Temperature is not

available and can automatically adjust its behavior.

• Creation of data are made at single variable types. Table 1.3 enumerates possible data types

available in the MiniCloud. Such granular data precision gives flexibility to monitor and

manage singular information as needed for most IoT paradigms such as autonomous vehi-

cles, Wireless Sensor Networks (WSN), miniaturized motes, etc. [17, 18].

• Additionally, single data point granularity in the MiniCloud provides a powerful templat-

ing mechanism. It can be used to provide dynamic output using static templates (XML or

JSON template for example) by substituting run-time values for any name discovered in the

template. The templating mechanism is also recursive in nature, so one template may ref-

erence a variable which refers to another template, and so on. Templates are often used for

the web-page generation, email generation, faults and warning generation, and many other

applications. Templates also support code-reuse since it is not necessary to hard-code re-

ports. A sample is shown in Figure 1.3 where command ‘scanp’ is querying for JSON and

5

XML printout of data variable names that contain ‘tesla’ (use command option ‘-k tesla’),

and show them with their values (command option ‘-v’).

Figure 1.3: Shell snapshot of the MiniCloud query in JSON and XML.

• MiniCloud simplifies the communication between heterogeneous devices because each de-

vice is connected to a common shared middleware which is capable of treating data at single

data-point granular resolution. It is not necessary to create rigid data structures which suffer

from version incompatibilities.

• IoT devices can present their data by running the “definition datapoint” application (defdp in

Figure 1.2), which registers datasets with the server. Listing 1.1 shows a sample registration

file, which is parsed by the defdp (see Figure 1.2) application). As can be followed from

Listing 1.1, every data-point carries properties such as name, format, initial value, and tags.

These fields are mandatory and it is to the discretion of the clients to supply a correct meta

6

data file. Tags provide the data-type, location, and the user and group belongings. As shown

in Tables 1.1 and 1.2, users and groups are conventionally made. Analogous to the Linux

filesystem9, permissions in the MiniCloud has been architected to be intuitive such that every

data-point is given a user and group owner based on the Access Control List (ACL). Users are

not necessarily individuals, rather they can be IoT objects trying to query data from another

node. Tables 1.1 and 1.2 are sample matrices, and the list can be edited by the authority

convention.

Table 1.1: Example ACL for the MiniCloud assigned group numbers and conventional group
names.

Group ID Group name
1049 Manager
1048 Engineering
1047 Technician
1046 Customer

Table 1.2: Example ACL matrix between the user and group for data-points in the MiniCloud
server.

User ID User Name Group Member
549 Gus

Manager
548 Doug
539 Mike

Engineering
538 Tom
429 Jackie

Technician
428 Lilli
359 Bob

Customer
358 Madi

• Similar to other IoT data storage systems such as TinyDB [14], MiniCloud can update data

via polling mechanisms (for example, polling new temperature value from a sensor every 10

seconds), or by registered callback event handlers (for example, if the value of the tempera-

ture sensor changed, update the particular data-point).

• MiniCloud while time-stamping and keeping the latest values of the live-stream data, is ca-

pable of taking snapshots and logging data-points at particular time intervals. For example,

9Every file and folder in the Linux filesystem has an owner (user) and is member of a group.

7

it is possible to tell MiniCloud to take snapshots of the entire database every minute. The

time interval can change at run-time without service interruption. For example, it is possi-

ble to change a one minute snapshot to a half-an-hour one routine, if no transient behavior

experienced within the monitoring service.

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
2 <defdp>
3 <p o i n t>
4 <name>Google . password</ name>
5 <d e s c r i p t i o n>Password f o r e n t e r i n g t h e Google

d e v i c e</ d e s c r i p t i o n>
6 <t y p e>s t r</ t y p e>
7 <f o r m a t>%s</ f o r m a t>
8 <v a l u e>g@o&l e</ v a l u e>
9 <l e n g t h>8</ l e n g t h>

10 <meta>
11 <t a g>t y p e : p a s s w o r d</ t a g>
12 <t a g>l o c a t i o n : G o o g l e</ t a g>
13 <t a g>u s e r : B o b</ t a g>
14 <t a g>g r o u p : C u s t o m e r</ t a g>
15 </ meta>
16 </ p o i n t>
17 <p o i n t>
18 <name>Rakuten . l a t i t u d e</ name>
19 <d e s c r i p t i o n>Live l a t i t u d e r e g i s t r a t i o n o f Rakuten

drone</ d e s c r i p t i o n>
20 <t y p e>f l o a t</ t y p e>
21 <f o r m a t>%f</ f o r m a t>
22 <v a l u e>0</ v a l u e>
23 <meta>
24 <t a g>t y p e : l a t i t u d e</ t a g>
25 <t a g>l o c a t i o n : R a k u t e n</ t a g>
26 <t a g>user :Tom</ t a g>
27 <t a g>g r o u p : E n g i n e e r i n g</ t a g>
28 </ meta>
29 </ p o i n t>
30 <p o i n t>
31 <name>Uber . t e m p e r a t u r e</ name>
32 <d e s c r i p t i o n>Cabin t e m p e r a t u r e i n t h e Uber autonomous

c a r</ d e s c r i p t i o n>
33 <t y p e>s i n t 3 2</ t y p e>
34 <f o r m a t>%d</ f o r m a t>
35 <v a l u e>25</ v a l u e>
36 <meta>
37 <t a g>t y p e : t e m p e r a t u r e</ t a g>
38 <t a g>l o c a t i o n : U b e r</ t a g>
39 <t a g>use r :Doug</ t a g>
40 <t a g>group :Manager</ t a g>
41 </ meta>
42 </ p o i n t>
43 </ de fdp>

Listing 1.1: Sample data definition file.

Larger data sets are available at www.ece.

ubc.ca/∼mkarimib/minicloud.

8

www.ece.ubc.ca/~mkarimib/minicloud
www.ece.ubc.ca/~mkarimib/minicloud

Table 1.3: Variable Types allowed in the MiniCloud server

Variable Type Description
uint16 unsigned 16-bit integer (0-65535)
sint16 signed 16-bit integer (-32768-32767)
uint32 unsigned 32-bit integer (0-4294967295)
sint32 signed 32-bit integer

(-2147483648-2147483647)
float 32 IEEE754 single-precision floating point

str (string) NULL terminated C-style string (length
specified by datapoint (variable) creator)

conjugate(binary or struct) Blob of data that can be a structure type or
array of bytes

1.1.2 Platform

MiniCloud is implemented in QNX RTOS [16] running on BeagleBone Black (BBB) [19] — BBB

is an evaluation kit offered by TI, embedded with ARM Cortex-A8 processor with 720 MHz clock

speed, 512 MB of RAM, on-chip Ethernet, a microSD slot, and two 46-pin expansion connectors

for GPIO, SPI, I2C communication as well as CAN and UART compatibilities. The board is good

enough to connect with several sensors and devices as needed. Figure 1.4 shows BBB hardware

details and an instance connection with our available sensors in the lab.

Figure 1.4: BeagleBone Black [19].

9

1.2 Future of IoT Networks
The rapid emergence of the Internet of Things (IoT) is bringing an unprecedented expansion of

object-to-object or thing-to-thing wired and wireless communications. There now exists relatively

well-established stationary IoT networks such as smart grids, smart buildings, smart factories, etc.

However, the next generation IoT systems are prevalent by a key characteristic, highly dynamic

wireless objects. Two candid emerging examples are UAS (also known as drones), and SDC (also

known as autonomous vehicles). The Federal Aviation Administration (FAA) is forecasting the

number of UAS will grow from 2.7 million in 2016 to 7 million by 2020 [20]. Similarly, there will

be at least 10 million self-driving cars on the roads by 2020 with trajectory forecast that one in four

cars will be autonomous by 2030 [21].

