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The Problem

Research tells us that some academic interventions and 
intervention approaches work better than others (on 

average)…

But how do we know if an intervention is working for a 
particular student?

[and what do we do when it isn’t working?]



Purpose

• Introduce Data-Based Individualization (DBI) for service delivery

• Introduce Curriculum-Based Measurement (CBM) as a data source

• Discuss challenges & solutions for CBM of written expression



What is Data-Based Individualization (DBI)?

• A decision-making framework 
for providing intensive academic 
intervention

• Assumes good interventions don’t 
work for all students

• It generates evidence that 
either:

• The intervention is working as 
designed

• Your experimental teaching is 
working

National Center on Intensive Intervention, https://intensiveintervention.org/



Data-Based Individualization Requires Data

• Curriculum-based measurement (CBM) data are often used for this 
purpose

• Indicators of overall progress in an academic skill area
• Standardized
• Efficient (easy to administer and score) and repeatable
• Documented standards for performance 

• Criterion- and/or norm-referenced
• Evidence of reliability and validity for screening and progress monitoring

• Alternate-form reliability
• Predicts performance on more comprehensive assessments of the skill



CBM Example: Oral Passage Reading

• Also called ‘oral reading fluency’
• Read one or more field-tested passages for 1 min
• Record the number of words read correctly

• Scores predict performance on comprehensive assessments of broad 
reading skill (Reschly et al., 2009)

• Can identify students at-risk of difficulty/disability
• Sensitive to improvements in general reading skill

• Easy to administer and use for decision making
• Compare to norms
• Graph data from repeated administrations and visually analyze progress



CBM in Written Expression (CBM-WE)

• The original idea (~1980s)
• Present one narrative prompt (story starter: One day at school…)
• 1 min to plan and 3 min to write
• Score with simple metrics like word count

• This (and similar procedures) work pretty well in lower elementary 
grades for screening and monitoring, less so as student writing 
becomes more complex (McMaster & Espin, 2007)

• Key issues: reliability, validity (including face validity), and feasibility



CBM-WE: Reliability

• Big Idea: Typical procedures do not yield reliable data for screening or 
progress monitoring

• Collected three 7 min narrative writing samples collected in fall, 
winter, and spring (n = 145 grade 2-5 students in Houston, TX, area)

• Generalizability theory analyses to determine optimum sample duration and 
number of samples needed

• Reliability < .80 for absolute screening decisions based on one 7 min sample 
• Reliability < .80 for decisions about student growth even with three 7 min 

writing samples

Keller-Margulis, Mercer, & Thomas (2016)



CBM-WE: Validity

• Big Idea: More complex scoring methods (than total words) improve 
validity, but greatly reduce feasibility

• Metrics like correct word sequences (CWS) have higher validity 
coefficients 

• Counts of the number of adjacent words that are spelled correctly and make 
sense in context

• Considers aspects spelling, punctuation, syntax, and semantics
• Better indicator of writing quality, but more time consuming and harder to 

reliably score
• Feasibility concerns compound with multiple, longer duration writing samples



Potential Solution: Automated Text Evaluation

• Use computer software that considers and quantifies many 
characteristics of words, sentences, and discourse to evaluate CBM-
WE writing samples

• Commercial applications are already available, Project Essay Grade (Wilson, 2018)
• It works well, but no info on how samples are scored and $$$

• Develop open-source alternatives (Mercer et al., 2019)
• Need to develop scoring models
• Others can build on this work
• Could be incorporated in data-management software



Current Project

• Can automated text evaluation be used to predict writing quality for 
longer duration narrative samples from students with substantial 
learning difficulties?

• Convergent and discriminant validity (writing vs. reading and math)

• Are the scores sensitive to student skill growth from fall to spring?