The growing trend proves there shall be a demanding need for adaptable real-time, low-latency

communication frameworks with data privacy protection and information security considerations.

Towards this observation, I realize that there is an emerging dichotomy of visionary communication

schemes to govern in wireless IoT networks, as depicted in Figure 1.5.

Road Side Unit (RSU)

V2V V2V

UTM

UTM

500ft

200ft

Figure 1.5: Dynamic IoT communication models.

The first scheme is to have objects query information from a central hub. One example is

the UAS Traffic Management (UTM) system intended to mediate the safety of miniaturized flying

objects by providing services such as dynamic geofencing, severe weather and wind avoidance,

terrain avoidance, route and re-route planning, collision avoidance, etc. [22]. Similarly as part of

the Intelligent Transportation System (ITS) there will be Road Side Units (RSU) to govern self-

driving cars with traffic and safety information.

A second, longer span, visionary scheme, is to have the autonomous objects communicate with

each other exchanging information directly. Table 1.4 shows some real-world examples of dynamic

IoT networks with their anticipated interaction frequency and communication channel.

10

Table 1.4: Examples of emerging IoT networks.

Scenario Examples Anticipated Network Interaction Communication Medium

Self-driving (autonomous) Cars Tesla, Uber, Google, Delphi, Faraday Future, Waymo, etc. 6 objects per second IEEE 802.11p
WAVE, 5.9GHz band

Unmanned Aircraft Systems (UAS) Parcel Delivery: Amazon PrimeAir 4 objects per second MAVLINK
Drones Search and Rescue: sardrones.org

Wild-life Conservation: conservationdrones.org
First Aid: TU Delft - Ambulance Drone

Agriculture: senseFly
Security: secom.co.jp

Transport Logistics Warehouse Robots such as Kiva 2 objects per second Infrared, IEEE 802.11b and Bluetooth
Knapp Open Shuttle

Locus Robotics System

Nevertheless, in many of these cases, there is little published work on the underlying data

protection mechanisms. Nor is there a public document to outline security standards in the highly

dynamic IoT environments. A main contribution is to find the right security methods that give the

correct direction in protecting information of emerging IoT nodes.

The first secure preparation of keeping data confidential is controlling access. Examples that

require a mandatory data access control are military drones in mission-critical assignments, or,

autonomous cars sharing passengers’ connected phone with the outside world. Some attempts

for protection of data in current IoT networks have been given by adapting popular access control

frameworks. One strategy has been to adopt access control techniques traditionally known as Role-

Based-Access-Control (RBAC) and Attribute-Based-Access-Control (ABAC) [3, 23–27]. These

techniques, though suitable for static IoT systems, are not fit to work well with the dynamic IoT

systems under consideration here. Another solution has been given as the employment of the

policy files using eXtensible Access Control Markup Language (XACML) [28–33]. Using policy

files for access control is good for articulating relations among object to dynamically express the

state properties of the network. But XACML models are complicated and impose heavy overheads,

which after all, make them unsuitable for our target networks [24, 34].

1.3 Research Questions
In light of what was discussed earlier, an overarching goal of the proposed thesis is to first charac-

terize the nature of dynamic IoT environments, and to establish this understanding for developing

the right security features in target systems. I therefore aim at answering the following five Re-

search Questions (RQ).

11

• RQ1. What are the distinguishing characteristics of the Highly Dynamic IoT Net-
works? Most research in the IoT domain has focused on outlining appropriate architectures

for data connection and sharing in stationary networks such as smart homes and smart fac-

tory. There is little work done to articulate the characteristic properties of the highly dynamic

IoT networks. The first goal of this proposal is to characterize such networks.

• RQ2. How can we design and develop the security of highly dynamic IoT environ-
ments? I have explained the initiative steps that undertook so far in Chapter 1 for the purpose

to focus on the main work. The main question is how can we design and develop the security

models for emerging IoT systems, in particular, for the highly dynamic IoT environments.

In essence, the main focus of this PhD research is to find and discuss the right solutions for

keeping information confidential from untrusted and unknown objects. The feasibility of this

work is discussed in detail under a unique “Access Control” proposal in Chapter 2.

• RQ3. How can we validate the correctness of security solutions? One of the compelling

research questions in the security of IoT systems has been to validate the security quality

and correctness. I plan to find mechanisms to autonomously detect errors (perhaps by using

formal models or anomaly detection techniques) in our proposed security paradigm.

• RQ4. What are the attack models in the highly dynamic IoT environments? RQ4 is

paired with RQ2, that is, with the introduction of new security methods, their attack mod-

els need to also be investigated. I will answer this research question by using the general

S.T.R.I.D.E. 10 taxonomy of six main security threats.

• RQ5. How can we scale our security model to Software Defined IoT (SDIoT) networks?
In this research question, I aim to expand the security model proposed for RQ2 into “ultra-

large-scale” IoT systems, in particular, Software Defined IoT (SDIoT) systems. Complex

IoT environments benefit from the Software-defined Networking (SDN) to enhance the con-

figuration and control of their nodes. SDN allows to decouple the control plane from the

data plane. An SDN controller is a centralized software operation that controls the entire

IoT network for performance agility and intelligence. However, employment of SDNs to

10 S.T.R.I.D.E. is a security mnemonic which categorizes threats into six main groups: (1) Spoofing, which is illegally
accessing data and exploiting confidential information. (2) Tampering, that is malicious modification of data. (3)
Repudiation is about performing an action without other parties having any way to prove. (4) Information disclosure
means exposure of information to objects who are not supposed to have access to it. (5) Denial of service (DoS): deny
service to valid users. (6) Elevation of privilege: A damaging threat which concerns about an unprivileged user gaining
privileged access to compromise or destroy the entire system.

12

simplify the IoT networks posses some risks. In this research question, I investigate how we

can have an scalable security model for SDN-based IoT systems.

13

Chapter 2

Work Accomplished

In this Chapter, I describe the work accomplished with respect to answering the research ques-

tions listed in Chapter 1.3. MiniCloud service that engineered during the first year of my PhD.

Specifically, I use MiniCloud for metric measurements and simulations conducted in answering

the research questions in this chapter.

2.1 RQ1: What are the Characteristics of Future IoT Nodes
Emerging IoT systems contain wireless moving smart objects with the following characteristics:

1. Dynamism: IoT nodes are highly dynamic. Many devices, either in one-on-one or one-to-

many (in the form of platoons and swarms [35]) need to interact with each other to gain

information in matters of a second [36]. Hence, to cope with the natural behavior of such

high-speed systems, agile security preparations needed to protect the distributed data in stor-

age and sharing.

2. Availability: Many moving objects are mission-critical and required to stay at real-time avail-

ability operation with minimum service disruption. Security of highly dynamic IoT nodes

must closely follow the principle of Economy of Mechanism that suggests security mech-

anisms should be as simple as possible, which in our scenario means should add minimal

service disruption [37].

3. Resource-constrained Property: Many IoT nodes are small miniaturized devices with lim-

ited memory and processing resources besides power-consumption and weight restrictions,

that is, they are re-source-constrained. Internet Engineering Task Force (IETF) classifies con-

14

strained devices into three main categories as shown in Table 2.1 [38]. It is expected that the

Table 2.1: Classes of IoT Constrained Nodes.

Name Data Size (RAM) Code Size (Flash)

Class 0 � 10KB � 100KB
Class 1 10KB 100KB
Class 2 50KB 250KB

security implementation should still fit into at least Class 1 IoT devices.

4. Expressiveness: IoT nodes collect sensitive information spanning spatio-temporal sensory

data, users’ private and social data, passwords, connection properties, configuration settings,

etc. The security mechanism for the protection of information and data sharing in dynamic

IoT environments must carry sufficient expressiveness capabilities to cover all the possible

attribute combinations of an evolving IoT network.

The conclusion here is if we want to have “reliable and secure IoT systems of the future”, there

needs to be proper designs and implementations that cover all four aforementioned characteristics.

For this purpose, in my PhD proposal as the first major step, in response to RQ2, I develop a

security mechanism that is an Acess Control model, and is the solution to data protection in IoT

nodes. In particular, I design a new Access Control framework for protection of data in highly

dynamic IoT nodes. Later in this Chapter, with analytical results, I show the plausibility of my

method. Then I evaluate the performance of my access control model.

2.2 RQ2: Access Control to Protect Information in Highly Dynamic
IoT Environments

Access Control is traditionally known to be the center of gravity in security engineering [39]. It

outlines permission relationships between the stakeholders and the resources [39]. Stakeholders

are users who want to access the resource or in the case of the IoT systems, could be the objects,

web services, and applications too. Resources in a network are usually a significant collection of

distributed files and data that are being shared between the nodes.

The two main sub-questions to answer here are:

1. There are several access control models implemented for IoT systems. Can we use them to

protect information in highly dynamic IoT systems? The answer to this question is the result

15

of the literature review that is covered in Subsection 2.2.1.

2. How to design an access control mechanism that can protect data amongst dynamic IoT

stakeholders? The answer to this questions with analytical results is covered under the Dy-

namic Policy-based Access Control (DynPolAC) framework that I describe through the rest

of this Chapter.

2.2.1 Related Work

There are two main models describing access control for the IoT environments.

1. The first category describes the work that endeavors adapting traditional and static access

control models to the IoT environments. Mainstream models are Role Base Access Control

(RBAC), Capability Based Access Control (CBAC), and Trust Base Access Control (TBAC).

• Role Based Access Control (RBAC) is a standard mechanism based on the user roles.

It has been a native access control solution for resource protection mainly in operating

systems [40, 41]. Although RBAC can be a dynamic model with minimum service

disruption, it has been an integral component of many operating systems which cannot

embed on the resource-constrained devices.

• Capability Based Access Control (CBAC), on the other hand, is a stand-alone access

control model that generates certificates for accessing resources. Certificates are either

dependent to Attribute properties (ABAC) of a node or they can be Capability (Cap-

BAC) dependent [42]. One challenge with CBAC however is that certificates need to

be regenerated every time if the nature of the environment is dynamic, where frequent

presence and absence of devices shall be experienced. Another unanswered question

with CBAC is its unclear granularity level of attributes or capabilities.

• Trust Based Access Control (TBAC) although known to be a newer access control

paradigm, still poses similar CBAC challenges when it is about gaining trust and their

frequency of generation in dynamic environments [41]. Additionally token generation

for CBAC and TBAC is known to be a computationally intensive task [40, 41].

2. Existing deficiencies with traditional access control schemes prompted research to seek mod-

els that are at less complex, human readable and easily editable with potential capacities to

become the standard [39]. This has lead to the birth of the second category, the policy-based

access control scheme.

16

In policy-based access control, the protection of data relies on expressive attribute rules

known as policy files. XACML has been the leading scheme for policy-based access con-

trol [28–33]. Although XACML is known to be a standard access control solution mainly

for large databases, its parsing, processing, and maintenance is proved to be complex for

resource-constrained IoT devices [24]. There has been research conducted using XACML

for distributed systems that concluded XACML verbosity and complexity overpowers its

expressiveness and flexibility [43, 44].

In addition, in some paradigms, XACML has required extra tri-components, namely, Policy

Administration Point (PAP), Policy Decision Point (PDP), and Policy Enforcement Point

(PEP) [45, 46]. Such solutions have aggravated the suitability of policy-based access control

using XACML for dynamic IoT nodes — resource-constrained and availability properties

have been two defeated factors in the tri-component systems.

Overall, what has been shown in the past work for policy-based access control, is its gen-

eral unsuitability for mainstream resource-constrained devices. This has led research to take

additional steps by proposing the employment of mediators to store and resolve policies.

Authenticated tokens are then sent back to the target nodes giving permission to share corre-

sponding information [29–31, 46]. But such solutions have increased the surface attacks and

Denial of Service (DoS) possibilities. Additionally, server-based access control models does

not seem to be responsive to agile IoT environments where the requests arrive from different

objects and need to be serviced in counts of a second or less.

Table 2.2 outlines available access control schemes evaluating against the requirements of the

high-speed IoT networks.

Table 2.2: Access control model fitness for high-speed dynamic IoT networks. A Checkmark
(X) describes a particular property is satisfied. An Xmark (7) denotes the lack of the property.

Access Can cope Minimum Suitable Expressiveness
Control with service for

Category highly dynamic disruption needed resource-constrained
service environments devices

Traditional models 7 X 7 7

RBAC, CBAC,
and TBAC

Policy-based models X 7 7 X

In light of the above, I conclude that previous models cannot comprehensively fulfill the re-

17

quirements of the highly dynamic IoT environments. For this reason, to fill this gap and an-

swer RQ2, I have proposed a solution that is a policy-based access control and integrates very

well with the intrinsic characteristics of the highly dynamic IoT systems. I refer to such framework

as Dynamic Policy-based Access Control (DynPolAC).

2.2.2 Dynamic Policy-based Access Control (DynPolAC)

I reviewed challenges involved with previous access control mechanisms. I devised a policy struc-

ture that fits well to the elements of emerging IoT networks. I have benefited from the expressive-

ness of the policy files and inspired by the previous research in defining privacy rules with markup

languages. However, instead of XACML, I employ eXtensible Markup Language (XML).

XML is a light-weight, easy to understand, parse and maintain descriptive language. We con-

structed an intuitive policy file that inherits similar expressiveness as policies used in the related

work. Additionally, I take into account, the spatio-temporal attributes of the environment where

almost all IoT nodes gather their data. Accordingly, I present a rule block with the following

primitive elements. A sample shown in Listing 2.1.

• rule — Indicates the beginning of a policy rule block. We have two types of rules. First is

the “comparator”, where min/max attributes articulate the permitted visibility range, and the

second type is the “accessor” rule, which gives access to the sensitive data such as password,

names, SSLKey, etc. (see Listing 2.1).

• desc — Plain text description of what the rule block is about. It is to help users construct

right policy blocks.

• type — An attribute that represents the type of data being monitored. Samples are temper-

ature, heading, password, altitude, Latitude and Longitude, etc.

• vendor — An attribute that presents the keeper of the information.

For example, < vendor >Uber< /vendor > means show me data that are in Uber devices

only.

• time — ISO 8601-complaint temporal attribute devised to show information generated or

updated since a particular date and time.

• user — A comma spliced RBAC attribute devised to give access to particular users.

• group — A comma spliced RBAC attribute devised to give access to particular groups.

18

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
2 <p o l i c y F i l e>
3 <p o l i c y>
4 <r u l e min=”−10” max=” 110 ”>c o m p a r a t o r</ r u l e>
5 <desc>i n d e g r e e s C e l s i u s</ de sc>
6 <a t t r i b u t e s>
7 <t y p e>t e m p e r a t u r e</ t y p e>
8 <vendor>Google</ vendor>
9 <t ime>2016−07−16 T23 :20 :30</ t ime>

10 <u s e r>User1 , User2</ u s e r>
11 <group>GroupXYZ</ g roup>
12 </ a t t r i b u t e s>
13 </ p o l i c y>
14 <p o l i c y>
15 <r u l e min=” 200 ” max=” 500 ”>c o m p a r a t o r</ r u l e>
16 <desc>Rakuten o b j e c t s be tween 200 f t and 500 f t</ de sc>
17 <a t t r i b u t e s>
18 <t y p e>a l t i t u d e</ t y p e>
19 <vendor>Rakuten</ vendor>
20 <t ime>2017−08−22 T09 :20 :30</ t ime>
21 <u s e r>Zone1</ u s e r>
22 <group>CompanyXYZ , HomeOwners</ g roup>
23 </ a t t r i b u t e s>
24 </ p o l i c y>
25 <p o l i c y>
26 <r u l e>a c c e s s</ r u l e>
27 <desc>Access t o s s h password</ de sc>
28 <a t t r i b u t e s>
29 <t y p e>password</ t y p e>
30 <vendor>L a t a s</ vendor>
31 <t ime>2016−07−16 T23 :20 :30</ t ime>
32 <u s e r>Admin</ u s e r>
33 <group>CorporateXYZ</ g roup>
34 </ a t t r i b u t e s>
35 </ p o l i c y>
36 <p o l i c y>
37 <r u l e>a c c e s s</ r u l e>
38 <desc>Acess t o c a r Fue l Leve l r e a d i n g s</ de sc>
39 <a t t r i b u t e s>
40 <t y p e>f u e l L e v e l</ t y p e>
41 <vendor>Uber</ vendor>
42 <t ime>2016−07−16 T23 :20 :30</ t ime>
43 <u s e r>Leve l1</ u s e r>
44 <group>Team XYZ</ g roup>
45 </ a t t r i b u t e s>
46 </ p o l i c y F i l e>

Listing 2.1: Sample policy file.