Context and Sample

• Students participating in 1:1 academic intervention beyond school 
hours at the Learning Disability Society of Greater Vancouver 
(http://ldsociety.ca/) 

• For training computer models:
• 10 min picture-prompted narrative samples (n = 204) collected in Sep/Oct and 

May/June each year for program planning and evaluation from 105 students

• For evaluating validity:
• Non-random sample of 33 students (grades 3-9) with standardized 

assessment scores in writing, reading, and math 

http://ldsociety.ca/


Measures: Holistic Writing Quality

• Used to train automated text evaluation models for Sep/Oct and May/June 
picture-prompted samples

• Paired comparison method (Thurstone, 1927)

• Each rater identified best sample for 3000 pairs of samples
• Aggregated to a continuous quality score using ranking algorithms

• High inter-rater reliability (r = .95)

• Raters were asked to consider substantive quality (ideation, word choice, 
text structure)

• Tiebreaker: Which sample would you most like to read more of?



Measures: Automated Writing Quality

• Each picture-prompted writing sample submitted to ReaderBench
(Dascalu, Dessus, Trausan-Matu, Bianco, & Nardy, 2013)

• Open-source software intended to assess text characteristics predicting 
reading comprehension difficulty

• Provides ~200 indicators of word complexity, lexical diversity, syntactic complexity, 
cohesion, etc.

• Machine learning algorithms used to predict holistic quality ratings 
with RB scores as inputs

• Partial least squares (PLS) regression worked best
• 85% of variance in quality ratings explained
• Algorithm-predicted quality used in validity analyses



Measures: Validity Assessments (May/June)

• Standardized Written Expression
• Test of Written Language (4th ed.) constructed response (story writing)

• Picture prompted, 5 min to plan, 15 min to write
• Contextual Conventions (CC): spelling and grammar
• Story Composition (SC): vocabulary, plot, interest to reader

• Standardized Broad Reading and Broad Math
• aReading and aMath computerized adaptive tests 
• ~20 min to administer, assesses skills from K – Grade 12
• https://charts.intensiveintervention.org/chart/academic-screening

https://charts.intensiveintervention.org/chart/academic-screening


Results: Convergent and Discriminant Validity
Table 1. Automated quality scores in relation to standardized writing, reading, and math scores 

 TOWL CC TOWL SC aReading aMath 

 r (R2) r (R2) r (R2) r (R2) 

Fall Quality .69 (.48) .47 (.22) .53 (.28) .24 (.06) 

Spring Quality .76 (.57) .53 (.28) .56 (.31) .35 (.12) 

TOWL Quality .78 (.60) .69 (.48) -- -- 

Note. n = 33. TOWL = Test of Written Language (4th ed.), CC = Contextual Conventions, SC = 

Story Composition. Values in italics are not statistically significant (a = .05). 

Incremental validity compared to typical CBM-WE scoring
TWW: r = .47 and .59 with fall and spring TOWL CC; CWS: r = .67 and .67 



Results: Sensitivity to Growth

• Statistically significant 
(p < .001), moderate-
to-large overall change 
(d = .77) from fall to 
spring on automated 
quality scores
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Discussion: Key Findings

• Good evidence of convergent and discriminant validity for use of 
automated text evaluation with agency-designed writing sample process to 
predict performance on more comprehensive assessments of academic 
skill

• For students with significant learning difficulties participating in intensive 
intervention beyond school hours

• Replicates and extends similar findings with a U.S. general education sample
• Generalizability of automated scoring algorithm when applied to TOWL writing 

sample
• Automated quality scores showed evidence of student writing skill growth 

across a wide range of skill/grade levels (3-9)
• (Very) preliminary evidence that this could work for screening and progress 

monitoring in a DBI/CBM framework



Defensible Decisions Require Good Data

• Potentially very substantial improvements in scoring feasibility for 
screening and monitoring large numbers of students

• Plus fewer concerns with inter-scorer agreement

• Can be used to generate local standards for performance (norms and 
criteria)

• For identifying student needs, monitoring outcomes, evaluating programs, 
and allocating resources

• Not intended to replace evaluation of writing by teachers
• Can assist teachers in evaluating and tracking overall quality, while freeing up 

time to provide detailed, formative feedback on areas to improve (Wilson & Czik, 
2016)
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