2.2.3 Comparing Policy Rules Expressiveness

My rule block is the union of previous ABAC, RBAC, and policy-based access control models.

With XML, lighter than usual policies with shorter file sizes can be constructed. These files are

found at www.ece.ubc.ca/∼mkarimib/minicloud/.

I have compared some of the previously introduced XACML files with the XML rule blocks

that are constructed in this proposal. For example, in [28] and [31], Kim et al and Fysarakis et

19

www.ece.ubc.ca/~mkarimib/minicloud/

al. specify attributes such as subject, resource, action, and condition. Their attributes are analogous

to type, vendor, access and rule respectively in our construction.

In another comparison, Vaidya and Sherr in [32] build policies according to spacial properties

for drones. They create primitives such as: time interval, day, capability, region, coordinate, and

noise limit. Time interval and day attributes by Vaidya and Sherr are similar to the time element

in our rule block. Capability, region, and noise limit are specific to drones and can be presented as

the type in our generic access control model to reflect the environmental properties of a particular

IoT system. Lastly, the ‘coordinate’ attribute is similar to the type primitive, which can take a

variety of expressions (coordinates being one of them) in our policy.

Similarly, from a recent work, Drozdowicz et al. [46] presented primitives such as target, match

and description, which can be matched in our case to type, rule, and desc.

With respect to comparing RBAC attributes in related work, Das et al. in [33] described their

rules by attributes such as user, subject, and object. Their primitives are comparable with user, group,

and type respectively.

2.3 Performance Analyses
In this section, I report the performance results that illustrate why DynPolAC is a good solution for

protection of information in the target environment under discussion.

2.3.1 Parsing Time Measurements

So far, I have shown the construction of a policy file in XML that is comparable with the past

models in terms of ease-of-use and expressiveness. However, our main claim for using XML

against previous constructs such as XACML is to show that processing XML is significantly faster

hence makes it the right candidate to employ as the access control language in highly interactive

nodes.

I inspect the parsing times between DynPolAC, which is XML-based, versus previous policy

models, which are XACML-based. For our results, to be comparable, we programatically produce

policy files up to 2000 intuitive rules in both XML and XACML languages. Another remark in the

comparison is resorting to the Expat1 parser [47], which is the native XML parser. To keep the tool

homogeneity, I use the Expat parser for both XML and XACML parsing2.

Figure 2.1 shows our parsing comparison results. The results are captured at the steady-state

1Since XACML is a derivative of XML, it can be processed by the same parser.
2To my knowledge, there is no standalone parser for XACML.

20

#of rules in the policy file Pi 3 XML (ms) Pi Zero XML (ms) BBB XML (ms) Pi 3 XACML(ms) Pi zero XACML (ms) BBB XACML(ms)

1 1.05 1.34 2.39 1.2 1.9 5.17

2 0.96 2.15 4.34 1.89 3.17 6.15

25 3.22 6.03 9.42 21.98 27.54 34.72

50 6.02 9.93 13.34 43.46 52.98 62.58

100 12.22 19.52 24.21 88.92 96.15 122.89

200 24.06 36.18 42.3 120.94 174.55 246.4

500 56.82 72.31 88.57 240.55 432.65 614.05

1000 84.61 136.89 167.26 458.43 838.55 1222.65

2000 176.01 290.55 349.4 910.45 1692.56 2543.28

1
101
201
301
401
501
601
701
801
901

1001
1101
1201
1301
1401
1501
1601
1701
1801
1901
2001
2101
2201
2301
2401
2501
2601

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001

p
ar

si
n

g
ti

m
e

 (
m

s)

number of rules

poplicy parsing comparisons between Pi 3, Pi 0, and and BBB

pi3 xml pi0 xml bbb xml pi3 xacml pi0 xacml bbb xacml

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 21 41 61 81 101

p
a
rs

in
g

 t
im

e
 (

m
s
)

number of rules

Zoom-in (showing between 1 and 100 rules): poplicy parsing comparisons between
Pi 3, Pi 0, and and BBB

pi3 xml pi0 xml bbb xml pi3 xacml pi0 xacml bbb xacml

Figure 2.1: Parsing XML vs XACML files comparison on different platforms (Mean over
1000 time parsing for each point).

mean after 1000 trials. To show uniformity in parsing results, I ran our parsing engine with several

platforms, namely Raspberry Pi 3 (1.2GHz, 64-bit quad-core), Raspberry Pi 0 (1GHz, 32-bit single-

core), and Beagle Bone Black (720MHz, 32-bit single-core).

As can be followed from the Figure 2.1, XACML parsing takes longer time for all sizes — the

maximum parsing time is with the file that contains 2000 rules, which is 2.5 seconds. These results

show that for highly interactive environments, where periodic query of dynamic data occur at one

second intervals, policy enforcement could surely be a bottleneck. In addition, from Figure 2.1

is the linear latency relation with the size of the files. Lastly, these results show that DynPolAC

on average outperforms their XACML-based counterparts with five to seven times performance

improvements. These results are particularly important when dealing with high-traffic IoT envi-

ronments where an agile protection practice is needed with the sharing of sensitive information

between dynamic objects.

2.3.2 System Design

In previous sections I discussed the parsing component of DynPolAC and showed its policy pars-

ing time achieves significant speed advantages over other previous methods. However, to show the

suitability importance of DynPolAC, in macro scale, we ran system-level simulations in the Mini-

Cloud to analytically evaluate different access control mechanisms. We also performed the sensi-

21

tivity analyses and report which parameters are the most influential in the latency of response time

between the IoT nodes.

Model Assumptions

In Section 1.2, I suggested that there were two main schemes envisioned for emerging IoT net-

works. Here, I model the first scheme only, that is, the existence of central hubs known as UAS

Traffic Management Systems (UTM) for drones or Road Side Units (RSU) for autonomous cars.

If we can show that DynPolAC is a suitable mechanism that protects confidentiality of information

in highly dynamic IoT hubs, we would have shown that it is also a suitable methodology for the

second scheme which is the object-to-object communication. In Figure 2.2, we see a dynamic ser-

vice model framework, where objects contact a center to query information from it. The model is

comprised of the queue theory, besides DynPolAC, and the MiniCloud. I assume the following in

modeling:

• Our simulation results are based on the Queue Model type ‘M/M/1’:

- The IoT service node is a single queue, single-processor system.

- The arrival rate, λ , follows the Independent and Identically Distributed (IID) random

variables based on the Poisson distribution stream.

- There are no buffer or population size limitations and the service discipline is First-

Come-First-Serve (FCFS). See Figure 2.2.

- The queue is modeled as the birth-death process. That is, the number of jobs in the

queue when each object lines up causes the state of the queue to change by +1 (birth) and

when departed from the queue, causes the state of the queue to change by -1 (death). The

birth-death process helps to keep track of the time that each object stays latent in the queue

waiting for service.

• For calculating the total response time (Γ), I assume the wireless network signal latency is at

the fixed 50 ms delay time. This is assumed in reference to the analytical model employed

M/M/1/K queue for 802.11 wireless networks [48].

• I employ the method of Regeneration for computing the overall mean response time [49]. In

Section 2.3.3, I describe how I use the method of Regeneration to calculate the steady-state

mean response time.

22

• The simulations were run on a real embedded system that is the Beagle Bone Black (BBB)

with CPU speed 720MHz and 512MB RAM [19].

Policy

check

IoT Node
Database

IoT Service Node

 Total Response Time Γ

Service Delay

Objects Population Arrival Rate λ Waiting in Queue

DynPolAC
MiniCloud

Signal Reply

Service Delay S ρ + φ Queue Delay ω
Network

Latency η

Network

Latency η

Signal Request

IoT Node

Figure 2.2: Schematic view of M/M/1 queuing service for an IoT node. Notations described
in Table 2.3.

Formulation

We evaluate the stability condition (λ < µ) of DynPolAC in highly dynamic environments by

measuring the overall mean response time delay. Table 2.3 describes our notations. The response

time (Γ) defines the time between a node request a query from another node and the time it receives

the queried data. We formulate the response time duration by Equation 2.2. Our formulation is

based on the assumptions made in Subsection 2.3.2, and the key variables shown in Figure 2.2,

used by the queueing analysis.

µ =
1
Γ

(2.1)

Γ(λ , fcpu,`policy,`Query,η) = η + N + η = 50ms + N + 50ms = 100ms + N (2.2)

Equation 2.3 formulates the node delay time. We characterize the node delay (N) by the time a

query awaits in the queue (ω) and the node’s mean service time (S).

23

N(λ , fcpu,`(policy,`Query)) = ωλ , fcpu +S (2.3)

The mean service time (S) characterizes as the time it takes to parse and process the particular

policy related to the query and the query time itself.

S(fcpu,`policy,`Query) = ρ(`Policy, fcpu)+ϕ(`Query, fcpu) (2.4)

Table 2.3: Queue theory notations.

Mnemonic Description Unit value

Γ Mean response time ms
µ Mean response rate 1/s
λ Mean arrival Rate 1/s
N Mean node delay ms
η Network latency ms
S Mean service time ms
ω Wait time in the queue ms
ρ Policy processing time ms
ϕ Query time ms

`Query Query size Bytes
`Policy Policy size no. of rules
fcpu Node clock speed 720MHz

Since I am simulating in a real embedded system, in the following I briefly describe the system

integration.

Platform Integration

The simulations and latency measurements occur in the MiniCloud. I instantiated the DynPolAC

engine inside the MiniCloud (Figure 1.2).

The original code size of the MiniCloud had been 66KB (Figure 2.4). We added DynPolAC

as an integral component of the MiniCloud, which monitors the queried data and enforces access

control. With the addition of the DynPolAC policy engine, our IoT node image size is 71KB

(Figure 2.4). This means that with only 7.5% image overhead, creation of a policy engine in Class

1 (refer to Table 2.1) resource-constrained nodes is possible.

Another featured implementation of DynPolAC is its dynamic capability to update the rules at

24

Figure 2.3: Code comparison between the MiniCloud and TinyDB.

Figure 2.4: Size of image comparison between the MiniCloud and TinyDB in KB.

25

run-time via a housekeeping process. When a new request arrives, DynPolAC first parses the file

and registers the rules that associate with the query request, and then, based on the rules, the server

can respond to the query request. A major overhead during the policy check is the parsing time for

creating new rules or updating the currently existing ones, discussed in Section 2.3.1.

2.3.3 Simulation Results

To evaluate the performance of the system, two sets of simulations were run.

In the fist set, I measure the overall mean at steady state condition amongst a machine that does

not have any access control, a one that carries DynPolAC, and a one that is using XACML policy

for its access control. All simulations were run on BBB platform as described in Subsection 1.1.2.

The performance of the system were evaluated based on the stochastic analysis of three parameters,

namely, the arrival rate (λ), the query length (`Query), and the policy size (`Policy). For generating

random arrival rates (λ), we used the Inverse Transformation Method to get Poisson variates with

Mean 4 [49]. The arrival rate is per second and the number of objects arriving per second queue up

in the system awaiting service (Figure 2.2). The other two parameters, follow a uniform distribution

between 200 Byte and 5 KB for the query length (`Query), and between 1 and 2000 rules for the

policy size (`Policy).

Stopping criteria. For recording the steady-state response times, their mean needs to be cal-

culated. Since the waiting times are correlated3, I cannot use arithmetic mean. Instead, I use

the method of Regeneration [49]. In this method, I first record the mean at every epoch4: Γ̄i =
1
ni

∑
ni
j=1 Γi j, where Γi j is the single object response time, ni is the number of objects that arrive at

a time, and Γi is the mean response time at every epoch. Next, I incrementally compute the epoch

sums: Yi = ∑
ni
j=1 Γi j, and the overall mean accordingly: x =

∑
m
i=1Yi

∑
m
i=1 ni

. I stop the simulation when the

overall mean response time is at the steady-state with two decimal digit of a millisecond precision,

and achieves the 95% two-sided confidence interval [49].

Figure 2.5 demonstrates our simulation results for the overall mean response time. The steady-

state measurement is achieved after 3000 epochs (≈50 minutes of simulation time for each point).

In the second simulation set, the sensitivity analysis for the three influencing parameters was

performed: the arrival rate (λ), the query length (`Query), and the policy size (`Policy). Figure 2.6

3In a queueing simulation the nth job should be processed first before turning to n+1th job.
4Every epoch occurs every second which based on the arrival rate a number of objects queue up in the system

awaiting the service.

26

178.16

245.06

840.92

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000

M
e
a

n
 R

e
s

p
o

n
s
e

 T
im

e
 (

m
s
)

No. of Epochs

Overal Mean No-policy overal mean DynPolAC Overal Mean XACML

Figure 2.5: Simulation results for gaining the steady-state gain of the mean response time, Γ.
Data are shown for when no policy engine enforced and the time that XML and XACML are
active. Platform is Beagle Bone Black running at 720MHz.

shows the results. In Figure 2.6-a, the arrival rate sweep between 1 object per second and 10 objects

per second is performed. Figure 2.6-b shows the sensitivity analysis for query length. The query

in Bytes are swept between 200 and 5K. In our last evaluation, Figure 2.6-c, the number of policy

rules between 1 and 2000 are scanned.

2.3.4 Discussion

RQ2 is about finding a suitable security mechanism for highly dynamic IoT systems. One way for

dynamic environments, since there are frequent requests occur in counts of one second, is to show

the stability condition holds with the addition of security measures.

The implementation of the DynPolAC engine meets the stability condition in dynamic IoT

nodes. If the arrival rate (λ) is bigger than the service rate (µ), the system falls behind in query

responses and said to be unstable [49]. The stability condition requires arrival rates smaller than the

service rates (λ < µ). For a “no policy” IoT node, I observe the mean service rate in our platform

is: µ =
1

178.16ms
=

1000
178.16

= 5.61/s (see Figure 2.5).

When DynPolAC is enforced, µ =
1

248.16ms
= 4.1/s, which satisfies the stability condition (λ

= 4, µ = 4.1⇒ λ < µ). In contrast, µ=1.19 for XACML-based policy systems. This is smaller

27

than the arrival rate (λ = 4, µ = 1.19 ⇒ λ ≮ µ) and therefore, a node with an XACML-based

policy access control may experience system instability.

Additionally, by the Little’s law (Mean object requests in the system = mean arrival rate λ ×
mean response time Γ), it can be concluded that no jobs are left in DynPolAC; whereas the mean

object request in XACML-based policy systems = 4 × 1/1.19 = 3.36.

From sensitivity analyses, among the three factors, namely policy, query, and arrival rate, policy

is the most influencing factor due to sharper slope changes between the different sizes of policy

rules (Figure 2.6-c). Arrival rate is second and query size is third. DynPolAC mitigates the heavy

impact on the response time, making it an attractive answer to RQ2.

2.4 Summary
We know that NextGen IoT environments are highly interactive and require adaptive (if not new) se-

curity measure to protect their data. Dynamic policy-based access control (DynPolAC) is a frame-

work that accommodates expressivenesses similar to previous data protection schemes, and is run-

time editable. DynPolAC also imposes minimum service disruptions as oppose to previous models,

which makes it the fit stand-alone framework for Class-1 resource-constrained devices with only

7.8% of code image overhead (Figure 2.4).

We evaluated DynPolAC by measuring performance metrics at both the micro and the macro

scales. At the micro level, DynPolAC outperforms previous XACML-based methods up to 7.28x

in parsing speed(Figure 2.1).

At the macro scale, we used queueing theory to study the feasibility of the DynPolAC in

highly dynamic environments. DynPolAC satisfied the stability condition (in contrast to previous

XACML-based models) with 245.06ms overall mean response time. Therefore DynPolAC is a

viable solution and the answer to RQ2 for data protection in highly dynamic IoT environments.

28

126.97 142.85 151.73 171.1 192.09
234.67 276.41

343.21 381.09 420.06
198.74 211.48

237.27 263.16 299.93 340.85 390.66
493.79 538.31

672.23

439.74 471.48

621.63 659.16
747.93

836.85
894.66

1021.79

1267.31

1420.23

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

arrival rate λ (1/s)

no policy DynPolAC XACML-based policy
𝒍𝑷𝒐𝒍𝒊𝒄𝒚

𝝀

𝒍𝑸𝒖𝒆𝒓𝒚

(a)

157.67 158.43 175.32 189.31 201.07 210.32 215.31 223.38 238.47 256.83 276.43

268.71 270.63 289.05 303.94 317.63 327.38 336.49 342.01 360.23 381.37 410.31

776.12 778.04 796.46 811.35 825.04 834.79 843.9 849.42 867.64 888.78 917.72

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Query (Bytes)

no policy DynPolAC XACML-base policy
𝒍𝑷𝒐𝒍𝒊𝒄𝒚

𝝀

𝒍𝑸𝒖𝒆𝒓𝒚

(b)

381.78 405.23

677.07

508.01

991.2

1484.98

2769.36

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

R
e
s
p

o
s
n

e
 T

im
e
 (

m
s
)

number of rules

DynPolAC XACML-based policy

𝒍𝑷𝒐𝒍𝒊𝒄𝒚

𝝀

𝒍𝑸𝒖𝒆𝒓𝒚

(c)

Figure 2.6: Sensitivity Analyses. Each data point recorded after steady-state mean response
time arrived (∼3000 epochs) (a) Arrival rate λ sweep (simulating between 1 and 10 objects
per second).(b) Data Query Sweep in Bytes (between 200B and 5KB). (C) Policy sweep in
number of rules (between 1 and 2000 rules).

29

Chapter 3

Work Planned

In this Chapter, I describe the plan for future work according to the remaining research questions,

RQ3, RQ4, and RQ5.

3.1 Security Validation — Answer to RQ3
One of the main concerns in the “security” of IoT systems is their quality of service assurance. It

means how to ascertain the security models are correct at all scenarios. DynPolAC needs to have

an assurance unit to check the policy rules are correct and unique at real-time. We want to ensure

that the set of primitives in the rule blocks are conflict-free and there is no supersede or override

occurring.

Conflicts in policies occur in two ways; (1) When fragmentary constraints are found in the

policies or (2) When the constraints overlap with each other. For detecting fragmentary policies,

we need to check if there are no shared common state variables. For detecting overlapping policies,

we need to check the conditional part and the attributes part of policies do not superimpose.

I propose to add a checker to DynPolAC to parse the policy files and convert them to trees, then

compare them with each other. If a discrepancy found between two or more rules defining the same

behavior, DynPolAC should raise a flag and stop the operation from applying conflicted rules to the

system.

Figure 3.1 shows an example of generated trees from a file that contains two rules, both of them

are giving access to the temperature values of Google devices. However one is allowing access to

values between -10 and 10, while the other rule is overriding the previous rule with values between

20 and 110. The timestamps are not matching either. The top rule is permitting to query the

30

temperature values that are generated since “2016-07-16”, while the bottom rule is asking for the

same set but generated after “2017-01-05”. Therefore, in such cases, it is not clear which one of

the two rules should be applied to the system. We stop enforcing these policies to our system and

flag their parent nodes for inspection.

Additionally, DynPolAC requires to apply policy validation “frequently” because of the state

of emerging IoT systems that policy updates must occur dynamically. This could affect the overall

response time, Γ (Table 2.3), quadratically, dependent to the size of policy files. For example, to

check if there is a conflict among n policies, a naive algorithm takes each policy and compare it

against the other ones. This outputs the result in maximum of O(n(n−1)
2) comparisons. In the second

part of RQ3, I look for an optimization method to reduce the latency in validation time employing

the computer science search and comparison algorithms.

In the last part of RQ3, I propose three methods to resolve conflicts. One way can be assigning

priorities to the policy files. For example, is a global policy has priority to a node policy? Second

way to resolve issues is taking the intersection of the conflicts. A third approach could be to repair

conflicts. Finally, I will investigate these three approaches and will describe the advantages and

disadvantages of each method.

31

policy

rule attr
desc

min max

type

Temp

vendor

Google

Time user

usr1 usr2

Group

GroupXYZ

 in degrees Celsius

 2017-01-05T13:20:30"

Comp

policy

rule attr
desc

min max

type

Temp

vendor

Google

Time user

usr1 usr2

Group

GroupXYZ

 in degrees Celsius

 2016-07-16T23:20:30

Comp

10-10 11020

Figure 3.1: Example of checking two rule blocks in a policy file. Red nodes are showing the conflicts.

32

3.2 Attack Models — Answer to RQ4
Introducing DynPolAC may widen the attack surface risks. In this research question, I propose

to discover vulnerabilities in DynPolAC subject to a set of predefined threat models known as

the S.T.R.I.D.E. classification [50]. I plan to study three main threats that are significant to Dyn-

PolAC security framework. The assumption is that an attacker has found its way to gain the root

access in at least one of the IoT nodes in the network.

1. Spoofing: Policy files are stored in the file system of the IoT nodes. If an attacker gains

the root privilege, it can easily modify the content of the policy files. The current state

of DynPolAC lacks protection for policy files and so the integrity of policy files can easily

be compromised. In this research question, I plan to devise a technique to stop the risk of

spoofing by DynPolAC. One possible solution is to encrypt the policy files with the Advanced

Encryption Standard (AES) or Rivest Shamir Adleman (RSA) algorithms [39]. With encryp-

tion, an attacker cannot modify the policies unless he or she obtains the key. How to obtain

the key is another compelling question that I will answer as the future work.

2. Denial of Service (DoS): DoS is a very common adversarial attack that targets the ser-

vice disruption. In our environment, DoS means block information exchange between the

nodes. DynPolAC is very susceptible for this attack. Figure 3.2 shows the simplest DoS vul-

nerability that could happen in DynPolAC. An attacker can share a void policy file to the

system. Therefore, any node that has been infected by the void policy will experience denial

of service — essentially by receiving no information upon querying data.

Figure 3.2: A trivial DoS attack in DynPolAC.

To mitigate this attack, one possible solution is to prohibit void policies. As a future work, I

will put conditions for the DynPolAC parser to check whether the file has any content or not.

Empty files must be discarded from the DynPolAC.

3. Information disclosure: This attack is about deliberately constructing the policy files such

that sensitive information such as the system configuration settings (e.g., brake settings in

33

autonomous cars) or password data (e.g., ssh access to nearby drones) are shared between

untrusted nodes. For this type of attack we assume that the adversary has write access to

modify the policy files. We also assume that the adversary has the knowledge advantage of

the system settings and knows about the type of information exchanged between the nodes.

The adversary can subtly construct the policy files to deceive DynPolAC about sharing or

blockage of queried data.

One solution to mitigate this vulnerability is to have a formal equivalence checker to compare

the specification against the policy files. Specifications can be constructed as a form of

invariants and compared against their counterparts in the policy file. Full coverage of design

and implementation will be covered in my future work.

3.3 Security of Software Defined IoT (SDIoT) Networks — Answer
to RQ5

One of the potential long-term goals of DynPolAC is to have it suitable for “ultra-large scale”,

highly dynamic IoT networks. In particular, in this research question, we will look at Software

Defined IoT (SDIoT) networks.

3.3.1 Software Defined IoT (SDIoT) Networks

Future IoT networks will comprise billions of objects that need to communicate with each other

in the network. It will be impractical to manually configure and control such a large number of

nodes in a system. As a result, Software Defined Networking (SDN) has been used as a scalable

paradigm to address the IoT network issues [51–53]. The main advantages of using SDNs are (1)

The nodes in the entire network can be controlled by a centralized software operation therefore

there is no need to configure them individually, and (2) The control plane is decoupled from the

data plane and thus communication permissions between the nodes are handled by the central SDN

application.

Figure 3.3 shows different layers of the Software Defined-based IoT networks, where at the

lowest level there are IoT devices. Their data are being shared with each other via a network

(switch) infrastructure. Permissions of sharing information is handled at the third layer, the SDN

controller, by using the policy mechanisms. A permission mechanism be employed at the controller

layer to mediate the data flow between the IoT nodes and the data going upstream to the application

and services layer.

34

DynPolAC

Figure 3.3: “SDIoT environment” [53]. DynPolAC is shown as an integral component of the
controller layer.

I plan to answer RQ5 by deploying DynPolAC in SDIoT control layer. I will investigate

how DynPolAC helps in managing the permissions in the controller layer while giving service

to both the network layer and the application layer.

3.4 Milestones
Researching the security of highly dynamic IoT systems requires a well-scheduled plan. To this

end, in 48 months with quadrimestral Sprints1, I have three Sprints a year and 12 in total. The

Gantt chart below elaborates on my timed plan to finish PhD describing milestones at the end of

each Sprint:

1In Agile software development, Sprint means duration of a project that is expected to finish and deliver. At the end
of each Sprint there is a demo of finished work and plan for moving to the next Sprint based on the last completed Sprint.

35

2015 2016

09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sprint 1
Literature review in IoT

Wrote a short report about IoT

Literature reviews and DAC attendance

Sprint 2
Planned construction of an IoT hub

Devised MiniCloud server

MiniCloud construction on BBB

Partial Demo of MiniCloud

Sprint 3
Partial Demo of MiniCloud

Sprint 4
MiniCloud sensor and MQTT connections

36

2017 2018

01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sprint 5
Studied security in IoT systems

Proposal for security in dynamic environments

Developing Access Control in MiniCloud

Writing report about DynPolAC

DynPolAC demonstration in the MiniCloud

Sprint 6
DynPolAC performance metrics analyses

Thesis proposal writing

Sprint 7
Thesis proposal qualification exam

Writing paper to publish DynPolAC

Sprint 8
Security in ultra-large-scale IoT environments

Implementation of DynPolAC in SDIoT

Performance Analyses

Paper Writing

Writing Thesis

37

2018 2019

05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Sprint 9
Security validation (RQ4)

Add checker validation toolkit to DynPolAC

Writing the paper

Sprint 10
Studying attack models in my security framework

Sprint 11
Threat models classification study (S.T.R.I.D.E.)

Sprint 12
Writing the paper in attack models

Writing Thesis

38

Bibliography

[1] Networks on demand: The promise of software-defined networking. http:

//hightechforum.org/networks-on-demand-the-promise-of-software-defined-networking/.

Accessed: 2017-09-21. → pages

[2] The 4th industrial revolution. http://www.i2cat.net/images/industry 4.0.png. Accessed:

2015-08-21. → pages 1

[3] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.

Internet of things (iot): A vision, architectural elements, and future directions. Future Gener.

Comput. Syst., 29(7):1645–1660, September 2013. → pages 1, 2, 11

[4] Mark Fell. Roadmap for the emerging ”internet of things“. Wite-paper, 2014. → pages 1, 2

[5] Rolf H. Weber. Internet of things: Privacy issues revisited. Computer Law and Security

Review, 0267-3649, 2015. → pages 1

[6] Feng Chen, Pan Deng, Jiafu Wan, Daqiang Zhang, Athanasios V Vasilakos, and Xiaohui

Rong. Data mining for the internet of things: literature review and challenges. International

Journal of Distributed Sensor Networks, 501:431047, 2015. → pages 2

[7] H. Sahli, C. Bouanaka, and A. Taki Eddine Dib. Towards a formal model for cloud

computing elasticity. In WETICE Conference (WETICE), 2014 IEEE 23rd International,

pages 359–364, June 2014. → pages 2

[8] Ying R. Ma. Research this is an example of security model and cloud computing strategy.

Applied Mechanics and Materials, 556-562:6196–6198, 2014. → pages

[9] Yuan Zhang and Lei Huang. The research of cloud computing service model. Applied

Mechanics and Materials, 556-562:6262–6265, 2014. → pages

39

http://hightechforum.org/networks-on-demand-the-promise-of-software-defined-networking/
http://hightechforum.org/networks-on-demand-the-promise-of-software-defined-networking/
http://www.i2cat.net/images/industry_4.0.png

[10] Andre Duarte and Miguel M. d. Silva. Cloud maturity model. pages 606–613. IEEE, 2013.

→ pages 2

[11] Modbus communication protocol. http://www.modbus.org. Accessed: 2015-08-23. → pages

3

[12] Mqtt communication protocol. http://mqtt.org. Accessed: 2015-08-23. → pages 3

[13] Dropcam and nest website. https://nest.com/camera/meet-nest-cam/. Accessed:

2015-08-27. → pages 3

[14] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tinydb: an

acquisitional query processing system for sensor networks. ACM Transactions on database

systems (TODS), 30(1):122–173, 2005. → pages 4, 7

[15] Vlad Trifa, Samuel Wieland, Dominique Guinard, and Thomas Michael Bohnert. Design

and implementation of a gateway for web-based interaction and management of embedded

devices. Submitted to DCOSS, pages 1–14, 2009. → pages 4

[16] Qnx real-time operating system by blackberry. http://www.qnx.com/. Accessed: 2015-09-06.

→ pages 4, 9

[17] Vlad Trifa, Dominique Guinard, Vlatko Davidovski, Andreas Kamilaris, and Ivan Delchev.

Web messaging for open and scalable distributed sensing applications. In International

Conference on Web Engineering, pages 129–143. Springer, 2010. → pages 5

[18] Walter Colitti, Kris Steenhaut, and Niccolò De Caro. Integrating wireless sensor networks

with the web. Extending the Internet to Low power and Lossy Networks (IP+ SN 2011),

2011. → pages 5

[19] Beagle bone black website. http://elinux.org/Beagleboard:BeagleBoneBlack. Accessed:

March 1, 2017. → pages 9, 23

[20] The Federal Aviation Administration (FAA). Faa releases 2016 to 2036 aerospace forecast,

March 2016. → pages 10

[21] forbes.com. 10 million self-driving cars will hit the road by 2020 – here’s how to profit,

March 2017. → pages 10

40

http://www.modbus.org
http://mqtt.org
https://nest.com/camera/meet-nest-cam/
http://www.qnx.com/
 http://elinux.org/Beagleboard:BeagleBoneBlack

[22] National Aeronautics and Space Administration. Unmanned aircraft system (uas) traffic

management (utm), August 2017. → pages 10

[23] J.A. Stankovic. Research directions for the internet of things. Internet of Things Journal,

IEEE, 1(1):3–9, Feb 2014. → pages 11

[24] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman. Access

control in the internet of things: Big challenges and new opportunities. Computer Networks,

112:237 – 262, 2017. → pages 11, 17

[25] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. Internet of

things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497 – 1516,

2012. → pages

[26] Yunpeng Zhang and Xuqing Wu. Access control in internet of things: A survey. CoRR,

abs/1610.01065, 2016. → pages

[27] S. Sicari, A. Rizzardi, L.A. Grieco, and A. Coen-Porisini. Security, privacy and trust in

internet of things: The road ahead. Computer Networks, 76:146 – 164, 2015. → pages 11

[28] J. E. Kim, G. Boulos, J. Yackovich, T. Barth, C. Beckel, and D. Mosse. Seamless integration

of heterogeneous devices and access control in smart homes. In 2012 Eighth International

Conference on Intelligent Environments, pages 206–213, June 2012. → pages 11, 17, 19

[29] Jorge Bernal Bernabe, Jose Luis Hernandez Ramos, and Antonio F Skarmeta Gomez.

Taciot: multidimensional trust-aware access control system for the internet of things. Soft

Computing, 20(5):1763–1779, 2016. → pages 17

[30] L. Seitz, G. Selander, and C. Gehrmann. Authorization framework for the internet-of-things.

In 2013 IEEE 14th International Symposium on ”A World of Wireless, Mobile and

Multimedia Networks” (WoWMoM), pages 1–6, June 2013. → pages

[31] K. Fysarakis, I. Papaefstathiou, C. Manifavas, K. Rantos, and O. Sultatos. Policy-based

access control for dpws-enabled ubiquitous devices. In Proceedings of the 2014 IEEE

Emerging Technology and Factory Automation (ETFA), pages 1–8, Sept 2014. → pages 17,

19

41

[32] Tavish Vaidya and Micah Sherr. Mind your (r,\varphi) s: Location-based privacy controls

for consumer drones. In Cambridge International Workshop on Security Protocols, pages

80–90. Springer, 2015. → pages 20

[33] Prajit Kumar Das, Sandeep Narayanan, Nitin Kumar Sharma, Anupam Joshi, Karuna Joshi,

and Tim Finin. Context-sensitive policy based security in internet of things. In Smart

Computing (SMARTCOMP), 2016 IEEE International Conference on, pages 1–6. IEEE,

2016. → pages 11, 17, 20

[34] Jia Jindou, Qiu Xiaofeng, and Cheng Cheng. Access control method for web of things based

on role and sns. In Computer and Information Technology (CIT), 2012 IEEE 12th

International Conference on, pages 316–321. IEEE, 2012. → pages 11

[35] Damian Roca, Daniel Nemirovsky, Mario Nemirovsky, Rodolfo Milito, and Mateo Valero.

Emergent behaviors in the internet of things: The ultimate ultra-large-scale system. IEEE

Micro, 36(6):36–44, 2016. → pages 14

[36] Florian Schaub and Pascal Knierim. Drone-based privacy interfaces: Opportunities and

challenges. In Twelfth Symposium on Usable Privacy and Security (SOUPS 2016). USENIX

Association, 2016. → pages 14

[37] Matthew A Bishop. Introduction to computer security. 2005. → pages 14

[38] Carsten Bormann, Mehmet Ersue, and A Keranen. Terminology for constrained-node

networks. Technical report, 2014. → pages 15

[39] Ross J Anderson. Security engineering: a guide to building dependable distributed systems.

John Wiley & Sons, 2010. → pages 15, 16, 33

[40] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. Internet of

things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497–1516,

2012. → pages 16

[41] Yunpeng Zhang and Xuqing Wu. Access control in internet of things: A survey. arXiv

preprint arXiv:1610.01065, 2016. → pages 16

[42] José L Hernández-Ramos, Antonio J Jara, Leandro Marin, and Antonio F Skarmeta.

Distributed capability-based access control for the internet of things. Journal of Internet

Services and Information Security (JISIS), 3(3/4):1–16, 2013. → pages 16

42

[43] Sonia Jahid, Imranul Hoque, Hamed Okhravi, and Carl A Gunter. Enhancing database

access control with xacml policy. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS), pages 130–133, 2009. → pages 17

[44] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah. First

experiences using xacml for access control in distributed systems. In Proceedings of the

2003 ACM workshop on XML security, pages 25–37. ACM, 2003. → pages 17

[45] Sun Kaiwen and Yin Lihua. Attribute-Role-Based Hybrid Access Control in the Internet of

Things, pages 333–343. Springer International Publishing, Cham, 2014. → pages 17

[46] Michał Drozdowicz, Maria Ganzha, and Marcin Paprzycki. Semantically enriched data

access policies in ehealth. Journal of medical systems, 40(11):238, 2016. → pages 17, 20

[47] Expat parser for xml language files. https://www.xml.com/. Accessed: Sept 05, 2017. →
pages 20

[48] Cheikh Sarr and Isabelle Guérin-Lassous. Estimating average end-to-end delays in IEEE

802.11 multihop wireless networks. PhD thesis, INRIA, 2007. → pages 22

[49] Raj Jain. The art of computer systems performance analysis: techniques for experimental

design, measurement, simulation, and modeling. 1991. → pages 22, 26, 27

[50] Min Chen, Yongfeng Qian, Shiwen Mao, Wan Tang, and Ximin Yang. Software-defined

mobile networks security. Mobile Networks and Applications, 21(5):729–743, 2016. →
pages 33

[51] Zhijing Qin, Grit Denker, Carlo Giannelli, Paolo Bellavista, and Nalini Venkatasubramanian.

A software defined networking architecture for the internet-of-things. In Network Operations

and Management Symposium (NOMS), 2014 IEEE, pages 1–9. IEEE, 2014. → pages 34

[52] Yaser Jararweh, Mahmoud Al-Ayyoub, Elhadj Benkhelifa, Mladen Vouk, Andy Rindos,

et al. Sdiot: a software defined based internet of things framework. Journal of Ambient

Intelligence and Humanized Computing, 6(4):453–461, 2015. → pages

[53] Tri-Hai Nguyen and Myungsik Yoo. Analysis of attacks on device manager in

software-defined internet of things. International Journal of Distributed Sensor Networks,

13(8):1550147717728681, 2017. → pages 34, 35

43

https://www.xml.com/

	Contents
	List of Tables
	List of Figures
	Glossary
	1 Introduction and Overview
	1.1 MiniCloud: A Local Cloud for Heterogeneous IoT Nodes
	1.1.1 MiniCloud Database Server
	1.1.2 Platform

	1.2 Future of IoT Networks
	1.3 Research Questions

	2 Work Accomplished
	2.1 Answer to RQ1
	2.2 Answer to RQ2
	2.2.1 Related Work
	2.2.2 Dynamic Policy-based Access Control (DynPolAC)
	2.2.3 Comparing Policy Rules Expressiveness

	2.3 Performance Analyses
	2.3.1 Parsing Time Measurements
	2.3.2 System Design
	2.3.3 Simulation Results
	2.3.4 Discussion

	2.4 Summary

	3 Work Planned
	3.1 Security Validation (RQ3)
	3.2 Attack Models (RQ4)
	3.3 Security of Software Defined IoT (SDIoT) Networks — RQ5
	3.3.1 Software Defined IoT (SDIoT) Networks

	3.4 Milestones

	Bibliography

